Writing Documentation for ArtiSynth

John Lloyd
August 20, 2014

Writing Documentation for ArtiSynth

2

Contents
1 Introduction 3
2 How Documents Are Created 3
2.1 Document Source Code Organization ittt e e 3
2.2 Document Creation Commands ottt e e e e e e e e e e e 3
23 HTML OUtput o e e e e e e e 3
24 PDFOUPUL oo e e e e 4
2.5 Other Commands o v vt e e e e e e e e e e e e e e 4
3 Installing Documents on the Webserver 4
4 LaTeX usage and conventions 5
4.1 LaTeXML restriCtions v v v v ot e 5
4.2 Font CONVENtIONS . . .« . v v v v v e i e 6
43 Codeblocks e e 6
4.4 SideblockS e e e e e 6
4.5 Inserting Images L e 6
4.6 Javadoc References L e e 7
4.6.1 Classteferences v i e e e e e e e e 7
4.6.2 Methodreferences 0 e e e e e e e e e 8
4.6.3 HOWItWOTKS o e e e e e 8
5 Adding a New Document 9
5.1 Creating and Updating the Makefiles e e 9
6 Images and Xfig 9
7 External Software Required 9
7.1 Installing LaTeXML L . e 9

8 Local Customizations 10

Writing Documentation for ArtiSynth

1 Introduction

This document describes how to write and modify the main ArtiSynth documentation set. It explains where the documentation
sources are kept, how they are converted into HTML or PDF files, what external software is required, and what special
conventions are used.

In addition to the main documentation described here, there may be additional documentation available at www.artisynth.org.

2 How Documents Are Created

ArtiSynth documentation is written using LaTeX, and converted into either PDF output using pdflatex, or HTML using
LaTeXML (dlmf.nist.gov/LaTeXML). See Section 7 for instructions on installing LaTeXML.

Makefiles are used to organize the commands and options needed to create these different outputs.

The format for PDF output is based on that used by the DocBook project, while style for HTML files is based on that used by
AsciiDoc.

2.1 Document Source Code Organization

The sources for the various books and articles that make up the documentation are located in subdirectories in $ARTISYNTH_HOME/doc.
For example, the sources for this document are located in $ARTISYNTH_HOME/doc/documentation, and the source file itself

is called documentation.tex. By convention, if a document contains images, then its image files are stored in a sub-directory

called images.

Additional subdirectories of doc include:
misc/
Contains miscellaneous and older documentation in formats, including text files.

javadocs/

Contains the Javadoc API documentation.

html/
Contains the HTML output produced by LaTeXML.

texinputs/

Contains input and style files used by LaTeX.

style/
Contains CSS style sheets.

2.2 Document Creation Commands

Each documentation source directory contains a Makefile, which implements a few basic commands to create PDF and/or
HTML output files from the LaTeX source files. To use the Makefile commands, you need to be on a system that supports
GNU make. This includes Linux, MacOS, and Windows with Cygwin installed.

2.3 HTML Output
To create HTML output for a particular source document, run the command
> make html

within that document’s source directory. This will create the HTML output and place it in a subdirectory under $ARTISYNTH_HOME/doc
It will also copy over any required image files.

http://www.artisynth.org
http://dlmf.nist.gov/LaTeXML/
http://www.docbook.org
http://www.methods.co.nz/asciidoc

Writing Documentation for ArtiSynth

2.4 PDF Output
To create PDF output for a document, you can use the command
> make pdf

The resulting PDF file is copied into the directory SARTISYNTH_HOME/doc/pdf.

2.5 Other Commands

By way the make operates, output will usually only be generated when the output file does not exist or when it’s older than the
corresponding . tex source file. To ensure execution of a particular make command, you can precede it with

> make clean

which will remove all extraneous and output files.

There is also a Makefile in SARTISYNTH_HOME/doc that provides global make commands for working on all the documents.
Within SARTISYNTH_HOME/doc, the command

> make HTML

(note the capitalization) will produce HTML output for all the documents. Likewise, make PDF will create all PDF output, and
> make CLEAN

will clean all the subdirectories. To copy the documentation into a web-accessible directory, you can use
> make webinstall

which assumes that the variable WEBINSTALL_DIR is properly set in the Makefile.

To create the Javadocs, you can use
> make javadocs

which will use javadoc to build the API documentation from the system sources and place this in the javadoc subdirectory.

3 Installing Documents on the Webserver

Once you have created documentation, you may want to install it on the ArtiSynth webserver. In order to do this, you need

1. an account on the ArtiSynth webserver (which is currently www.magic.ubc.ca);
2. the environment variable ARTISYNTH_WEB_ACCOUNT set to the name of your account on that server;

3. sshand rsync installed on your local machine.

Then, from within a given documentation subdirectory, the make command
> make install_html

will create the HTML output associated with that directory and install it on the ArtiSynth webserver. Likewise, the command

Writing Documentation for ArtiSynth

> make install_pdf

will create and install the PDF output.
You can also install a/l the HTML and PDF documentation by running
> make install_html
> make install_pdf
from the main documentation directory SARTSIYNTH_HOME/doc.
Also, from within SARTSIYNTH_HOME/doc, the command

> make install_javadocs

will install the Javadocs. Note that install_javadocs assumes you have already built the Javadocs, which you can do using
the command

> make javadocs

All of these installation commands work by using rsync to copy the files and ssh to then correctly set the permissions of
the copied files. Unfortunately, this means that you will probably have to enter your webserver password twice.

4 LaTeX usage and conventions

4.1 LaTeXML restrictions

All documentation is written in LaTeX, and conversion to HTML is done via LaTeXML. The latter is a Perl-based application
which translates a . tex file into an XML schema, which is then translated to HTML using XSLT. Currently, version 0.7.9 or
higher of LaTeXML is required; see Section 7.

LaTeXML is an ongoing project which was originally developed to provide reliable conversion of LaTeX-based mathematical
documents into HTML and XHTML. It supports a large number of the more commonly used LaTeX packages but does not
support them all. Therefore, in some circumstance, it may be useful to conditionalize the LaTeX source to use different input
depending on whether HTML or PDF output is being produced. Producing HTML implies the use of LaTeXML, which can be
detected using the \iflatexml conditional, as in:
\iflatexml

do things in a conventional way that LaTeXML can deal with
\else

\fancydancy{use some LaTeX package that LaTeXML can’t handle}
\fi

Some specific problems with LaTeXML at the time of this writing (May 2012) include:

* When specifying a font inside a list item, it is sometimes necessary to include an extra space after the right closing brace, as
in

\item[{\tt labelForItem}]
in order to prevent the font from spilling over into the body of the item.

» LaTeXML does not place the title page date (specified using \date{}) on the titlepage. Instead, it is placed in the footer at
the page bottom. As a work-around, we use \iflatex to leave \date empty and then place an explicit date at the top of the

page.

* Blank lines are not properly handled in the 1st1isting environment. This is fixed by post-processing the HTML output, as
described in Section 8.

» Some characters and character sequences (such as quotes, and the sequence . . .) are converted into special unicode charac-
ters. This actually reduces the readablity of code blocks, and so post-processing is used to replace the unicode characters with
the orginals (Section 8).

http://dlmf.nist.gov/LaTeXML/

Writing Documentation for ArtiSynth

4.2 Font conventions

Programmatic literals, such as class and method names, file names, command sequences, and environment variables are typeset
in monospace, using {\tt monospace}. User interface literals, such as menu items, are typeset in sans-serif, using {\sf
sans-serif}.

4.3 Code blocks

Small code blocks (typically one-line) are usually typeset using the verbat im environment, which produces output like this:
> short one line code or command line example

Longer code examples are typeset using the 1st1isting environment (from the 1istings package), which surrounds the
output in a colored box:

// Here is a longer code example
interface Property
{
Object get ();
void set (Object wvalue);
Range getRange ();
HasProperties getHost ();
PropertyInfo getInfo();

4.4 Side blocks

A special environment called sideblock is used to create admonition sections that contain special notes, warnings, or side
information. The LaTeX source

\begin{sideblock}

Note: when producing PDF, the {\tt sideblock} environment

is implemented using commands from the {\tt color} and

{\tt framed} packages. When producing HTML output, side blocks

are implemented internally using the

regular {\tt quote} environment, with the final appearance arranged
using the CSS stylesheet.

\end{sideblock}

will produce output that looks like this:

Note: when producing PDF, the sideblock environment is implemented using commands from the color and framed
packages. When producing HTML output, side blocks are implemented internally using the regular quote environment,
with the final appearance arranged using the CSS stylesheet.

4.5 Inserting Images

Image files are input using \includegraphics from the graphics package.

Any type of image file can be used that is acceptable to pdflatex (e.g., .png, .pdf, and . jpg). When creating HTML output,
LaTeXML automatically copies the image files into the HTML target directory, converting them if necessary into a format
acceptable for web display (typically .png or . jpg). This conversion is done using the ImageMagic application suite.

In some cases, good image appearance may require different image scalings, depending on whether HTML or PDF output is
being produced. This is often true in particular for .png files, where for HTML one may not want any scaling at all (in order to
get pixel-for-pixel reproduction). This can be achieved using \iflatexml:

http://www.imagemagick.org

Writing Documentation for ArtiSynth

\begin{figure}
\begin{center}
\iflatexml

\includegraphics []{images/viewerToolbar}

\else
\includegraphics[width=2.5in]{images/viewerToolbar}
\fi

\end{center}
\caption{The viewer toolbar.}%

4.6 Javadoc References

ArtiSynth is implemented in Java, and so much of the documentation refers to various Java classes and methods. It is therefore
useful to include hyperlinks from the documentation to the actual Javadoc pages. Unfortunately, creating such a hyperlink can
be rather tedious: If the Javadocs are rooted at http://www.artisynth.org/doc/javadocs, then a hyperlink to the class
definition for maspack.matrix.MatrixNd must take the lengthy form

\href{http://www.artisynth.org/doc/javadocs/maspack/matrix/MatrixNd.html}{MatrixNd}
Method references are even worse, particularly if they contain arguments:
\href{http:// ... MatrixNd.html#mul (maspack.matrix.MatrixNd) }{MatrixNd.mul ()}

To alieviate these problems, several LaTeX macros are provided that build Javadoc references automatically from simple class
and method descriptions.

4.6.1 Class references

The command \ javaclass will create a Javadoc reference to a class from the class name itself. The LaTeX source

\javaclass{maspack.matrix.MatrixNd}, and \javaclass[maspack]{matrix.MatrixNd}, and
\ javaclass [maspack.matrix]{MatrixNd}.

will produce the output
maspack.matrix.MatrixNd, and matrix.MatrixNd, and MatrixNd.

The name in the optional argument (between square brackets []) is prepended to the main argument to create a fully qualified
class name, with only the main argument being used as the anchor text.

The names provided by the optional argument and the main argument are concatenated (with an intervening ’.’ character) to
create a fully qualified class name that is used to produce the appropriate hyperlink to the Javadoc. For additional brevity in the
LaTeX source file, one can also use the command \ javaclassx, which internally prepends a package name provided by the
expansion of \ javabase onto the class name. \ javabase can be set using the command \set javabase, thus removing the
need to explicly specify the full class name in the arguments to \ javaclassx. For example,

\setjavabase{maspack.matrix}
Two important classes are \Jjavaclassx{MatrixNd} and \javaclassx{VectorNd}.
will produce the output

Two important classes are MatrixNd and VectorNd.

Writing Documentation for ArtiSynth

4.6.2 Method references

Methods can be referenced in a similar way using the command \ javamethod, which takes a class name plus the name of a
method and a (possibly abbreviated) argument signature. LaTeX source of the form

\ javamethod{maspack.matrix.MatrixNd.mul () },
\ javamethod [maspack.matrix] {MatrixNd.mul (MatrixNd) },
\ javamethod [maspack.matrix.MatrixNd]{mul (MatrixNd, MatrixNd) }.

will produce output of the form
maspack.matrix.MatrixNd.mul(), MatrixNd.mul(MatrixNd), mul(MatrixNd,MatrixNd).

As with \ javaclass, an alternate method \ javamethodx is available which internally prepends the package name provided by
the expansion of \ javabase onto the class name, so that

\setjavabase {maspack.matrix}
\ javamethodx [MatrixNd] {mul (MatrixNd)} takes one argument,
while \javamethodx [MatrixNd]{mul (MatrixNd,MatrixNd)} takes two.

will produce output of the form
mul(MatrixNd) takes one argument, while mul(MatrixNd,MatrixNd) takes two.

The argument signature does not need to contain the fully qualified type names of the arguments. In fact, if the method name
is unique to the class, no argument list is needed at all; a simple () will suffice. Otherwise, if the method is overloaded, the
argument signature should be composed of comma-separated entries, each of which partly matches the fully qualified type
name of each argument.

For example,

\javamethodx {MatrixNd.mul (maspack.matrix.MatrixNd, maspack.matrix.MatrixNd),
\ javamethodx {MatrixNd.mul (matrix.MatrixNd, matrix.MatrixNd),
\ javamethodx {MatrixNd.mul (MatrixNd, MatrixNd) .

will all produce references to the same method. In fact, if the method name and argument count is unique, then a set of commas
indicating the number of arguments will be sufficient, as in \ javamethodxMatrixNd.mul (,).

Finally, to omit the argument signature from the anchor text, one can use the commands \ javamethod* or \ javamethodx*
instead, so that

Method reference with argument signature:
\ javamethodx {MatrixNd.mul (MatrixNd, MatrixNd) }
\ javamethodx*{MatrixNd.mul (MatrixNd, MatrixNd)

, and without:
o
will produce the output

Method reference with argument signature: MatrixNd.mul(MatrixNd,MatrixNd), and without: MatrixNd.mul().

4.6.3 How it works

\javaclass and \ javamethod both work by creating a call to \href with a place-holder link of the form
{@IDOCBEGIN /classOrMethodName @JDOCEND }

This propagates to the output HTML file, which is then processed by the Perl script set JavadocLinks (located in $ARTISYNTH_HOME/
to convert *.” characters to ’/’ characters, prepend the appropriate root link for the Javadocs (such as http://www. -
artisynth.org/doc/javadocs), and, for methods, find and append the appropriate suffix to locate the method within the

class’s Javadoc file.

Note:
At present, working hyperlinks are only produced for HTML output. Links are not produced for PDF output because of
the difficulty in performing these postprocessing functions in LaTeX itself.

Writing Documentation for ArtiSynth

5 Adding a New Document

If you’re adding a completely new document (as opposed to modifying an existing one), then you should create a new source
directory for that document under SARTISYNTH_HOME/doc, and place the relevant . tex files there.

5.1 Creating and Updating the Makefiles

You should also create a Makefile in the new directory. This is most easily done by copying an existing Makefile from a
similar document, and replacing the names of the source files. Note that many of the commands and variables are predefined in
the file Makedefs, included from SARTISYNTH_HOME/doc.

You should also update the Makefile in SARTISYNTH_HOME/doc, so that it is aware of the new document subdirectory. Most
likely this will just require adding the name of the new source directory to the variable SUBDIRS.

6 Images and Xfig

As mentioned above, any type of image file can be used that is acceptable to pdflatex, and when creating HTML output,
LaTeXML automatically copies the image files into the HTML target directory, converting them into another web-appropriate
format if necessary. Our convention is to store the images for a particular document in an images subdirectory.

In addtion to raw image files, the Linux program Xfig is used to create both diagrams and annotated images that are marked

up with explanatory text and graphics. Files produced by xfig use the extension .fig, and are also stored in the images
directory as image “source” files. External images can be imported into Xfig; these are not stored in the . fig file but are stored
externally in their original image file.

Important:

Be careful about deleting image files that do not appear to be referenced in the documentation: they may in fact be referred
to by a . fig file. To determine the image file associated with an imported Xfig image, select the "Edit" tool within Xfig
and click on the image object. This will create a properties panel that displays the file.

7 External Software Required

The following summarizes the external software that is needed for generating or modifying ArtiSynth documentation:

* LaTeX, which is widely available for Linux, Windows, and MacOS systems.

* GNU make, which is standard on Linux and MacOS systems, and can be installed on Windows systems as part of the Cygwin
Unix emulation environment.

* LaTeXML, which is also available for Linux, Windows, and MacOS systems.

7.1 Installing LaTeXML

Detailed instructions on installing LaTeXML are available at dlmf.nist.gov/LaTeXML. For the ArtiSynth documentation,
version 0.7.9 or higher is required, which currently means it is necessary to install the most recent version from a subversion
(svn) checkout, since the prebuilt releases provide only version 0.7.0. The installation instructions also describe the required
prerequisite software, which includes Perl, ImageMagick, and a few support packages for Perl.

Although the prebuilt releases provide only version 0.7.0, it may be useful to first install a prebuilt release anyway, in order to
ensure installation of the prerequisite software (such as the Perl packages and ImageMagick). Then the prebuilt release can be
uninstalled, leaving the prerequisites in place, and the subversion release can be installed. For example, on MacOS, if you have
MacPorts installed, you can install a prebuilt release using

http://www.xfig.org
http://www.cygwin.com
http://dlmf.nist.gov/LaTeXML/
http://www.imagemagick.org
http://www.macports.org

Writing Documentation for ArtiSynth
10

> sudo port install LaTeXML

This may take a while, but it will install all necessary prerequisites including Perl, LaTeX, and ImageMagick. You can then
uninstall LaTeXML itself, and install directly from subversion, using a command sequence like this:

sudo port uninstall LaTeXML

svn co https://svn.mathweb.org/repos/LaTeXML
cd LaTeXML/trunk

perl Makefile.PL

make

make test

sudo make install

vV V V V V V V

8 Local Customizations
Customization of the LaTeX/LaTeXML environment is limited to the following:

* Providing an Artisynth-specific CSS style sheet for the HTML output. This is called artisynth.css and is located in
doc/style.

» Providing a . tex input file, artisynthDoc.tex, that imports the necessary packages, sets up the page layout, and defines the
\javaclass and \ javamethod commands (Section 4.6.1) and the sideblock environment (Section 4.4). This file is located
in doc/texinputs, along with other input files that are not likely to be part of a standard LaTeX installation.

* Postprocessing the HTML produced by LaTeXML to both fill in Javadoc links, and fix a few things, including malformed
blank lines in the 1st1isting environment, and the presence of certain unicode characters. This is accomplished using the
Perl scripts setJavadocLinks and fixLatexmlOutput located in SARTISYNTH_HOME/bin.

	Introduction
	How Documents Are Created
	Document Source Code Organization
	Document Creation Commands
	HTML Output
	PDF Output
	Other Commands

	Installing Documents on the Webserver
	LaTeX usage and conventions
	LaTeXML restrictions
	Font conventions
	Code blocks
	Side blocks
	Inserting Images
	Javadoc References
	Class references
	Method references
	How it works

	Adding a New Document
	Creating and Updating the Makefiles

	Images and Xfig
	External Software Required
	Installing LaTeXML

	Local Customizations

