
Maspack Reference Manual

John Lloyd
March 25, 2014

Maspack Reference Manual 2

Contents

1 Introduction 3

2 Properties 3

2.1 Accessing Properties . 3

2.1.1 Why Property Handles? . 4

2.2 Property Ranges . 4

2.3 Obtaining Property Information . 5

2.4 Exporting Properties from a Class . 7

2.4.1 Read-only properties . 10

2.4.2 Inheriting Properties from a superclass . 10

2.5 Composite Properties . 11

2.6 Reading and Writing to Persistent Storage . 12

2.7 Inheritable Properties . 13

2.8 Exporting Inheritable Properties . 14

2.9 Inheritable and Composite Properties . 15

3 Rendering 16

3.1 Renderables and the viewer . 16

3.2 Prerendering . 17

3.2.1 Renderable Visibility . 17

3.3 Object Selection . 18

3.3.1 Restrictions when rendering in selection mode . 18

3.3.2 Implementing custom selection . 19

3.4 Selection Events . 22

3.5 Render Lists and Multiple Viewers . 22

Maspack Reference Manual 3

1 Introduction

Maspack (modeling and simulation package) is a set of Java packages to support physical modeling and simulation.

2 Properties

The maspack property package provides a uniform means by which classes can export specific attributes and informa-
tion about them to application software. The main purpose of properties is to

1. Provide generic code for accessing and modifying attributes.

2. Remove the need for "boiler-plate" code to read or write attributes from persistent storage, or modify them by
other means such as a GUI panel.

The property software uses Java reflection to obtain information about a property’s value and its associated class, in a
manner similar to that used by the properties of Java Beans.

2.1 Accessing Properties

Any class can export properties by implementing the interface HasProperties:

interface HasProperties
{

// get a handle for a specific named property
Property getProperty (String name);

// get a list of all properties associated with this class
PropertyInfoList getAllPropertyInfo ();

}

Each property is associated with a name, which must be a valid Java identifier. The getProperty() method returns
a Property handle to the named property, which can in turn be used to access that property’s values or obtain other
information about it. getAllPropertyInfo() returns a PropertyInfoList providing information about all the properties
associated with the class.

A Property handle supplies the following methods:

interface Property
{

Object get();
void set (Object value);
Range getRange ();
HasProperties getHost();
PropertyInfo getInfo();

}

get()

Returns the property’s value. As a rule, returned returned values should be treated as read-only.

set()

Sets the property’s value (unless it is read-only, see Section 2.2).

getRange()

Returns a Range object for a property (see Section 2.1.1), which is used to determine which values are admissible
to set. If all values are admissible, getRange() can return null.

getHost()

Returns the object to which this property handle belongs.

Maspack Reference Manual 4

getInfo()

Returns static information about this property (see Section 2.2).

A simple example of property usage is given below. Assume that we have a class called DeformableModel which
contains a property called stiffness, and we want to set the stiffness to 1000. This could be done as follows:

DeformableModel defo = new DeformableModel();
Property stiff = defo.getProperty("stiffness");

stiff.set (1000.0); // (uses Java 1.5 autoboxing to turn
// 1000.0 into Double (1000.0)

Of course, DeformableModel will likely have a method called setStiffness that can be used to set the stiffness
directly, without having to got through the Property interface. However, the purpose of properties is not to facilitate
attribute access within specially constructed code; it is to facilitate attribute access within generic code that is hidden
from the user. For instance, suppose I want to query a property value from a GUI. The GUI must obtain the name of
the desired property from the user (e.g., through a menu or a text box), and then given only that name, it must go and
obtain the necessary information from the object exporting that property. A Property allows this to be done in a manner
independent of the nature of the property itself.

2.1.1 Why Property Handles?

In theory, one could embed the methods of Property directly within the HasProperties interface, using methods with
signatures like

Object getPropertyValue (String name);

void setPropertyValue (String name , Object value);

The main reason for not doing this is performance: a property handle can access the attribute quickly, without having to
resolve the property’s name each time.

Each property handle contains a back-pointer to the object containing, or hosting, the property, which can be obtained
with the getHost() method.

2.2 Property Ranges

A Range object supplies information about what values a particular Property can be set to. It contains the following
methods:

interface Range
{

boolean isValid (Object obj, StringHolder errMsg);
Object projectToRange (Object obj);
void intersect (Range range);
boolean isEmpty();

}

isValid()

Returns true if obj is a valid argument to the property’s set method. The optional argument errMsg, if not null,
is used to return an error message in case the object is not valid.

makeValid()

Trys to turn obj into a valid argument for set(). If obj is a valid argument, then it is returned directly. Other-
wise, the method tries to return an object close to obj that is in the valid range. If this is not possible, the method
returns Range.IllegalValue.

intersect()

Intersects the current range with another range and placed the result in this range. The resulting range should
admit values that were admissible by both previous ranges.

Maspack Reference Manual 5

isEmpty()

Returns true if this range has no admissible values. This is most likely to occur as the result of an intersection
operation.

Possible usage of a range object is shown below:

Property prop = hostHost.get ("radius");
Range range = prop.getRange();
StringHolder errMsg = new StringHolder();
double r;

...

if (!range.isValid (r, errMsg)) {
System.err.println ("Radius r invalid , reason: " {\tt errMsg.value);

}
else {

prop.set (r);
}

Two common examples of Range objects are DoubleInterval and IntegerInterval, which implement intervals of double
and integer values, respectively. Ranges are also Clonable, which means that they can be duplicated by calling
range.clone().

2.3 Obtaining Property Information

Additional information about a property is available through the PropertyInfo interface, which can be obtained using
the getInfo() method of the property handle. Information supplied by PropertyInfo is static with respect to the
exporting class and does not change (unlike the property values themselves, which do change). Such information
includes the property’s name, whether or not it is read-only, and a comment describing what the property does.

Some of the PropertyInfo methods include:

interface PropertyInfo
{

// gets the name of this property
String getName();

// returns true if this property cannot be set
boolean isReadonly();

// returns a string description of the property
String getDescription();

// returns an optional format string describing how the
// property ’s values should be formatted when printed.
String getPrintFormat();

// returns the class associated with this property ’s value.
Class getValueClass();

// returns the class associated with this property ’s host
Class getHostClass();

// returns true if the properties value should be written
// by the PropertyList write method.
boolean getAutoWrite();

// returns the conditions under which this property
// should be interactively edited.
Edit getEditing();

// Returns information about whether the property ’s editing widget

Maspack Reference Manual 6

// should be able to expand or contract in order to save GUI space.
ExpandState getWidgetExpandState();

// returns the default value for this property
Object getDefaultValue();

// returns a default numeric range for this property , if any
public NumericInterval getDefaultNumericRange();

// writes a value of this object out to a PrintStream
void writeValue (

Object value , PrintWriter pw, NumberFormat fmt);

// scans a value of this object from a ReaderTokenizer
Object scanValue (ReaderTokenizer rtok);

// creates a Property for this property , attached
// to the specified host object
Property createHandle (HasProperties host);

// returns true if a specified value equals this
// property ’s default value
boolean valueEqualsDefault();

// returns true if the property is inheritable
boolean isInheritable();

// returns the property ’s numeric dimension , or -1 if it
// is not numeric or does not have a fixed dimension
int getDimension();

// indicates that the property value can be shared among
// several hosts.
boolean isSharable();

}

Property information can also be obtained directly from the exporting class, using getAllPropertyInfo(), which
returns information for all the properties exported by that class. This information is contained within a PropertyInfoList:

interface PropertyInfoList
{

// number of properties in this list
int size();

// returns an iterator over all the property infos
Iterator <PropertyInfo > iterator();

// returns info for a specific named property
PropertyInfo get (String name);

// returns true if this list has no inheritable properties
boolean hasNoInheritableProperties();

}

For example, suppose we want to print the names of all the properties associated with a given class. This could be done
as follows:

HasProperties exportingObject;
...
PropertyInfoList infoList =

exportingObject.getAllPropertyInfo();
for (PropertyInfo info : infoList) {

System.out.println (info.getName());
}

Maspack Reference Manual 7

2.4 Exporting Properties from a Class

As indicated above, a class can export properties by implementing the interface HasProperties, along with the
supporting interfaces Property, PropertyInfo, and PropertyInfoList. The class developer can do this in any way
desired, but support is provided to make this fairly easy.

The standard approach is to create a static instance of PropertyList for the exporting class, and then populate
it with PropertyInfo structures for the various exported properties. This PropertyList (which implements
PropertyInfoList) can then be used to implement the getProperty() and getAllPropertyInfo() methods
required by HasProperties:

protected static PropertyList myProps;

... initialize myProps in a static code block ...

// returns an information list for all properties
public PropertyInfoList getAllPropertyInfo () {

return myProps;
}

// returns a handle for a specific property
public Property getProperty (String name) {

getAllPropertyInfo().getProperty (name , this);
}

Information about specific properties should be added to PropertyList within a static code block (second line in the
above fragment). This can be done directly using the method

void add (PropertyInfo info)

but this requires creating and initializing a PropertyInfo object. An easier way is to use a different version of the add
method, which creates the required PropertyInfo structure based on information supplied through its arguments. In
the example below, we have a class called ThisHost which exports three properties called visible, lineWidth, and
color:

// default values for the properties
protected static int defaultLineWidth = 1;
protected static boolean defaultVisibleP = true;
protected static Color defaultColor =

new Color (0.5f, 0.5f, 0.5f);

// fields containing the property values
protected int myLineWidth = defaultLineWidth;
protected boolean myVisibleP = defaultVisibleP;
protected Color myColor = defaultColor;

// create a PropertyList ...
protected static PropertyList myProps =

new PropertyList(ThisHost.class);

// ... and add information for each property:
static {

myProps.add (
"visible isVisible *", "object is visible",
defaultVisibleP);

myProps.add (
"lineWidth", "line width (pixels)",
defaultLineWidth);

myProps.add (
"color", "color ", defaultColor);

}

public PropertyInfoList getAllPropertyInfo () {
return myProps;

}

Maspack Reference Manual 8

public Property getProperty (String name) {
getAllPropertyInfo().get (name , this);

}

The values for the three properties are stored in the fields myLineWidth, myVisibleP, and myColor. Default values for
these are defined by static fields.

A static instance of a PropertyList is created, using a constructor which takes the exporting class as an argument (in
Java 1.5, the class object for a class can be referenced as ClassName.class). Information for each property is then
added within a static block, using the convenience method

void add (String nameAndMethods , String description ,
Object defaultValue)

The first argument, nameAndMethods, is a string which gives the name of the property, optionally followed by
whitespace-separated names of the accessor methods for the property’s value:

"<propertyName > [<getMethodName >] [<setMethodName >] [<getRangeMethodName >]"

These accessor methods should have the signatures

Object getMethod();

void setMethod (Object value);

Range getRangeMethod ();

If any of the methods are not specified, or are specified by a ’*’ character, then the system with look for accessor meth-
ods with the names getXxx, setXxx, and getXxxRange, where xxx is the name of the property. If no getRangeMethod
is defined (and no numeric range is specfied in the options argument string, as described below), then the property will
be assumed to have no range limitations and its getRange() method will return null.

The second argument, description, gives a textual description of the property, and is used for generating help
messages or tool-tip text.

The third argument, defaultValue, is a default property value, which is used for automatic initialization and for
deciding whether the property’s value needs to be written explicitly to persistent storage.

An extended version of the add method takes an additional argument options:

void add (String nameAndMethods , String description ,
Object defaultValue , String options)

The options argument is a sequence of option tokens specifing various property attributes, each of which can be
queried using an associated PropertyInfo method. Token are separated by white space and may appear in any order.
Some have have both long and abbreviated forms. They include:

NW, NoAutoWrite
Disables this property from being automatically written using the PropertyList methods write and writeNonDefaults
(Section 2.5). Causes the PropertyInfo method getAutoWrite() to return false.

AW, AutoWrite (Default setting)
Enables this property to be automatically written using the PropertyList methods write and writeNonDefaults
(Section 2.5). Causes the PropertyInfo method getAutoWrite() to return true.

NE, NeverEdit
Disables this property from being interactively edited. Causes the PropertyInfo method getEditing() to return
Edit.Never.

AE, AlwaysEdit (Default setting)
Enables this property to be interactively edited. Causes the PropertyInfo method getEditing() to return
Edit.Always.

Maspack Reference Manual 9

1E, SingleEdit
Enables this property to be interactively edited for one property host at a time. Causes the PropertyInfo method
getEditing() to return Edit.Single.

XE, ExpandedEdit
Indicates, where appropriate, that the widget for editing this property can be expanded or contracted to conserve
GUI space, and that it is initially expanded. Causes the PropertyInfo method getWidgetExpandState()
to return ExpandState.Expanded. This is generally relevant only for properties such as CompositeProperties
(Section 2.4.2) whose editing widgets have several sub-widgets.

CE, ContractedEdit
Indicates, where appropriate, that the widget for editing this property can be expanded or contracted to conserve
GUI space, and that it is initially contracted. Causes the PropertyInfo method getWidgetExpandState() to
return ExpandState.Contracted. This is generally relevant only for properties such as CompositeProperties
(Section 2.4.2) whose editing widgets have several sub-widgets.

DX, DimensionX
Sets the numeric dimension of this property to X. The dimension can be queried using the PropertyInfo method
getDimension(). For properties which are non-numeric or do not have a fixed dimension, the dimension will be
returned as -1. Note the for some numeric properties, the dimension can be determined automatically and there is
no need to explicitly specify this attribute.

SH, Sharable
Indicates that the property value is not copied internally by the host and can therefore be shared among several
hosts. This may improve memory efficiency but means that changes to the value itself may be reflected among
several hosts. This attribute can be queried by the PropertyInfo method isSharable().

NV, NullOK
Indicates that the property value may be null. By default, this is false, unless the default value has been specified
as null. Whether or not a property may be set to null is particularly relevant in the case of CompositeProperties
(Section 2.4.2), where one may choose between setting individual sub-properties or setting the entrie structure to
null altogether.

%fmt

A printf-style format string, beginning with %, used to format numeric information for this property’s value, either
in a GUI or when writing to persistent storage. A good general purpose format string to use is often "%.6g",
which specifies a free format with six significant characters.

[l,u]

A numeric range interval with a lower bound of l and an upper bound of u. If specified, this defines the value re-
turned by PropertyInfo.getDefaultNumericRange(); otherwise, that method returns null. If a getRangeMethod is
not defined for the property, and the property has a numeric type, then the default numeric range is returned by the
property’s Property.getRange() method. The default numeric range is also used to determine bounds on slider wid-
gets for manipulating the property’s value, in case the upper or lower limits returned by the Property.getRange()
method are unbounded. The symbol inf can be used in an interval range, so that [0,inf] represents the set of
non-negative numbers.

The following code fragment shows an example of using the option argument:

myProps.add (
"radius", "radius of the sphere (mm)", defaultRadius ,
"%8.3f [0,100] NE");

);

The property named radius is given a numeric format string of "%8.3f", a numeric range in the interval [0,100], and
set so that it will not be displayed in an automatically created GUI panel.

Maspack Reference Manual 10

2.4.1 Read-only properties

A property can be read-only, which means that it can be read but not set. In particular, the set() for a read-only
Property handle is inoperative.

Read-only properties can be specified using the following PropertyList methods:

void addReadOnly (String nameAndMethod , String description);

void addReadOnly (String nameAndMethod , String description ,
String options);

These are identical to the add methods described above, except that the nameAndMethod argument includes at most a get
accessor, and there is no argument for specifying a default value.

The method getAutoWrite() also returns false for read-only properties (since it does not make sense to store them in
persistent storage).

2.4.2 Inheriting Properties from a superclass

By default, a subclass of a HasProperties class inherits all the properties exported by the class exports all the proper-
ties exported by it’s immediate superclass.

Alternatively, a subclass can create its own properties by creating it’s own PropertyList, as in the code example of
Section 2.3:

// create a PropertyList ...
protected static PropertyList myProps =

new PropertyList(ThisHost.class);

public PropertyInfoList getAllPropertyInfo () {
return myProps;

}

and none of the properties from the superclass will be exported. Note that it is necessary to redefine getAllPropertyInfo()
so that the instance of myProps specific to ThisHost will be returned.

If one wishes to also export properties from the superclass (or some other ancestor class), then a PropertyList can
be created which also contains property information from the desired ancestor class. This involves using a different
constructor, which takes a second argument specifying the ancestor class from which to copy properties:

protected static PropertyList myProps =
new PropertyList(ThisHost.class , Ancestor.class);

public PropertyInfoList getAllPropertyInfo () {
return myProps;

}

All properties exported by Ancestor will now also be exported by ThisHost.

What if we want only some properties from an ancestor class? In that case, we can edit the PropertyList to remove
properties we don’t want. We can also replace properties with new ones with the same name but possibly different
attributes. The latter may be necessary if the class type of a property’s value changes in the sub-class:

static
{

// remove the property "color"
myProps.remove ("color");

// replace the property called "mesh" with one which
// uses a different kind of mesh object:
myProps.remove ("mesh");
myProps.add ("mesh", "quad mesh", null);

}

Maspack Reference Manual 11

2.5 Composite Properties

A property’s value may itself be an object which exports properties; such an object is known as a composite property,
and its properties are called sub-properties.

Property handles for sub-properties may be obtained from the top-level exporting class using getProperty(), with
successive sub-property names delimited by a ’.’ character. For example, if a class exports a property textureProps,
whose value is a composite property exporting a sub-property called mode, then a handle to the mode property can be
obtained from the top-level class using

Property mode = getProperty ("textureProps.mode");

which has the same effect as

Property texture = getProperty ("textureProps");
Property mode =

((HasProperties)texture).getProperty ("mode");

Composite properties should adhere to a couple of rules. First, they should be returned by reference; i.e., the host-
ing class should return a pointer to the original property, rather than a copy. Secondly, they should implement the
CompositeProperty interface. This is an extension of HasProperties with the following methods:

interface CompositeProperty extends HasProperties
{

// returns the host class exporting this property
HasProperties getPropertyHost();

// returns information about this property
PropertyInfo getPropertyInfo();

// sets the host class exporting this property
void setPropertyHost (HasProperties host);

// sets information for this property
void setPropertyInfo (PropertyInfo info);

}

These methods can be easily implemented using local variables to store the relevant information, as in

HasProperties myHost;

HasProperties getPropertyHost() {
return myHost;

}

void setPropertyHost (HasProperties host) {
myHost = host;

}

and similarly for the property information.

The purpose of the CompositeProperty interface is to allow traversal of the composite property tree by the property
support code.

The accessor method that sets a composite property within a host should set it’s host and property information. This
can be done using using the setPropertyHost and setPropertyInfo methods, as in the following example for a
compound property of type TextureProps:

setRenderProps (RenderProps props) {
if (props != myProps) {

if (props != null) {
props.setPropertyInfo(myProps.get("renderProps"));
props.setPropertyHost(this);

}
if (myProps != null) {

Maspack Reference Manual 12

props.setPropertyHost (null);
}
myProps = props;

}
}

Alternatively, the same thing can be done using the static convenience method PropertyUtils.updateCompositeProperty:

setRenderProps (RenderProps props) {
if (props != myProps) {

PropertyUtils.updateCompositeProperty (
this , "textureProps", myProps , props);

myProps = props;
}

}

2.6 Reading and Writing to Persistent Storage

Properties contain built-in support that make it easy to write and read their values to and from persistent storage.

First, PropertyInfo contains the methods

void writeValue (Object value , PrintWriter pw,
NumberFormat fmt);

Object scanValue (ReaderTokenizer rtok);

which allow an individual object value to written to a PrintStream or scanned from a ReaderTokenizer.

Second, if the host object maintains a PropertyList, it can use the convenience method

void write (
HasProperties host , PrintWriter pw, NumberFormat fmt);

to write out values for all properties for which getAutoWrite() returns true. Properties will be written in the form

propertyName = value

where value is the output from the writeValue method of the PropertyInfo structure.

To economize on file space, there is another method which only writes out property values when those values differ from
the property’s default value:

boolean writeNonDefaults (
HasProperties host , PrintWriter pw, NumberFormat fmt)

Again, values are written only for the properties for which getAutoWrite() returns true. The method returns false if
not property values are written.

To read in property values, their are the methods

boolean scanProperty (
HasProperties host , ReaderTokenizer rtok);

boolean scanSpecificProperty (
HasProperties host , ReaderTokenizer rtok , String name);

where the former will inspect the input stream and scan in any recognized property of the form propertyName =
value (returning true if such a property was found), while the latter will check the input for a property with a specific
name (and return true if the specified property was found).

Maspack Reference Manual 13

Figure 1: Inheritance of a property named “stiffness” within a hierarchy of property-exporting objects. Explicitly set
instances of the property are surrounded by square boxes.

2.7 Inheritable Properties

Suppose we have a hierarchical arrangement of property-exporting objects, each exporting an identical property called
stiffness whose value is a double (properties are considered identical if they have the same name and the same
value type). It might then be desirable to have stiffness values propagate down to lower nodes in the hierarchy. For
example, a higher level node might be a finite element model, with lower nodes corresponding to individual elements,
and when we set stiffness in the model node, we would like it to propagate to all element nodes for which stiffness
is not explicitly set. To implement this, each instance of stiffness is associated with a mode, which may be either
explicit or inherited. When the mode is inherited, stiffness obtains its value from the first ancestor object with a
stiffness property whose mode is explicit.

This is an example of property inheritance, as illustrated by Figure 1. Stiffness is explicitly set in the top node (A),
and its value of 1 propagates down to nodes B and D whose stiffness mode is inherited. For node C, stiffness is also
explicitly set, and its value of 4 propagate down to node F.

Another common use of property inheritance is in setting render properties: we might like some properties, such as
color, to propagate down to descendant nodes for which a color has not been explicitly set.

To state things more generally: any property which can be inherited is called an inheritable property, and is associated
with a mode whose value is either explicit or inherited. The basic operating principle of property inheritance is this:

Important:
An inherited property’s value should equal that of the nearest matching ancestor property which is explicitly set.

Other behaviors include:

• Setting a property’s value (using either the set accessor in the host or the set method of the Property handle) will
cause its mode to be set to explicit.

• A property’s mode can be set directly. When set to explicit, all descendant nodes in the hierarchy are updated with the
property’s value. When set to inherited, the property’s value is reset from the first explicit value in the ancestry, and
then propagated to the descendants.

• When a new node is added to the hierarchy, all inherited properties within the node are updated from the ancestry, and
then propagated to the descendants.

If a property is inheritable, then the isInherited() method in its PropertyInfo structure will return true, and it’s
property handle will be an instance of InheritableProperty:

Maspack Reference Manual 14

interface InheritableProperty extends Property
{

// sets the property ’s mode
public void setMode (PropertyMode mode);

// returns the property ’s mode
public PropertyMode getMode();

}

Valid modes are PropertyMode.Explicit, PropertyMode.Inherited, and PropertyMode.Inactive. The latter is
similar to Inherited, except that setting an Inactive property’s value will not cause its mode to be set to Explicit
and its new value will not be propagated to hierarchy descendants.

The hierarchy structure which we have been describing is implemented by having host classes which correspond to
hierarchy nodes implement the HierarchyNode interface.

interface HierarchyNode
{

// returns an iterator over this node ’s children
Iterable <? extends HierarchyNode > getChildren();

// returns true if this node has children
boolean hasChildren();

// returns the parent of this node , if any
HierarchyNode getParent();

}

These methods should be implemented as wrappers to the underlying hierarchy implementation.

2.8 Exporting Inheritable Properties

The property package provides most of the code required to make inheritance work, and so all that is required to
implement an inheritable property is to provide some simple template code within its exporting class. We will illustrate
this with an example.

Suppose we have a property called “width” that is to be made inheritable. Then addition to it’s value variable and set/get
accessors, the host class should provide a PropertyMode variable along with set/get accessors:

int myWidth;
PropertyMode myWidthMode = PropertyMode.Inherited;

public PropertyMode getWidthMode() {
return myWidthMode;

}

public void setWidthMode (PropertyMode mode) {
myWidthMode = PropertyUtils.setModeAndUpdate (

this , "width", myWidthMode , mode);
}

The call to PropertyUtils.setModeAndUpdate() inside the set method ensures that inherited values within
the hierarchy are properly whenever the mode is changed. If the mode is set to PropertyMode.Explicit, then
the property’s value needs to be propagated to any descendent nodes for which it is inherited. If the mode is set to
PropertyMode.Inherited, then the property’s value needs to be obtained from the ancestor nodes, and then also
propagated to any descendent nodes for which it is inherited.

As mentioned in the previous section, explicitly setting a property’s value using the set accessor should cause it’s
property mode to be set to Explicit and the new value to be propagated to hierarchy descendents. This can be
accomplished by using PropertyUtils.propagateValue within the set accessor:

public void setWidth (int w) {
myWidth = w;

Maspack Reference Manual 15

myWidthMode = PropertyUtils.propagateValue (
this , "width", myValue , myWidthMode);

}

The actual creation of an inherited property can be done using the PropertyList methods

void addInheritable (
String nameAndMethods , String description ,
Object defaultValue)

void addInheritable (
String nameAndMethods , String description ,
Object defaultValue , String options)

instead of the add or addReadOnly methods. The nameAndMethods argument may now specify up to five method
names, corresponding, in order, to the get/set accessors for the property value, the getRange accessor, and the get/set
accessors for the property’s mode. If any of these are omitted or specified as ’*’, then the system searches for names of
the form getXxx, setXxx, getXxxRange, getXxxNode, and setXxxMode, where xxx is the property name.

Finally, the host objects which actually correspond to hierarchy nodes must implement the HierarchyNode interface as
described in the previous section, and any routine which adds a node to the hierarchy must also implement the following
code fragment:

public void addChild (HierarchyNode node) {
... add node to the hierarchy ...
PropertyUtils.updateInheritedProperties (node);

}

This ensures that when a node is added, all property values within and beneath it are made consistent with the inheri-
tance hierarchy.

2.9 Inheritable and Composite Properties

Property inheritance is not currently implemented for CompositeProperty objects, in order to avoid confusion of the
inheritance rules. Suppose a class exports a composite property A, which in turn exports an inheritable property B. Now
suppose that A is an inheritable property with its mode is set to Inherited. Then the entire structure of A, including the
value of B and its mode, is inherited, and it is no longer possible to independently set the value of B, even if its mode is
Explicit.

However, the leaf nodes of a composite property tree certainly can be inherited. Suppose a class ThisHost exports
properties width, order, and renderProps, and that the latter is a composite property exporting width, color, and
size. The leafs nodes of the composite property tree exported by ThisHost are the properties

width
order
renderProps.width
renderProps.color
renderProps.size

Each of these may be inheritable, although renderProps may not be.

It should be noted that all the leaves in a composite property tree are considered to be unique properties and do not
affect each other with respect to inheritance, even if some of the sub-component names are the same. For instance, in
the above example, the properties width and renderProps.width are different; each may inherit, respectively, from
occurrences of width and renderProps.width contained in ancestor nodes, but they do not affect each other. This is
illustrated by Figure 2.

Also, if a CompositeProperty is set to null within a particular node, then the inheritance of its sub-properties passes
straight through that node as though the property was not defined there at all. For example, in Figure 2, renderProps is
set to null in node C, and so renderProps.width in node F inherits its value directly from node A.

Composite property inheritance is fully supported if an inheritable property’s set accessor invokes PropertyUtils.update-
CompositeProperty as shown in the code example at the end of Section 2.4.2.

Maspack Reference Manual 16

Figure 2: Inheritance of the properties width and renderProps.width within a hierarchy

3 Rendering

The maspack render package supports the graphical rendering of objects using OpenGL and JOGL. An object makes it-
self renderable by implementing the GLRenderable interface. Renderable objects can then be displayed by a GLViewer,
which provides features such as viewpoint control, clipping planes, and component selection.

3.1 Renderables and the viewer

Any object to be rendered by GLViewer should implement the GLRenderable interface. Renderables can be added or
removed from a viewer using the commands

addRenderable (GLRenderable r);
removeRenderale (GLRenderable r);
clearRenderables();

To request the viewer to render, one calls the method GLViewer.rerender(), which causes the viewer to redraw itself,
using the render methods of all its renderables:

render (GLRenderer renderer , int flags);

This method is called within a rendering thread which usually separate from other application threads (the AWT event
thread is commonly used). The renderer interface provides access to JOGL structures, such as GL2 and GLU, which can
be used for OpenGL rendering.

// render function to draw a single line
void render (GLRenderer renderer , int flags) {

GL2 gl = renderer.getG2L();
gl.glDisable (GL2.GL_LIGHTING);
gl.glLineWidth (2);
gl.glBegin (GL2.GL_LINES);
gl.glVertex3f (0, 0, 0);
gl.glVertex3f (1f, 0, 0);
gl.glEnd ();
gl.glLineWidth (1);

}

Note that maspack currently uses JOGL 2, which differs from earlier versions of JOGL in that the class GL2
replaces the earlier class GL.

Maspack Reference Manual 17

In addition to providing access to the JOGL GL data structures, the renderer argument provides a large number of
convenience methods for various graphical operations. The flags argument supplies flags that may be used to control
different aspects of the rendering. The flags are defined in GLRenderer, and adherance to them is recommended but not
mandatory. Current flag definitions include:

SELECTED Requests that the object be rendered as though it is selected, whether or not it actually is selected;

VERTEX_COLORING For meshes, requests that rendering should be done using explicit colors set at the vertices;

HSV_COLOR_INTERPOLATION Requests that HSV color interpolation should be used when the VERTEX_COLORING
flag is set;

SORT_FACES For polygonal meshes, requests that faces should be sorted in Z direction order. This is to enable better
rendering of transparency;

CLEAR_MESH_DISPLAY_LISTS For meshes, requests that display lists be cleared.

3.2 Prerendering

Because rendering is performed in a thread separate from the main application, this can cause synchronization and
consistency problems for renderables which are changing dynamically. For example, suppose we are simulating the
motion of two objects, A and B, and we wish to render their positions at a particular time t. If the render thread is
allowed to run in parallel with the thread computing the simulation, then A and B might be drawn with positions
corresponding to different times (or worse, positions which are indeterminate!). Synchronizing the rendering and
simulation threads will aleviate this problem, but that means forgoing the speed improvement of allowing the rendering
to run in parallel.

Another option is to give renderables the opportunity to cache their current state for use in the rendering code. This is
analagous to double buffering, and can be effected using the prerender() method of GLRenderable:

prerender (RenderList list)

When rerender is called, the viewer assembles all its renderables into a list. It then iterates through this list, calling
prerender for each one, within the same thread from which rerender was invoked. The renderable can then make a
cached copy of any dynamic rendering information, and then use this later when render is called.

The prerender method can also be used to add additional renderables to the current renderable list. This is done using
the addIfVisible() method of RenderList. For example, if a renderable has two subcomponents, A and B, which it would
also like to have rendered, then it can request them to rendered as follows:

void prerender (RenderList list) {
GLRenderable A, B;

...
// add both A and B to the render list
list.addIfVisible (A);
list.addIfVisible (B);

}

When addIfVisible is called, it will check to see if the specified renderable is visible (more on that below), and
then, if it is, add it to the list of renderables. In addition, the prerender method is recursively called on the specified
renderable, whether it is visible or not (since even if a renderable is not visible, it might have subcomponents which are).
This allows an entire hierarchy of renderables can be rendered by simply adding the root renderable to the viewer.

Note that any renderables added using the addIfVisible method are not added to the basic list of viewer renderables
specified using addRenderbale and removeRenderable.

Note also that prerender should never be called in the rendering thread.

3.2.1 Renderable Visibility

As mentioned above, the RenderList.addIfVisible() method only adds renderables to the current render list if they are
“visible”. Any object implementing GLRenderable is visible by default. However, if the object also implements Has-
RenderProps, then it is determined to be visible only if the RenderProps returned by HasRenderProps.getRenderProps()
is non-null and the associated isVisible method returns true.

Maspack Reference Manual 18

3.3 Object Selection

GLViewer provides support for the mouse-based selection of renderable components which implement GLSelectable, a
subinterface of GLRenderable that implements the following three additional methods

boolean isSelectable();

int numSelectionQueriesNeeded();

void getSelection (
LinkedList <Object > list , int qid);

The method isSelectable() should return true if the component is in fact selectable. Unless the component manages its
own selection behavior (as described in Section 3.3.2), numSelectionQueriesNeeded() should return -1 and getSelec-
tion() should do nothing.

Selection is done by identifying all selectables that are completely or partially rendered within a special selec-
tion frustum, which is a sub-frustum of the current view. Information about these selectables is then passed a
GLSelectionHandler registered with GLViewer (Section 3.4), which then determines the appropriate selection
action for each.

Left-clicking in the view window will create a selection frustum defined by a 5x5 sub-window centered on the current
mouse position. This type of selection is usually handled to produce single selection of the most prominant selectable in
the frustum.

Left-dragging in the view window will create a selection frustum defined by the drag box. This type of selection is
usually handleed to produce multiple selection of all the selectables in the frustum.

Within GLViewer, selection is implemented in several different ways. If the selection mode requires all objects in
the selection frustum, regardless of whether they are clipped by the depth buffer, then OpenGL occlusion queries
are used. If only visible objects which have passed the depth test are desired, then a color-based selection scheme
is used instead, where each object is rendered with a unique color to an off-screen buffer. Finally, selection may
be performed using the (now deprecated) OpenGL GL_SELECT rendering mode; to enable this, use the method
GLViewer.enableGLSelectSelection().

3.3.1 Restrictions when rendering in selection mode

Because color-based selection may be used in the selection process, it is important that application rendering code does
not do anything that affects pixel coloring while selection is in progress. In particular, it is important to not:

1. Enable GL_BLEND, GL_LIGHTING, GL_TEXTURE, GL_FOG, or GL_DITHER;

2. Set colors using glColor;

One way to adhear to these restrictions is to conditionalize the relevant calls on whether or not renderer.isSelecting()
returns true:

if (!renderer.isSelecting()) {
gl.glColor (1f, 0.5f, 0f);

}

A more compact option, for colors and lighting control, is to use the following GLRenderer methods:

setLightingEnabled (boolean enable);
boolean isLightingEnabled();

setTransparencyEnabled (boolean enable);
boolean isTransparencyEnabled();

setColor (float r, float g, float b);
setColor (float r, float g, float b, float a);
setColor (float[] rgbx);

These methods will only call the underlying GL primitives if selection is not in progress.

Maspack Reference Manual 19

3.3.2 Implementing custom selection

By default, if the isSelectable() and numSelectionQueriesNeeded() methods of a selectable return true and -1,
respectively, then selection will be possible for that component based on whether any portion of it is rendered in the
selection frustum. No other programming work needs to be done.

However, in some cases it may be desirable for a selectable to mange it’s own selection. A common reason for doing
this is that the selectable contains sub-components which are themselves selectable. Another reason might be that only
certain parts of what a component renders should be used to indicate selection.

A selectable manages its own selection by adding custom selection code within its render() method. This typically
consists of surrounding the “selectable” parts of the rendering with selection queries, which are indicated by integer
identifiers. For example, suppose we have a component which renders in three stages (A, B, and C), and we only want
the component to be selected if the rendering for stage A or C appears in the selection frustum. Then we surround
the rendering of stages A and C with selection queries, using the GLRenderer methods beginSelectionQuery() and
endSelectionQuery():

void render (GLRenderer render , int flags) {
...
int qidA = 0; // selection query for stage A
int qidC = 1; // selection query for stage C
if (renderer.isSelecting()) {

renderer.beginSelectionQuery (qidA);
}
... render stage A ...
if (renderer.isSelecting()) {

renderer.endSelectionQuery ();
}
... render stage B ...
if (renderer.isSelecting()) {

renderer.beginSelectionQuery (qidC);
}
... render stage C ...
if (renderer.isSelecting()) {

renderer.endSelectionQuery ();
}

}

We also need to tell the system how many selection queries we need, and indicate to the system what should be selected
in response to a particular query. This is done by creating appropriate declarations for numSelectionQueriesNeeded()
and getSelection():

int numSelectionQueriesNeeded() {
return 2;

}

void getSelection (LinkedList <Object > list , qid) {
list.add (this); // indicate that this component is selected

}

The query index supplied to renderer.beginSelectionQuery() should be in the range 0 to numq-1, where numq is
the value returned by numSelectionQueriesNeeded(). There is no need to use all requested selection queries, but
a given query index should not be used more than once. When rendering associated with a particular query appears
in the selection frustum, the system will (later) call getSelection() with qid set to the query index to determine
what exactly has been selected. The selectable answers this by adding the selected component to the list argument.
Typically only one item (the selected component) is added to the list, but other information can be placed there as well,
if an application’s selection handler (Section 3.4) is prepared for it.

A component’s getSelection() method will be called for each selection query whose associated render fragment
appears in the selection frustum. If a component is associated with multiple queries (as in the above example), then
its getSelection() may be called multiple times.

Maspack Reference Manual 20

Note that the use of beginSelectionQuery(qid) and endSelectionQuery() is conceptually similar to surrounding
the render code with glLoadName(id) and glLoadName(-1), as is done when implementing selection using the
OpenGL GL_SELECT rendering mode.

As another example, imagine that a selectable class Foo contains a list of selectable components, each of which may
be selected individually. The “easy” way to handle this is for Foo to hand each component to the RenderList in it’s
prerender() method (Section 3.2):

void prerender (RenderList list) {
for (GLSelectable s : components) {

list.add (s);
}

}

Rendering and selection of each component is then handled by the GLViewer.

However, if for some reason (efficiency, perhaps) it is necessary for Foo to render the components inside its own
render() method, then it must also take care of their selection. This can be done by requesting and issuing selection
queries for each one:

List <GLSelectable > components; // list of selectable components

int numSelectionQueriesNeeded() {
// need one selection query for each component
return components.size();

}

void render (GLRenderer renderer , int flags) {
int qid = 0; // id for selection query
for (GLSelectable s : components) {

if (renderer.isSelecting()) {
// only render components that are actually selectable ...

if (renderer.isSelectable(s)) {
renderer.beginSelectionQuery (qid);
... render component ...
renderer.endSelectionQuery ();

}
qid++;

}
else {

... render component ...
}

}
}

void getSelection (LinkedList <Object > list , int qid) {
// place the selected component onto the list
list.add (components.get(qid));

}

Note that a call to renderer.isSelectable(s) is used to determine which selectable components should actually be
rendered when a selection render is being performed. This method will return true if s.isSelectable() returns true
and if s is allowed by any selection filters that are currently active in the renderer. Limiting rendering in this way allows
components to be selected that might otherwise be hidden by non-selectable components in the foreground.

Finally, what if some of the components in the above example wish to manage their own selection? This can be detected
if a component’s numSelectionQueriesNeeded() method return a non-negative value. In that case, Foo can let the
component manage its selection by calling its render() method, surrounded with calls to beginSubSelection() and
endSubSelection(), instead of beginSelectionQuery(int) and endSelectionQuery(), as in

void render (GLRenderer renderer , int flags) {
int qid = 0; // id for selection query
for (GLSelectable s : components) {

if (renderer.isSelecting()) {
int numq = s.numSelectionQueriesNeeded();

if (numq >= 0) {

Maspack Reference Manual 21

// s is managing its own selection
if (renderer.isSelectable(s)) {

renderer.beginSubSelection (s, qid);
s.render (renderer , flags);
renderer.endSubSelection ();

}
// update qid by number of queries requested by s
qid += numq;

}
else {

if (renderer.isSelectable(s)) {
renderer.beginSelectionQuery (qid);
s.render (renderer , flags);
renderer.endSelectionQuery ();

}
qid++;

}
}
else {

s.render (renderer , flags);
}

}
}

The call to beginSubSelection() sets internal information in the renderer so that within the render() function for s,
query indices in the range [0, numq-1] correspond to indices in the range [qid, qid+numq-1] as seen outside the render
function.

Foo must also add the number of selection queries required by its components to the value returned by its own
numSelectionQueriesNeeded() method:

int numSelectionQueriesNeeded() {
// compute total number of queries required:
int total = 0;
for (GLSelectable s : components) {

int numq = s.numSelectionQueriesNeeded();
total += (numq >= 0 ? numq : 1);

}
return total;

}

Finally, in its getSelection() method, Foo must delegate to components managing their own selection by calling their
own getSelection() method. When doing this, it is necessary to offset the query index passed to the component’s
getSelection() method by the base query index for that component, since as indicated above, query indices seen
within a component are in the range [0, numq-1]:

void getSelection (LinkedList <Object > list , int qid) {
// find component with the matching qid
int qi = 0;
for (GLSelectable s : components) {

int numq = s.numSelectionQueriesNeeded();
if (numq >= 0) {

// See if qid is in the range of queries managed by s.
if (qid >= qi && qid < qi+numq) {

s.getSelection (list , qid-qi); // offset the query index
return;

}
qi += numq;

}
else if (qi == qid) {

list.add (s);
return;

}
}

}

Maspack Reference Manual 22

3.4 Selection Events

Internally within GLViewer, selection operations are initiated by the method

setPick (x, y, width, height, ignoreDepthTest)

which sets up selection for all components located within a sub-frustum of the current view defined by a sub-window
of dimensions width and height and centered on x and y. The flag ignoreDepthTest indicates that all components
in the frustum should be selected, regardless of whether or not they pass the depth test. (At present, a true value for
ignoreDepthTest causes selection to be performed using occlusion queries instead of color-based selection.)

Components selected by the viewer are indicated to the application via a selection listener mechanism, in which the
application registers instances of GLSelectionListener with the GLViewer using the methods

void addSelectionListener (GLSelectionListener l);
void removeSelectionListener (GLSelectionListener l);
GLSelectionListener[] getSelectionListeners();

The listener implements one method with the signature

void itemsSelected (GLSelectionEvent e);

from which information about the selection can be obtained via a GLSelectionEvent. This provides information about
all the queries for which selection occured the methods

int numSelectedQueries();
int getFlags();
int getModifiersEx();
LinkedList <Object >[] getSelectedObjects();

numSelectedQueries() returns the number of queries that resulted in a selection, getModifiersEx() returns the extended
keyboard modifiers that were in play when the selection was requested, and getFlags() returns information flags about
the selection (such as whether it was a DRAG selection or MULTIPLE selection is desired).

Information about the selected components is returned by getSelectedObjects(), which provides an array (of length
numSelectedQueries()) of object lists for each selected query. Each object list is the result of the call to getSelection()
for that selection query. As indicated in Section 3.3.2, each object list typically contains a single selected component,
but may contain other information if the selection handler is prepared for it.

The array provided by getSelectedObjects() is ordered so that results for the most visible selectables appear first, so
if the handler wishes to select only a single component, it should look at the beginning of the list. Also, if the rendering
for a single component is associated with multiple selection queries, mutiple results may returned for that component.

3.5 Render Lists and Multiple Viewers

Sometimes, multiple viewers may be used to simultaneously render a common set of renderables. In such cases, it may
be wasteful for each viewer to repeatedly execute the prerender phase on the same renderable set. It may also lead to
inconsitent results, if the state of renderables changes between different viewers invocation of the prerender phase.

To avoid this problem, an application may execute the prerender phase itself on a set of renderables, and then pass the
resulting RenderList to the necessary viewers.

A code sample for this is:

GLViewer viewer1;
GLViewer viewer2;
List <GLRenderable > renderables;

...
RenderList rlist = new RenderList();
// execute the pre-render phase
rlist.addIfVisibleAll (renderables);

viewer1.setExternalRenderList (rlist);

Maspack Reference Manual 23

viewer2.setExternalRenderList (rlist);

viewer1.rerender();
viewer2.rerender();

The render list is initialized to include all visible renderables (see Section 3.2.1, above), and then passed to each
viewer by setExternalRenderList(). The contents of this render list are then displayed the next time the viewers redraw
themselves, along with any render lists they have generated internally.

	Introduction
	Properties
	Accessing Properties
	Why Property Handles?

	Property Ranges
	Obtaining Property Information
	Exporting Properties from a Class
	Read-only properties
	Inheriting Properties from a superclass

	Composite Properties
	Reading and Writing to Persistent Storage
	Inheritable Properties
	Exporting Inheritable Properties
	Inheritable and Composite Properties

	Rendering
	Renderables and the viewer
	Prerendering
	Renderable Visibility

	Object Selection
	Restrictions when rendering in selection mode
	Implementing custom selection

	Selection Events
	Render Lists and Multiple Viewers

