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Abstract: We present a new approach for computing generalized 
2D and 3D Voronoi diagrams using interpolation-based polygon 
rasterization hardware. We compute a discrete Voronoi diagram 
by rendering a three dimensional distance mesh for each Voronoi 
site. The polygonal mesh is a bounded-error approximation of a 
(possibly) non-linear function of the distance between a site and a 
2D planar grid of sample points. For each sample point, we 
compute the closest site and the distance to that site using polygon 
scan-conversion and the Z-buffer depth comparison. We construct 
distance meshes for points, line segments, polygons, polyhedra, 
curves, and curved surfaces in 2D and 3D. We generalize to 
weighted and farthest-site Voronoi diagrams, and present efficient 
techniques for computing the Voronoi boundaries, Voronoi 
neighbors, and the Delaunay triangulation of points. We also show 
how to adaptively refine the solution through a simple windowing 
operation. The algorithm has been implemented on SGI 
workstations and PCs using OpenGL, and applied to complex 
datasets. We demonstrate the application of our algorithm to fast 
motion planning in static and dynamic environments, selection in 
complex user-interfaces, and creation of dynamic mosaic effects. 

CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling; I.3.3 [Computer Graphics]: 
Picture/Image Generation. 

Additional Key Words: Voronoi diagrams, graphics hardware, 
polygon rasterization, interpolation, motion planning, proximity 
query, medial axis, OpenGL, framebuffer techniques. 

1 INTRODUCTION 
Given a set of primitives, called Voronoi sites, a Voronoi diagram 
partitions space into regions, where each region consists of all 
points that are closer to one site than to any other. Voronoi 
diagrams have been used in a number of applications including 
visualization of medical datasets, proximity queries, spatial data 
manipulation, shape analysis, computer animation, robot motion 
planning, modeling spatial structures and processes, pattern 
recognition, and locational optimization. The concept of Voronoi 
diagrams has been around for at least four centuries, and since the 
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over Plate: Discrete approximation of the generalized Voronoi
iagram of four points, a line, a triangle, and one cubic Bézier curve
omputed interactively on a PC. 
970s, algorithms for computing Voronoi diagrams of geometric 
rimitives have been developed in computational geometry and 
elated areas. 

ood theoretical and practical algorithms are known for 
omputing ordinary Voronoi diagrams of points in any dimension. 
rdinary Voronoi diagrams can be generalized in many different 
ays by using different distance functions and site shapes. A 

ommon generalization is to compute the diagram for higher-order 
ites, such as lines and curves. This greatly increases the 
omplexity since the boundaries of the diagram are composed of 
igh-degree algebraic curves and surfaces, and their intersections; 
he boundaries of an ordinary point Voronoi diagram are linear. 
o practically efficient and numerically robust algorithms are 
nown for constructing a topologically consistent, continuous 
epresentation of generalized Voronoi diagrams. 

iven the practical complexity of computing an exact generalized 
oronoi diagram, many authors have proposed approximate 

lgorithms. Interesting approaches include computing the Voronoi 
iagram of a point-sampling of the sites, adaptively subdividing 
pace to locate the Voronoi boundary, and point-sampling the 
pace to form a volumetric representation of the diagram. In 
ractice, these previous algorithms take considerable time and 
emory on large numbers of input sites, or are restricted in 

enerality. 

ain Contributions: In this paper, we present an approach that 
omputes discrete approximations of generalized Voronoi 
iagrams to an arbitrary resolution using polygon rasterization 
ardware. Our contributions include: 

. Efficient methods to approximate the distance function, with 
bounded error, for points, lines, polygons, polyhedra, curves, 
and curved surfaces using a polygonal mesh that is linearly 
interpolated by graphics hardware. 

. Efficient algorithms to find Voronoi boundaries and neighbors, 
and to construct Delaunay triangulations. 



3. Techniques to construct weighted and farthest-site generalized 
Voronoi diagrams in 2D and 3D. 

4. Demonstration of the effectiveness of our approach to the 
following applications: 

• Fast motion planning in static and dynamic environments 
• Selection in complex user-interfaces 
• Generation of dynamic mosaics 

The resulting techniques have been effectively implemented on 
PCs and high-end SGI workstations using the OpenGL graphics 
library. A 2D example computed in real-time is shown in the 
cover plate. Our techniques improve upon the state of the art in 
following ways: 

• Generality: We make no assumption with respect to input 
primitives. We only need to mesh the distance function of a site 
over a grid of point samples. 

• Efficiency: We show that our approach is quite fast. Its speed 
arises from using coarse polygonal approximations of the 
distance functions while still maintaining a specified error 
bound, using polygon rasterization hardware to reconstruct the 
distance values, and using the Z-buffer depth comparison to 
perform distance comparisons. We demonstrate the 2D 
approach on models composed of nearly 100K triangles in a 
real-time motion planning application through a complex 
dynamic scene. We derive efficient meshing strategies for 
polygonal models in 3D, and show the results of a prototype 
implementation that demonstrates its potential. 

• Tight Bounds on Accuracy: Although our approach produces 
a discretized Voronoi diagram, all sources of error are 
enumerated and techniques are given to produce output within 
any specified tolerance. 

• Ease of Implementation: The approach can be easily 
implemented on current graphics systems. The special cases are 
limited and the problem reduces to simply meshing a distance 
function for any new site. 

2 RELATED WORK 
The concept of Voronoi diagrams has been around for at least four 
centuries. In his treatment of cosmic fragmentation in Le Monde 
de Mr. Descartes, ou Le Traite de la Lumière, published in 1644, 
Descartes uses Voronoi-like diagrams to show the disposition of 
matter in the solar system and its environment. The first 
presentations of this concept appeared in the work of [Diric50] 
and [Voron08]. Algorithms for computing Voronoi diagrams have 
been appearing since the 1970s. See the surveys by [Auren91] and 
[Okabe92] on various algorithms, applications, and 
generalizations of Voronoi diagrams. 

2.1 Voronoi Diagrams of Points 
Among the algorithms known for computing Voronoi diagrams of 
points in 2D, 3D, and higher dimensions are the divide-and-
conquer algorithm proposed by [Shamo75] and Fortune’s 
sweepline algorithm [Fortu86]. Numerically robust algorithms for 
constructing topologically consistent Voronoi diagrams have been 
proposed by [Inaga92, Sugih94]. A number of implementations in 
exact and floating-point arithmetic are also available. 

2.2 Generalized Voronoi Diagrams 
Algorithms have been proposed for constructing Voronoi 
diagrams of higher order sites. Two broad approaches based on 
incremental and divide-and-conquer techniques have been 
summarized in [Okabe92]. The set of algorithms includes divide-
and-conquer algorithms for polygons [Lee82, Held97], an 
incremental algorithm for polyhedra [Milen93b], and 3D tracing 
for polyhedral models [Milen93, Sherb95, Culve99]. Curved sites 
and CSG objects are handled in [Chian92, Dutta93, Hoffm94]. In 
all these cases, the computation of generalized Voronoi diagrams 
involves representing and manipulating high-degree algebraic 
curves and surfaces and their intersections. As a result, no efficient 
and numerically robust algorithms are known for computing them. 

2.3 Approximate Voronoi Diagrams 
Many authors compute approximations of generalized Voronoi 
diagrams based on the Voronoi diagram of a point-sampling of the 
sites [e.g. Sheeh95]. However, deriving any error bounds on the 
output of such an approach is difficult, and the overall complexity 
is not well understood. 

[Vleug95] and [Vleug96] have presented an approach that 
adaptively subdivides space into regular cells and computes the 
Voronoi diagram up to a given precision. [Laven92] uses an octree 
representation of objects and performs spatial decomposition to 
compute the approximation. [Teich97] computes a polygonal 
approximation of Voronoi diagrams by subdividing the space into 
tetrahedral cells. All these algorithms take considerable time and 
memory for large models composed of tens of thousands of 
triangles, and cannot easily be extended to directly handle 
dynamic environments. 

The idea of using polygon rasterizing hardware and rendering of 
cones to construct 2D Voronoi diagrams of points is suggested in 
[Haebe90] and in the OpenGL 1.1 Programming Guide [Woo97]. 

2.4 Graphics Hardware 
Polygon rasterization graphics hardware has been used for a 
number of geometric computations, such as visualization of 
constructive solid geometry models [Rossi86, Goldf89] and 
interactive inspection of solids, including cross-sections and 
interferences [Rossi92]. Algorithms for real-time motion planning 
using raster graphics hardware have been proposed by [Lengy90]. 

3 OVERVIEW 
In this section, we present the basic concepts important to our 
approach. We give a formal definition of generalized Voronoi 
diagrams and present a simple brute-force strategy for computing 
a discrete approximation. We then show how we may greatly 
accelerate this using graphics hardware. 

3.1 Generalized Voronoi Diagrams 
The set of input sites is denoted as A1, A2, …, Ak. For any point p 
in the space, dist(p, Ai) denotes the distance from the point p to the 
site Ai. The dominance region of Ai over Aj is defined by 

Dom(Ai, Aj) = { p | dist(p, Ai) ≤  dist(p, Aj) } 

For a site Ai, the Voronoi region for Ai is defined by 

V(Ai) = ∩j≠iDom(Ai, Aj) 



The partition of space into V(A1), V(A2), …, V(Ak) is called the 
generalized Voronoi diagram. The (ordinary) Voronoi diagram 
corresponds to the case when each Ai is an individual point. The 
boundaries of the regions V(Ai) are called Voronoi boundaries. For 
primitives such as points, lines, polygons, and splines, the Voronoi 
boundaries are portions of algebraic curves or surfaces. 

3.2 Discrete Voronoi Diagrams 
Perhaps the simplest way to compute a discrete Voronoi diagram 
is to uniformly point-sample the space containing Voronoi sites. 
For each sample point, we find the closest site and its distance. 
Associating each point in space with its closest sample point 
induces a uniform subdivision into rectangular cells. For any 
point, we know the distance to the closest site to within the 
maximum distance between a point in space and a sample point, 
i.e. half the diagonal length of a cell.  

A simple brute-force approach to find the closest sites is to iterate 
through all sample points, computing distances to all sites and 
recording the closest site and distance. The algorithm can be 
rearranged to iterate through the sites: for each site, compute 
distances to all sample points and update the current closest site 
and distance. The second arrangement is amenable to an 
implementation in graphics hardware. 

3.3 Polygon Rasterization Hardware 
Our approach makes use of standard Z-buffered raster graphics 
hardware for rendering polygons. The frame buffer stores the 
attributes (intensity or shade) of each pixel in the image space; the 
Z-buffer, or depth buffer, stores the z-coordinate, or depth, of 
every visible pixel. Given only the vertices of a triangle, the 
rasterization hardware uses linear interpolation to compute depth 

values across the triangle’s surface. All raster samples covered by 
a triangle have an interpolated z-value. 

3.4 Our Approach 
A key concept for our approach is that of the distance function for 
a site, which gives, for any point, the distance to that site. The 
main idea of our approach is to render a polygonal mesh 
approximation to each site's distance function. Each site is 
assigned a unique color ID, and the corresponding distance mesh 
is rendered in that color using a parallel projection. We make use 
of two components of the graphics hardware: linear interpolation 
across polygons and the Z-buffer depth comparison operation. 
When rendering a polygonal distance mesh, the polygon 
rasterization reconstructs all distances across the mesh. The Z-
buffer depth test compares the new depth value to the previously 
stored value. If the new value is less, the Z-buffer records the new 
distance, and the color buffer records the site’s ID. In this way, 
each pixel in the frame buffer will have a color corresponding to 
the site to which it is closest, and the depth-buffer will have the 
distance to that site. In order to maintain an accurate Voronoi 
diagram, we bound the error of the mesh to be smaller than the 
distance between two sample points. 

Our approach is inspired by an interesting sidenote in the OpenGL 
1.1 Programming Guide [Woo97]. In the Section “Now That You 
Know” on “Dirichlet Domains”, the authors briefly discuss a 
simple method to construct discretized 2D Voronoi diagrams for 
points using OpenGL graphics hardware. The authors mention the 
use of cones for Voronoi diagrams of points in 2D, but warn that 
the technique “might require thousands of polygons.” We show 
that we can render cones using fewer than 100 triangles for a 
1K×1K resolution grid and achieve the same level of accuracy. In 
addition, we generalize this approach to higher-order sites in both 
two and three dimensions. 

4 THE DISTANCE FUNCTIONS 
For both 2D and 3D, our discrete Voronoi diagram computation 
has been reduced to finding a 3D polygonal mesh approximation 
to the distance function of a Voronoi site over a planar 2D 
rectangular grid of point samples. The error in the approximation 
must be bounded so that by rendering this mesh using graphics 
hardware, we can efficiently and accurately compute the distances 
between the site and all of the point samples. 

In this section, we describe the distance functions associated with 
various sites, and provide efficient methods for meshing these 
functions within a specified error tolerance. 

4.1 2D Voronoi Diagrams 
Denote the distance from a site A to each pixel location (x,y) by 
dist(A,(x,y)). The distance function of A is given by 
d(x,y)=dist(A,(x,y)). Meshing this function corresponds to 
approximating the graph of d(x,y) with a polygonal model. 

The three basic types of 2D sites are points, lines, and polygons. 
Their corresponding distance functions are shown in the table. In 
this section, we present algorithms for computing distance meshes 
for each of them. 

 

 

 
Figure 1: Image of the sampled distance functions for two point
sites. Uniform point sampling induces a rectangular cell subdivision
of space. 

 
Figure 2: The two distance images are composited through a
distance comparison operation. The current closest site and the
distance to each site is updated based on the lesser distance value.
The resulting Voronoi diagram is composed of a distance image
(left) and an closest-site ID image (right). 



2D site Shape of Distance Function Figure 
Point Right circular cone 3a 
Line segment “Tent” 3b 
Polygon Cones and tents 5 

Table 1: Shape of Distance Functions for 2D Sites  

X

D

Y

a b  
Figure 3: The distance meshes used for a point (left) and a line 
segment (right). The XY-plane containing the site is shown above 
each mesh. 

4.1.1 Points in 2D 
The distance function for a point in the plane is a right circular 
cone. We approximate cones as a triangle fan proceeding radially 
outward from the apex (Figures 3a and 4-left). A point's Voronoi 
region can potentially extend to any portion of the region of 
interest, and thus the radius at the cone's base must be of size M√2 
if the scene is contained in an M×M square.The mesh’s radial lines 
lie on the cone. The maximum error in distance occurs at the cone 
base between adjacent vertices. Because the cone is right circular, 
the error in approximating the circular base as viewed from above 
is equal to the error in distance. 

α
R

α /2

ε

R-ε
R

Figure 4: A single triangle of the meshed point distance function 
cone. α is the angle we wish to maximize, R is the radius of the 
cone (max dist between site and sample pt), and ε is the max error. 

From this formulation (see Figure 4), we compute the maximum 
angle as: 

R
R εα −=)2cos(   !  






 −= −

R
R εα 1cos2  

For example, for a maximum distance error of no more than one 
pixel's width, a cone mesh for a 512×512 grid will require only 60 
triangles. A 1024×1024 grid will require 85 triangles. 

4.1.2 Line Segments in 2D 
The distance function for a line segment is composed of three 
parts: one for the segment itself and one for each endpoint. The 
endpoints are treated the same way as points. The distance 
function for the line segment (excluding the endpoints) is just a 
“tent” (Figure 3b); its distance mesh is composed of two 
quadrilaterals. These represent the distance function exactly, so 
there is no error in the distance mesh representation. The only 
error for the line segment is in the cone mesh for the endpoint 
distance functions, as described in the previous section. 

4.1.3 Polygons and Per-feature Voronoi Diagrams 
It is often useful to consider sites as a collection of features, rather 
than as a single entity. For example, a line segment would be 
considered as three features: the two endpoints and the linear edge 

between them. By rendering the distance meshes for different 
features in different colors, we obtain a discrete approximation of 
a per-feature Voronoi diagram. Such diagrams are useful in 
several contexts: for example, the computation of a medial axis of 
a polygon. A picture of a per-feature Voronoi diagram for a 
polygon is given in Figure 5-left. 

 
Figure 5: The per-feature Voronoi diagram of a quadrilateral (left). 
The corresponding distance mesh (right). 

Polygons are rendered as a series of linear segments connected at 
the vertices. Each edge and vertex is a feature. For the vertices, 
rendering a triangle fan connecting two adjacent edges, rather than 
a full point distance mesh cone, saves on the total number of 
triangles computed and ensures that the distance meshes for 
adjacent features join smoothly. See Figure 5-right for an 
illustration. 

4.2 3D Voronoi Diagrams 
Our algorithm computes a 3D discrete Voronoi diagram slice-by-
slice. Each slice is parallel to the (x,y)-plane and is computed 
independently. 

Consider the slice z=z0. To construct the intersection of the 
Voronoi diagram with this slice, consider the distance function for 
a site A, restricted to the slice. Denote the restricted distance 
function by dist(x,y)=dist(A,(x,y,z0)). In this section, we describe 
dist(x,y) for polygon, line segment, and point sites. As in the 2D 
case, computing the discrete Voronoi diagram is a matter of 
meshing the distance function d=dist(x,y) for each site and 
rendering these meshes. 

The distance meshes we give for the 3D problem are for a per-
feature Voronoi diagram. Thus, a detached triangle site is treated 
as seven features: a polygon, three line segments, and three points. 
As in 2D per-feature diagrams, some features have a restricted 
region of influence.  

3D site Shape of distance function Figure 
Polygon Plane 6 
Line segment Elliptical cone 7 
Point 1 sheet of a hyperboloid of 2 sheets 8 

Table 2: Shape of Distance Functions for 3D Sites 

4.2.1 Polygons in 3D 
The influence of this site in 3D is confined to the region formed by 
sweeping the polygon orthogonally through space, since points 
outside this region are considered to be closer to an edge or vertex 
of the polygon. In the slice, this region is a polygon, and dist(x,y) 
is linear within this region, as illustrated in Figure 6. The distance 
to the site is computed at the vertices of the region, and a distance 
mesh composed of a single polygon is rendered. No meshing error 



is incurred. If the polygon intersects the slice, the intersection is 
computed and the polygon is decomposed into two sub-polygons. 
Each sub-polygon is treated as above. 

x
y

z

  x
y

d

 
Figure 6: A polygonal site and its region of influence in a slice (left). 
The corresponding linear distance function (right). 

4.2.2 Line Segments in 3D 
The graph of the distance function for a line segment site is an 
elliptical cone (Figure 7). The apex of the cone lies at the 
intersection of the segment's line with the slice, and the cone’s 
eccentricity is determined by the relative angle of the line and the 
slice. The 3D region of influence of a line segment lies between 
two parallel planes through the endpoints, since a point outside 
these planes is closer to one of the endpoints than to the segment.  
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Figure 7: A line-segment site and its region of influence in a slice 
(left). The corresponding conical distance function (right). 

4.2.3 Points in 3D 
The distance function for a point site is shown in Figure 8. Its 
graph is one sheet of a hyperboloid of revolution of two sheets. If 
the point lies in the slice, the distance function is a cone rather 
than a hyperboloid. The region of influence for a single point is 
the entire slice. 
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Figure 8: A point site and its region of influence in a slice (left). The 
corresponding hyperbolic distance function (right). 

4.2.4 Meshes for Line Segments and Points in 3D 
The construction of bounded-error meshes for the line-segment 
and point distance functions is detailed in [Hoff99]. The method 
attempts to minimize the complexity of the mesh by committing 
the maximum allowable error ε in each mesh cell. The structure of 
the mesh depends only on the resolution of the Voronoi diagram, 
defined by the ratio of the diameter M of the model to the 
maximum meshing error ε. The mesh structure is precomputed; 
during the Voronoi diagram construction, the mesh is constructed 

using table-lookup. Examples of the meshes produced by this 
method are shown in Figure 9. 

x

y

           x

y

 
Figure 9: A bounded-error distance mesh for the line-segment site 
(left) and the point site (right).  

4.3 Generalization to Curved Sites 
The exact distance function for a curved site can be rather 
complicated, and for splines or algebraic curves is a high-degree 
algebraic function. We simplify this by creating a linear 
tessellation of the curved site, and then meshing the distance 
function of this approximation. We can use algorithms such as in 
[Filip87] and [Kumar96] to obtain bounded-error tessellations. 

Figure 10 shows the mesh for a Bézier curve. Since the mesh for a 
linear segment is exact, the distance error for any of the linear 
segments is just the error in the deviation of the line from the 
original curve. The endpoints of the curve must be treated as 
points, just as for the line segment. The distance mesh for the 
“joints” between linear segments is a portion of the radial mesh of 
triangles. An overall maximum error bound of ε can be obtained 
for the entire curve by: 

• tessellating the curve into linear segments with maximum error 
bound of ε; 

• rendering the distance mesh for the linear segments; and 

• treating the endpoints and joints as points, and rendering each 
point distance mesh with maximum error bound of ε. 

This approach generalizes to 3D surfaces, which can be tesselated 
into a polygonal mesh. The error is bounded in a similar way. 

 
Figure 10: The Voronoi diagram of a Bézier curve and 5 points 
(left). The distance mesh for the Bézier curve that has been 
tessellated into 16 segments (right). 

4.4 Weighted and Farthest-site Diagrams 
In a weighted Voronoi diagram, the distance functions are 
additively or multiplicatively weighted [Okabe92]. Translation of 
a distance mesh along the distance axis accounts for additive 



weights. Linear scaling along the distance axis accounts for 
multiplicative weights. In 2D, this is equivalent to changing the 
angle of the cone or tent. Scaling the distance mesh also scales the 
meshing error. 

In a farthest-site Voronoi diagram, the farthest site from each 
point is found. Unlike in the nearest-site diagram, the distance 
function monotonically decreases as we move away from the site. 
We obtain the proper distance relationships by negating the 
distance functions. In practice, however, we need only reverse the 
depth-test (less-than to greater-than) and change the depth 
initialization from ∞ to 0. 

5 BOUNDARIES AND NEIGHBORS 
A continuous Voronoi diagram representation usually specifies the 
Voronoi boundaries that separate the set of Voronoi regions. In 
our discrete representation, we must search for the boundaries 
using approaches similar to iso-surface extraction and root-finding 
techniques [Bloom97]. However, instead of trying to bracket zero-
crossings between sample points where iso-surface functions 
evaluate to values of opposite sign, we simply find the boundaries 
in the space between pixel samples of different color. Using the 
same approaches, we can either point-sample the boundary or 
compute an approximate mesh representation. In order to increase 
the precision, we must either use a higher overall resolution or 
adaptively refine. 

One approach is to examine each pair of adjacent cells in 2D or 
3D. If the colors are different, the location between the samples is 
marked as a point on the Voronoi boundary. The operation is very 
simple and can be accelerated through image operations in 
graphics hardware. 

Another approach is based on a continuation method that starts at 
a point known to be on the boundary and walks along the 
boundary until all boundary points have been found [Bloom97]. 
Since we only compare locations near known boundaries, it is 
output sensitive. The correctness of the continuation method 
depends on whether the Voronoi boundaries are connected. The 
boundaries of a generalized Voronoi diagram of a collection of 
convex sites are always connected, so the method is correct for 
inputs consisting of point, line-segment, or convex polygonal 
sites. The method may fail in the presence of curves, curved 
surfaces, or concave sites where the generalized Voronoi diagram 
may have isolated components. 

In this approach, at least one boundary point must be known as a 
“seed” value. Assuming convex sites, some Voronoi boundary 
passes through the edge of the bounded region in which we are 
computing the diagram, so the method begins by examining every 
window border pixel. When all Voronoi boundaries are connected 
only one seed point is needed since all others can be reached from 
that first point. Starting from a seed point, we recursively check all 

neighbors that are a different color from the current pixel's. All 
visited pixels are marked and avoided in the recursion. 

This algorithm also finds the Voronoi neighbors–pairs of sites that 
share a Voronoi boundary. This concept is useful in a wide variety 
of applications, including computing the dual of the ordinary 
Voronoi diagram–the Delaunay triangulation. The boundary 
finding algorithms find pairs of adjacent pixels with different 
colors. The sites corresponding to those two colors are reported to 
be Voronoi neighbors. Connecting Voronoi neighbors with line 
segments constructs the Delaunay triangulation. 
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Figure 11: Standard nearest-site Voronoi regions (left). Farthest 
regions for the same sites (middle). Weighted regions (right).
Weights: line, 2; dark point, 1; light point, 0.5. 

F
f
t

igure 12: Voronoi diagram of set of 2D points (Left). Boundaries
ound with continuation-based approach (middle). Delaunay
riangulation by connecting neighboring sites (right). 
 SOURCES OF ERROR 
n this section we analyze all sources of error in our approach, and 
iscuss how to reduce this error. We consider two broad 
ategories: error in distance approximation and combinatorial 
rror.  

.1 Distance Error 
istance error is the error in the distance computed from a pixel to 

 site. There are three sources of distance error: 

 Meshing error, from approximating the true distance function 
by the distance mesh. We discussed how to bound this error in 
Section 4. 

 Tessellation error, from tessellating a curved site into a number 
of linear sites. The tessellation algorithms presented in [Filip87, 
Kumar96] give tight bounds. Tessellation error is reduced by 
using a finer approximation to the site. 

 Hardware precision error, from the use of fixed-precision 
arithmetic (integer or floating-point) during rasterization. 
Hardware precision error cannot be removed without resorting 
to multiple-precision arithmetic, but hardware error is usually 
negligible compared to meshing error. 

hese errors are additive–i.e. the error from one source is not 
agnified by the other sources. The total distance error is at most 

he sum of the errors from these three sources. 

.2 Combinatorial Error 
ombinatorial error refers to qualitative error as opposed to 
uantitative. For example, a pixel is assigned the wrong color, or 
he algorithm reports an incorrect pair of Voronoi neighbors. 
here are three sources that contribute to combinatorial error: 

 Distance error, as described in the previous section. With 
significant distance error, depth comparison at a pixel may 
make a farther site appear closer, causing the pixel to be 
colored incorrectly.  



• Resolution error, a result of discrete sampling. If this sampling 
is too coarse, we may miss some Voronoi regions or find 
spurious neighbors. Handling resolution error is described 
below. 

• Z-buffer precision error, the limitations of the number of bits of 
precision provided by the Z-buffer. Current graphics systems 
have 24 bits or 32 bits of precision for each pixel in the Z-
buffer, which is more than the 23 bits provided in standard 
floating-point. If the distances between two pixels cannot be 
determined within that precision, the Z-buffer cannot 
accurately choose the correct color. This effect is small when 
compared to the other two, but can be significant at very high 
resolutions with very little distance error. A higher-precision Z-
buffer can be simulated in software at a significant loss in 
efficiency. 

Adaptive resolution allows us to “zoom in” on a region of interest, 
reducing potential resolution error. This involves identifying a 
window of interest and applying the appropriate linear 
transformation for zooming into that region. Figure 13 shows an 
example. Note that when zooming in, sites outside of the viewing 
region can still have Voronoi regions inside the region. Thus, the 
“maximum distance to a site” must be adjusted appropriately when 
computing the distance error bounds. 

right color. Assume that there is no Z-buffer precision error, and 
that we can bound the maximum distance error by ε, as described 
earlier. For a pixel P colored with the ID of site A and with a 
computed depth buffer value of D, we know that: 

D - ε ≤ dist(P,A) ≤ D + ε 

Furthermore, we know that for any other site B, 

D - ε ≤ dist(P,B) 

From this information, we easily determine that 

dist(P,A) ≤ dist(P,B) + 2ε 

where dist(X,Y) means the distance from the center of pixel X to 
site Y. That is, if a pixel is colored with the ID of A, then site A is 
no more than 2ε farther from the pixel center than any other site. 
The same bound holds in 3D. 

7 APPLICATIONS 
There are many applications that benefit from fast computation of 
a discrete Voronoi diagram, an approximation to the distance 
function, or both. We describe three that we have implemented. 

7.1 Motion Planning 
Motion planning is a fundamental problem in robotics and 
computational geometry, with applications to the animation of 
digital actors, maintainability studies in virtual prototyping, and 
robot-assisted medical surgery. The classic Piano Mover’s 
problem involves finding a collision-free path for a robot moving 
from one location (and orientation) to another in an environment 
filled with obstacles. Numerous approaches to this problem have 
been proposed, some of which are based on generalized Voronoi 
diagrams [Latom91]. The underlying idea is to treat the obstacles 
as sites. The Voronoi boundaries then provide paths of maximal 
Figure 13: Adaptive resolution allows us to zoom in on features that
could otherwise be missed. 
Resolution error can cause a number of combinatorial problems, 
such as missing the entire Voronoi region of a site. One such 
example is shown in Figure 14 (left two images). When no cell has 
the color of a particular site, we can separately render the site 
itself, computing the pixels covering that site. By zooming around 
those pixels, we will find pixels in the Voronoi region of that site. 
The same technique can be applied to cells in 3D. Another 
problem arising from resolution error is incorrectly finding 
Voronoi neighbors (shown in Figure 14 – right two images). This 
problem (when due solely to resolution error) can be alleviated by 
adaptively zooming in on all boundary pixels.  

6.3 Error Bounds  
Distance error occasionally causes a pixel to be colored 
incorrectly. However, in a certain sense, the pixel is “almost” the 

clearance between the obstacles. Due to the practical complexity 
of computing generalized Voronoi diagrams, the applications of 
such planners have been limited to environments composed of a 
few simple obstacles. 

Our discrete Voronoi computation algorithm can be applied to 
motion planning in both static and dynamic environments. The 
Voronoi algorithm computes the approximate distance to the 
nearest obstacle. The basic approach we implemented is based on 
the potential field method, which repels a robot away from the 
obstacles and towards the goal using a carefully designed artificial 
potential function. Other Voronoi diagram or distance-based 
approaches are also possible. The details of our motion planning 
algorithm are provided in [Hoff99]. 

We demonstrate our planner’s effectiveness in a complex 
environment: the interior of a house, composed of over 100,000 
triangles. We use the x- and y-components of the polygons to give 
the 2D input primitives for our algorithm. The robot has three 
degrees of freedom: x- and y-translation along the ground and 
rotation about the z-axis. Color plate 2 and the video show a 
sequence of piano motions automatically generated by our motion 
planner in a static environment. Color plate 2 also shows an image 
of the distance function for the house. We also apply our planner 
to environments with moving obstacles. Our video demonstrates 
the movement of a music stand through a house filled with 
moving furniture. The entire potential field and the motion 
planning sequence are computed in real time.  

 
Figure 14: Problems caused by resolution error. An entire region in
the center will be missed since it does not hit any pixel centers (left
two images). The left and right regions, which should meet, become
disconnected after rasterization (right two images). 



7.2 Selection in Complex User Interfaces 
Complex 2D user interfaces sometimes require quick 
determination of the object nearest to the cursor. The Voronoi 
diagram of the interface can be used as a nearest-object lookup 
table indexed by sample points. Given the cursor position, it is 
simple to find the nearest sample point, and thus the nearest 
object. In some interfaces it may be desirable to know the distance 
to the selected object as well. We used this technique in our 2D 
implementation to allow the user to interactively move sites with 
the mouse. 

7.3 Mosaics 
We can use our approach for generating Voronoi diagrams to 
create an interesting artistic effect called mosaicing. A mosaic is a 
tiled image, where each tile has a single color. The Voronoi 
diagram of a point set can be used as a tiling [Haebe90]. Each 
Voronoi tile is colored with a color taken locally from the image. 
In our implementation, each tile is colored by the image pixel 
closest to the point site (see color plate 1). Our algorithm can 
perform this operation very quickly, allowing dynamic mosaics in 
which the mosaic tiling, the source image, or both may change in 
real time. 

By randomly distributing point sites across an image, we obtain an 
effect similar to many mosaic filter effects seen in image editing 
programs. By clustering point sites around areas of higher detail, 
we obtain a classic tiling seen in many real-life mosaics where 
smaller tiles are used in areas of greater detail. 

8 IMPLEMENTATION 
For the 2D case, we implemented a complete interactive system 
incorporating all of the features and applications described here. 
Example output is shown throughout the paper. The video 
demonstrates interactive computation of more complex diagrams. 
In 3D, we show results from a prototype system that uses a 
simpler distance meshing strategy (see color plate 3 and the video 
for example output). 

We implemented the 2D and 3D systems in C++ using the 
OpenGL graphics library and the GLUT toolkit. Any graphics API 
specification that uses a standard Z-buffered interpolation-based 
raster graphics system is sufficient to support the Voronoi diagram 
computation. Motion planning and the basic operations  of 
boundary and neighbor finding require reading back of the color 
and depth buffers. Our system runs, without source modification, 
on both an MS-Windows-based PC and a high-end SGI Onyx2 
with InfiniteReality Graphics. Surprisingly, the performance on a 

400 Mhz Intel Pentium II PC with an Intergraph Intense 3D Pro 
3410-T graphics accelerator was comparable to the SGI 
performance. In fact, in boundary finding, neighbor finding, and 
particle motion planning applications, the performance exceeded 
the high-end SGI. This was mainly due to intense buffer readback 
requirements. Each distance mesh must cover every pixel, so 
performance is bounded by the graphics hardware’s pixel fill-rate. 
For large numbers of input sites, therefore, the SGI outperforms 
the PC. 

When the distance-error tolerance is relaxed, the amount of 
geometry rendered for each site can be reduced, slightly 
improving performance.  However, the biggest gains are achieved 
by reducing the number of pixels filled. In many practical cases, 
we can increase the performance significantly by bounding the site 
distance functions to a maximum distance. This allows reduction 
of the size of the distance meshes drawn so that only a portion of 
the screen is covered for each site. We exploit this observation to 
obtain interactive rates in the 1,000-point example shown in color 
plate 1, in the 10,000-point example shown in the video, and in the 
general case for the computation of the potential field used in the 
motion-planner. For closed higher-order primitives, such as 
polygons, we can further increase performance by restricting the 
distance function to only the inside or outside regions. This is 
useful in computing potential fields and medial axes. 

9 CONCLUSIONS AND FUTURE WORK 
We have presented a method for rapid computation of generalized 
discrete Voronoi diagrams in two and three dimensions using 
graphics hardware. We have presented techniques for creating a 
mesh of the distance function for each site with bounded error, and 
described how this distance mesh allows us to compute the 
Voronoi diagram rapidly. We have analyzed various sources of 
error, as well as how to bound or reduce those errors. Finally, we 
have demonstrated a few applications using our approach. 

In the future, we would like to extend this work in the following 
ways: generalizations of distance functions and site geometry, 
further applications, other distance meshing strategies, and more 
acceleration techniques for the 3D Voronoi volume computation. 
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