The Artisynth Modeling Framework

John E. Lloyd
June 18, 2005

1 Overview

Artisynth is a system for simulating the physical and acoustical behavior
of the human vocal tract and surrounding structures. It provides a general
purpose environment which allows researchers to interconnect new or existing
models of different vocal tract components and drive them from a single
application.

The Artisynth modeling framework supports this functionality with a
set of Java classes and interfaces that defines what models are, how they
can interact, and how they can be controlled, with the aim of allowing a
collection of interacting models to be simulated as coherent whole.

2 Models

A model can be thought of as a process that maps inputs u(t) to outputs y(t)
over time:

A parametric model is one in which the outputs are determined directly
by a function h(u,t) of the inputs and time:

U(t) —_—

h(u,t)

—Y(1)

A dynamic model is one in which outputs are determined from a combi-
nation of time, inputs, and model state z(t):

U(t) —_—

M

- y(t)

x(1)

One particular form of a dynamic model is a differential model, in which
the outputs are a function h(x,t) of the state and time, and the state is given
by the integral of a function f(x,u,t):

u(t) ——f(x,u,t)

h(x,1) - y(t)

-5

X(t)

A dynamic model could also be a hybrid combination of differential and

parametric models:

u(t) —Le| f(x,u,t)

-

~| h(x,u,t) - y(1)

2.1 Model Advancement and State

One of the main functions of Artisynth is to control and coordinate the
advancement of a collection of models over time. Models are implemented
by Java objects which implement the Model interface. To facilitate time
advancement, models are expected to supply the method

void advance (long tO, long t1);

which advances themselves from time ¢y to t;. Time is specified as a long
integer in nano-seconds. Models are also expected to supply a method

void prepareForAdvance (long t1);

which performs any necessary preliminary computation prior to advance-
ment. In particular, this could include calculating state-dependent informa-
tion which is used by constraints for modifying the model input (as described
below). The simulator first calls prepareForAdvance (), then adjusts the in-
puts to values appropriate for time ¢, and finally calls advance ():

model .prepareForAdvance (t1);
. set inputs to u(tl)
model.advance (t0, t1);

For parametric models, only time ¢; should be required to perform the
advance, and it should also be possible to “advance” them to any ¢; in the
past or future. For dynamic models, ¢y will generally be needed for advance-
ment (e.g., a differential model needs the time increment t; — ty), and it is
assumed that they can only advance to future times (i.e., t; > to).

To move a dynamic model back in time, the system must explicitly set its
state. To facilitate this, models should supply the method

void setState (ModelState state);

where ModelState is a generic model state interface. An empty state object
for a particular model can be created using the factory method

ModelState createModelState();
and a model’s state can be copied using

void getState (ModelState state);

3

If the model is stateless, then createModelState should return null. Whether
or not a model has state can also be determined using the method

boolean isDynamic();

Unlike parametric models, the advance of a dynamic model depends, in
principle, on the input values u(t) over the interval t € [to,t1]. However,
because inputs are preset to wu(t;), this detailed information is lost and will
result in an error which increases with the size of the time step t; — to.
Therefore, models are allowed to specify a maximum step size beyond which
they will never be asked to advance, using the method

long getMaxStepSize();

In general, when the simulator makes successive calls to advance(tO,
t1), to will be equal to the previous value of t;. However, this will not
always be the case: the simulator may move around in time, as long as state
information is set appropriately for dynamic models.

3 Constraints

A constraint is a relationship among a set of models that mutually affects
their outputs. A constraint between two models that only affects the output
of one is called a dependency, with the affected model being dependent on
the unaffected model.

Constraints are enforced by objects which implement the Constraint in-
terface. Fach constraint object knows internally which models it affects, and
enforcement is achieved by modifying the inputs or outputs of the affected
models, using the methods

void modifyInputs(long t1);

void modifyOutput(long t1);

These methods are invoked before and after the models’ advance methods,
as illustrated by the following code fragment:

. update inputs to time tl1l ...
constraint.modifyInputs(tl);
modell.advance (t0, tl);

4

model2.advance (t0, t1);
constraint.modifyOQutputs(tl);

Given the definition of a constraint, the utility of the modifyQOutputs ()
method is clear. What is perhaps less obvious is the need for modifyInputs().
This is primarily intended for constraints involving dynamic models, where
it can be used to add constraining forces or input controls to help maintain
constraint satisfaction (as illustrated by the example of Section 3.1). How-
ever, it may also be applicable to parametric models, as discussed in Section
3.2.

3.1 Input modification for mechanical models

In this section we show how a constraint between mechanical models (which
are differential dynamic models of the kind shown in Section 2), gives rise to
constraining forces which can be applied to the model inputs.

Consider two mechanical models, defined by

Mgy — fi(zy, 21) = wi(t), 1= ha(z1(1)),

Myiy — fowa, ¥2) = ua(t), Y2 = ha(wa(t)),

where M; are mass matrices, f;(x;, ;) are internal forces, and the inputs u;(t)
are external forces.
A bilateral constraint between these two models takes the form

gy (t), y2(t)) = 0. (1)

Differentiating this relationship yields the differential constraint

dg 89) (5y1)
A = 0, 9
(5.@1 s 0y2 @)

which in turn implies a constraint on the state velocities given by

where

Differentiating again yields a constraint on the state accelerations:

@ e (5) -

where ~ contains the terms involving Gy and Gs (and hence accounts for
artifacts such as Coriolis forces).

In general, the constraint will give rise to constraint forces acting on each
system. For non-dissipative constraints, these forces will take the form G\
and GT)\, where) is a vector of Lagrange multipliers. These constraint forces
can be applied (within the method modifyInputs()) as a modification to the
force inputs w;(t).

To determine), it is notationally useful to collect the two systems into
one combined constrained system

Mi — G\ — f(x, %) = u(t),
Gi =7,

where

_ (M O _ [T _ _(h _ (W
() e (2) o=@ er= (1) = (2).

Letting k = u(t) + f(x, 4) be the sum of the internal and external forces, one
can then solve directly for A:

A= (GM*GT) Yy — GM k). (4)

3.2 Input modification for parametric models

A constraint of the form (1) between two parametric models can also pro-
duce differential constraints on the model inputs, which suggests that input
modification might be useful in this situation as well.

Consider a constraint of the form (1) applied to two parametric models

U1 (t) = hl (ul(t), t) and yg(t) = hg(’dg(t), t)

If hy and hy are themselves differentiable, then the differential constraint (2)
gives rise to a differential constraint on the inputs, given by

@) (f) =0 5)

5U2

6

where 94 9h
1= —— an GQZ—g—z

Oy1 Ouy © O0ya Ouy

3.3 Limitations Regarding Coupled Constraints

It is important to note that independent application of constraints, using the
modifyInputs() and modifyOutputs() methods (as illustrated in Procedure
1, below) may not work properly in the case of coupled constraints. To see
this, imagine that we have two constraints,

Ga(y1(t),y2(t)) =0 and gy(y1(t),y2(t)) =0

acting on the mechanical systems described in Section 3.1. In this situation,
G1 and G5 in (3) is formed from the composition of G,; and G2, associated
with g,, and Gy and Gys, associated with gy:

o Gal _ Ga2
G1 = (Gb1> and G2 = <Gb2) .

The remainder of the analysis is unchanged, but the computation of A in
(4), from which the constraint forces are determined, requires the inversion
of GM~'GT, where G = (G1 G2). Any coupling between ¢, and g, will
therefore affect the constraint forces, and in particular, the constraint objects
associated with g, and ¢, will not be able to determine these independently
except in very special cases.

The only way to correctly handle such a situation is for the simulator
to collect appropriate derivative information from each constraint, and then
compute a global solution for the required constraint forces. Constraint ob-
jects would need to supply this derivative information, and the models would
also need to provide information such as mass matrices. Interfaces to facili-
tate this are presently being considered.

4 Accessing Model Data

An interface is provided which allows Artisynth to set and query specific data
values within models and constraints. Among other things, this provides the
default method for passing input and output data between models and the
application.

Models and constraints which provide accessible datums should imple-
ment the Accessible interface. To get the value of a particular datum, an
application first calls the Accessible method

Peek getPeek (String name, int idx);
to obtain a Peek object. This peek object in turn supplies the method
Object get();

which returns an object containing the value of the datum in question. Sim-
ilarly, to set a particular datum, the Accessible method

Poke getPoke (String name, int idx);
is used to obtain a Poke object, which supplies a method
void put (Object obj);

which changes the datum’s value.

It is up to the implementor of Accessible to determine which datums are
accessible and in what way. Information about the names and index values
of accessible datums can be returned by the method

AccessibleInfo[] getAccessibleInfo ();

where AccessibleInfo provides details about each accessible item.

5 Probes

Artisynth uses the Accessible interface described above to implement input
and output probes, which arrange for the timed movement of information
to and from models. Input probes set data, using Poke objects. Output
probes read data, using Peek objects. Each probe has a start time and stop
time, which specifies the time interval over which it is active, and an update
interval, which specifies intermediate time events during this active interval
(see Figure 1). Each intermediate time event, along with the start and stop
times, is scheduled as an event within the Artisynth simulator, and thus
presents a specific time to which the simulator advances.
Each probe implements the method

ZC‘eem probe duration

L»I I I I I [| tme
! —— !

start update stop
time interval time

Figure 1: Time profile for a probe.

void apply (long time);

which is used to apply the probe at a particular time. An output probe may
be associated with several models and is applied whenever the simulator
advances to one of its time events. An input probe is associated with only
one model and is applied just before that model is advanced. Input probes
therefore do not need to specify time events (using an update interval) in
order to be applied. However, an input probe will be applied at every time
event that it specifies.

6 Simulation Scheduling

The Artisynth simulator advances the models in concert through a sequence
of time events, which are determined by input and output probes (note that
graphical and audio display events can conceptually be considered as output
probes). In other words, the simulator looks for the next probe time event
and advances all the models to that time. If the time to the next event
exceeds the maximum step size for a particular model (or set of models),
then this advance is performed using a sequence of advance() calls, each
with a time step not exceeding the prescribed maximum step size.

The order and maximum step size by which models are advanced is de-
termined by the constraint relationships between them. The latter can be
represented using a directed graph (Figure 2), with the model at the head
of an edge being dependent on the model at the tail. Edges with two heads
are equivalent to an edge in each direction, or a codependency between their
respective models. To arrange the scheduling order, one first determines all

Figure 2: Directed graph showing the constraint relationships among a set of
models. Dependency closures are indicated on the right by dashed enclosures.

the dependency closures. A dependency closure is a set of completely in-
terdependent models; i.e., each model is directly or indirectly dependent on
every other model in the set. The closures in Figure 2 are given by {M;},
{My, M3, My}, {Ms, Mg, M7}, and {Mg} (a linear time algorithm for com-
puting such closures is given in Section 5.5 of Aho, Hopcroft, and Ullman,
The Design an Analysis of Computer Algorithms).

All models within a closure are advanced together, with a step size given
by the minimum of the maximum permitted step size for each model in the
closure. This update is done according to the pseudo-code in Procedure 1.
The set of dependency closures forms an acyclic directed graph, which can
be used to determine an ordering which specifies which closures should be
advanced first. Overall operation of the simulator is detailed in Procedure 2.

10

for (each model in closure)

{ model.prepareForAdvance(tl);
for (each input probe)
{ probe.apply (t1);
}

}

for (each constraint on which this closure is dependent)

{ constraint.modifyInputs(tl);
}

for (each constraint in closure)
{ constraint.modifyInputs(tl);
}

for (each model in closure)
{ model.advance (t0, t1);
}

for (each constraint in closure)
{ constraint.modifyOutputs(tl);

3

Procedure 1: Advance all models in a closure from time ¢, to time t;

t0 = 0;
while (simulating)
{ tnext = next probe event time;
for (each closure, in dependent order)
{ h = closure.getMaxStepSize();
while (tO < tnext)
{ t1 = max (tO+h, tnext);
closure.advance (t0, t1);

b
t0 = t1;
}
for (each output probe associated with this event)
{ probe.apply (£0);
b

Procedure 2: Overall simulator loop

11

7 External Integration

By default, an Artisynth model is expected to advance itself from one time
to the next. For differential models, this implies that the model perform the
necessary integration within the advance () method. However, Artisynth also
supports the ability for models to be integrated externally, by the simulator
itself, if they implement the IntegrableModel interface.

There are two reasons for providing this capability. The first is to allow
the simulator to provide high-performance numerical integrators that would
be difficult for model developers to implement on their own. The second
is to allow the effects of constraints to be explicitly incorporated into the
integration process.

Externally integrable models must have a state that can be represented
as a vector and which can be obtained and set using the the methods

int getState (VectorNd x, int idx);

int setState (VectorNd x, int idx);

These methods transfer the state information to or from a vector x starting
at an index location idx, and return the index value incremented by the
model’s state size. This allows the state for a whole set of models to be
stored in a single vector and transfered using code fragments like this:

int idx = 0;

for (each model)

{ idx = model.setState (x, idx);
}

Externally integrable models must also supply the state vector derivative at
a particular time, using the method

int getDerivative (VectorNd dxdt, long time, int idx);

An accurate integrator often advances from time ¢y to t; by evaluating
trial state and derivative information at a number of intermediate time values.
Such evaluations are typically done as follows:

1. Estimate a new state x for time t, based on previously obtained trial
state and derivative information

12

2. Set the state at time t; to =

3. Obtain a new trial derivative & for time ¢

Performing such trial evaluations on all the models within a dependency
closure is complicated by the constraints themselves and by the fact that
not all models may be externally integrable. Pseudo-code to perform such a
trail evaluation is given in Procedure 3. Note that if an external integration
procedure requires backtracking in time, then it will also be necessary to
save and restore the states for any dynamic models which are not externally
integrable.

The IntegrableModel interface also provides optional methods for ob-
taining information about a model’s derivative Jacobian J, which an external
integrator may require, particularly for performing implicit integration. The
Jacobian is the partial derivative of the state derivative with respect to the
state itself, so that if £ = f(z), then

of

The method for obtaining J is
boolean getJacobian (MatrixNd Jtotal, long time, int idx);

which copies J, evaluated at a particular time, into a (possibly larger) system
Jacobian Jtotal, starting at the row and column indices specified by idx.
Because J can be difficult to compute, implementation of this method is
optional; if not implemented, it should return false.

13

VectorNd x; // state estimate
VectorNd dxdt; // new derivative estimate

for (each model in closure)

{ model.prepareForAdvance(tl);
for (each input probe)
{ probe.apply (t1);
}

X = new state estimate for all externally integrable models;

for (each constraint on which this closure is dependent)
{ constraint.modifyInputs(tl);
}
for (each constraint in closure)
{ constraint.modifyInputs(tl);
}
idx = 0;
for (each model in closure)
{ if (model is externally integrable)
{ idx = model.setState (x, idx);
}
else
{ model.advance (t0, t1);
}
}
for (each constraint in closure)
{ constraint.modifyOutputs(tl);
}
idx = 0;
for (each externally integrable model)
{ idx = model.getDerivative (dxdt, idx);
}

Procedure 3: Trial update from time tq to time ¢; within a dependency

14

