
ArtiSynth Modeling Guide

John Lloyd and Antonio Sánchez
May 28, 2015

ArtiSynth Modeling Guide 2

Contents

1 Introduction 7

1.1 How to read this guide . 7

2 ArtiSynth Overview 7

2.1 System structure . 7

2.1.1 Model components . 7

2.1.2 The RootModel . 8

2.1.3 Component path names . 8

2.1.4 Model advancement . 8

2.1.5 MechModel . 9

2.2 Physics simulation . 9

2.3 Basic packages . 11

2.3.1 maspack . 11

2.3.2 artisynth.core . 11

2.3.3 artisynth.demos . 12

2.4 Properties . 12

2.4.1 Property handles and paths . 12

2.4.2 Composite and inheritable properties . 12

2.5 Creating an application model . 13

2.5.1 Implementing the build() method . 14

2.5.2 Making models visible to ArtiSynth . 14

2.5.3 Loading and running a model . 15

3 Supporting classes 15

3.1 Vectors and matrices . 16

3.2 Rotations and transformations . 16

3.3 Points and Vectors . 17

3.4 Spatial vectors and inertias . 18

3.5 Meshes . 18

3.5.1 Mesh creation . 19

3.5.2 Reading and writing mesh files . 20

4 Mechanical Models I 20

4.1 Springs and particles . 21

4.1.1 Axial springs and materials . 21

4.1.2 Example: A simple particle-spring model . 21

4.1.3 Dynamic, parametric, and attached components . 23

4.1.4 Custom axial materials . 23

4.1.5 Damping parameters . 23

ArtiSynth Modeling Guide 3

4.2 Rigid bodies . 24

4.2.1 Frame markers . 24

4.2.2 Example: A simple rigid body-spring model . 25

4.2.3 Creating rigid bodies . 26

4.2.4 Pose and velocity . 26

4.2.5 Inertia and meshes . 27

4.2.6 Damping parameters . 28

4.3 Joints and connectors . 28

4.3.1 Joints and coordinate frames . 28

4.3.2 Creating Joints . 30

4.3.3 Example: A simple revolute joint . 31

4.3.4 Commonly used joints . 33

4.4 Frame springs . 34

4.4.1 Frame spring coordinate frames . 34

4.4.2 Frame materials . 35

4.4.3 Creating frame springs . 35

4.4.4 Example: Two bodies connected by a frame spring . 35

4.5 Attachments . 38

4.5.1 Point attachments . 38

4.5.2 Example: model with particle attachments . 38

4.5.3 Frame attachments . 40

4.5.4 Example: model with frame attachments . 40

5 Mechanical Models II 41
5.1 Simulation control properties . 41

5.2 Units . 42

5.2.1 Scaling units . 43

5.3 Transforming geometry . 44

5.4 Render properties . 44

5.4.1 Render property taxonomy . 44

5.4.2 Setting render properties . 45

5.5 Point-to-point muscles . 46

5.5.1 Muscle materials . 47

5.5.2 Example: Muscle attached to a rigid body . 47

5.6 Collision Handling . 48

5.6.1 Enabling collisions in code . 48

5.6.2 Example: Collision with a plane . 49

5.6.3 Self-collision and collidable hierarchies . 50

5.6.4 Collidability . 51

5.6.5 Implementation and limitations . 51

5.6.6 Contact rendering . 52

5.7 General component arrangements . 54

5.7.1 Container components . 54

5.7.2 Example: a net formed from balls and springs . 55

5.7.3 Adding containers to other models . 58

ArtiSynth Modeling Guide 4

6 Simulation Control 58

6.1 Control Panels . 58

6.1.1 General principles . 58

6.1.2 Example: Creating a simple control panel . 59

6.2 Custom properties . 60

6.2.1 Adding properties to a component . 60

6.2.2 Example: a visibility property . 61

6.3 Controllers and monitors . 62

6.3.1 Implementation . 62

6.3.2 Example: A controller to move a point . 63

6.4 Probes . 64

6.4.1 Numeric probe structure . 64

6.4.2 Creating probes in code . 65

6.4.3 Example: probes connected to SimpleMuscle . 66

6.4.4 Data file format . 67

6.4.5 Adding probe data in-line . 69

7 Finite Element Models 69

7.1 Overview . 69

7.1.1 FemModel3d . 70

7.1.2 Component Structure . 71

Nodes . 71

Elements . 72

Meshes . 73

7.1.3 Materials . 73

7.1.4 Boundary conditions . 73

7.2 FEM model creation . 74

7.2.1 Factory methods . 75

7.2.2 Loading external FEM meshes . 75

7.2.3 Generating from surfaces . 76

7.2.4 Building elements in code . 77

7.2.5 Example: a simple beam model . 77

7.3 FEM Geometry . 78

7.3.1 Surface meshes . 79

7.3.2 Embedding geometry within an FEM . 79

7.3.3 Example: a beam with an embedded sphere . 79

7.4 Node attachments . 81

7.4.1 Connecting nodes to rigid bodies or particles . 81

7.4.2 Example: connecting a beam to a block . 82

7.4.3 Connecting nodes directly to elements . 83

7.4.4 Example: connecting two FEMs together . 83

ArtiSynth Modeling Guide 5

7.4.5 Nodal-based attachments . 85

7.4.6 Example: element vs. nodal-based attachments . 85

7.5 FEM markers . 88

7.5.1 Example: attaching a FEM beam to a muscle . 89

7.6 Frame attachments . 90

7.6.1 Example: attaching frames to a FEM beam . 91

7.6.2 Adding joints to FEM models . 92

7.6.3 Example: two FEM beams connected by a joint . 92

7.7 Incompressiblity . 94

7.7.1 Volume regions and locking . 94

7.7.2 Hard incompressibility . 94

7.7.3 Soft incompressibility . 95

7.7.4 Incompressibility and linear materials . 96

7.7.5 Using incompressibility in practice . 96

7.8 Muscle activated FEM models . 96

7.8.1 FemMuscleModel . 96

Bundles . 97

Exciters . 97

7.8.2 Fibre-based muscles . 97

7.8.3 Material-based muscles . 98

7.8.4 Example: comparison with two beam examples . 99

7.9 Collisions . 99

7.9.1 Example: FEM collisions . 99

7.10 Rendering and Visualizations . 100

7.10.1 Example: stress and strain plotting . 101

8 DICOM Images 102

8.1 The DICOM file format . 103

8.2 The DICOM classes . 104

8.2.1 DicomElement . 104

8.2.2 DicomHeader . 104

8.2.3 DicomPixelBuffer . 105

8.2.4 DicomSlice . 106

8.2.5 DicomImage . 106

8.3 Loading a DicomImage . 106

8.3.1 Time-dependent images . 107

8.3.2 Image formats . 107

8.4 The DicomViewer . 107

8.5 DICOM example . 108

ArtiSynth Modeling Guide 6

A Mathematical Review 109

A.1 Rotation transforms . 110

A.2 Rigid transforms . 112

A.3 Affine transforms . 113

A.4 Rotational velocity . 114

A.5 Spatial velocities and forces . 115

A.6 Spatial inertia . 116

ArtiSynth Modeling Guide 7

1 Introduction

This guide describes how to create mechanical and biomechanical models in ArtiSynth using its Java API.

It is assumed that the reader is familiar with basic Java programming, including variable assignment, control flow,
exceptions, functions and methods, object construction, inheritance, and method overloading. Some familiarity with
the basic I/O classes defined in java.io.*, including input and output streams and the specification of file paths using
File, as well as the collection classes ArrayList and LinkedList defined in java.util.*, is also assumed.

1.1 How to read this guide

Section 2 offers a general overview of ArtiSynth’s software design, and briefly describes the algorithms used for
physical simulation (Section 2.2). The latter section may be skipped on first reading. A more comprehensive overview
paper is available online.

The remainder of the manual gives details instructions on how to build various types of mechanical and biomechanical
models. Sections 4 and 5 give detailed information about building general mechanical models, involving particles,
springs, rigid bodies, joints, constraints, and contact. Section 6 describes how to add control panels, controllers, and
input and output data streams to a simulation. Section 7 describes how to incorporate finite element models. The
required mathematics is reviewed in Section A.

If time permits, the reader will profit from a top-to-bottom read. However, this may not always be necessary. Many of
the sections contain detailed examples, all of which are available in the package artisynth.demos.tutorial and
which may be run from ArtiSynth using Models > All demos > tutorials. More experienced readers may wish to find an
appropriate example and then work backwards into the text and preceeding sections for any needed explanatory detail.

2 ArtiSynth Overview

ArtiSynth is an open-source, Java-based system for creating and simulating mechanical and biomechanical models, with
specific capabilities for the combined simulation of rigid and deformable bodies, together with contact and constraints.
It is presently directed at application domains in biomechanics, medicine, physiology, and dentistry, but it can also be
applied to other areas such as traditional mechanical simulation, ergonomic design, and graphical and visual effects.

2.1 System structure

An ArtiSynth model is composed of a hierarchy of models and model components which are implemented by various
Java classes. These may include sub-models (including finite element models), particles, rigid bodies, springs, connec-
tors, and constraints. The component hierarchy may be in turn connected to various agent components, such as control
panels, controllers and monitors, and input and output data streams (i.e., probes), which have the ability to control and
record the simulation as it advances in time. Agents are presented in more detail in Section 6.

The models and agents are collected together within a top-level component known as a root model. Simulation proceeds
under the control of a scheduler, which advances the models through time using a physics simulator. A rich graphical
user interface (GUI) allows users to view and edit the model hierarchy, modify component properties, and edit and
temporally arrange the input and output probes using a timeline display.

2.1.1 Model components

Every ArtiSynth component is an instance of ModelComponent. When connected to the hierarchy, it is assigned
a unique number relative to its parent; the parent and number can be obtained using the methods getParent() and
getNumber(), respectively. Components may also be assigned a name (using setName()) which is then returned using
getName().

A sub-interface of ModelComponent includes CompositeComponent, which contains child components. A Compo-
nentList is a CompositeComponent which simply contains a list of other components (such as particles, rigid bodies,
sub-models, etc.).

http://www.artisynth.org/doc/artisynth.pdf
http://www.artisynth.org/doc/artisynth.pdf

ArtiSynth Modeling Guide 8

Components which contain state information (such as position and velocity) should extend HasState, which provides the
methods getState() and setState() for saving and restoring state.

A Model is a sub-interface of CompositeComponent and HasState that contains the notion of advancing through time
and which implements this with the methods initialize(t0) and advance(t0, t1, flags), as discussed further
in Section 2.1.4. The most common instance of Model used in ArtiSynth is MechModel (Section 2.1.5), which is the
top-level container for a mechanical or biomechanical model.

2.1.2 The RootModel

The top-level component in the hierarchy is the root model, which is a subclass of RootModel and which contains a list
of models along with lists of agents used to control and interact with these models. The component lists in RootModel
include:

models top-level models of the component hierarchy
inputProbes input data streams for controlling the simulation
controllers functions for controlling the simulation
monitors functions for observing the simulation
outputProbes output data streams for observing the simulation

Each agent may be associated with a specific top-level model.

2.1.3 Component path names

The names and/or numbers of a component and its ancestors can be used to form a component path name. This path has
a construction analogous to Unix file path names, with the ’/’ character acting as a separator. Absolute paths start with
’/’, which indicates the root model. Relative paths omit the leading ’/’ and can begin lower down in the hierarchy. A
typical path name might be

/models/JawHyoidModel/axialSprings/lad

For nameless components in the path, their numbers can be used instead. Numbers can also be used for components that
have names. Hence the path above could also be represented using only numbers, as in

/0/0/1/5

although this would most likely appear only in machine-generated output.

2.1.4 Model advancement

ArtiSynth simulation proceeds by advancing all of the root model’s top-level models through a sequence of time steps.
Every time step is achieved by calling each model’s advance() method:

public StepAdjustment advance (double t0, double t1) {
... perform simulation ...

}

This method advances the model from time t0 to time t1, performing whatever physical simulation is required (see
Section 2.2). The method may optionally return a StepAdjusment indicating that the step size (t1 - t0) was too large
and that the advance should be redone with a smaller step size.

The root model has it’s own advance(), which in turn calls the advance method for all of the top-level models, in
sequence. The advance of each model is surrounded by the application of whatever agents are associated with that
model. This is done by calling the agent’s apply() method:

ArtiSynth Modeling Guide 9

model.preadvance (t0, t1);
for (each input probe p) {

p.apply (t1);
}
for (each controller c) {

c.apply (t0, t1);
}
model.advance (t0, t1);
for (each monitor m) {

m.apply (t0, t1);
}
for (each output probe p) {

p.apply (t1);
}

Agents not associated with a specific model are applied before (or after) the advance of all other models.

More precise details about model advancement are given in the ArtiSynth Reference Manual.

2.1.5 MechModel

Most ArtiSynth applications contain a single top-level model which is an instance of MechModel. This is a Compos-
iteComponent that may (recursively) contain an arbitrary number of mechanical components, including finite element
models, other MechModels, particles, rigid bodies, constraints, attachments, and various force effectors. The MechModel
advance() method invokes a physics simulator that advances these components forward in time (Section 2.2).

For convenience each MechModel contains a number of predefined containers for different component types, including:

particles 3 DOF particles
points other 3 DOF points
rigidBodies 6 DOF rigid bodies
frames other 6 DOF frames
axialSprings point-to-point springs
connectors joint-type connectors between bodies
constrainers general constraints
forceEffectors general force-effectors
attachments attachments between dynamic components
renderables renderable components (for visualization only)

Each of these is a child component of MechModel and is implemented as a ComponentList. Special methods are
provided for adding and removing items from them. However, applications are not required to use these containers,
and may instead create any component containment structure that is appropriate. If not used, the containers will simply
remain empty.

2.2 Physics simulation

Only a brief summary of ArtiSynth physics simulation is described here. Full details are given in [5] and in the related
overview paper.

For purposes of physics simulation, the components of a MechModel are grouped as follows:

Dynamic components
Components, such as a particles and rigid bodies, that contain position and velocity state, as well as mass. All
dynamic components are instances of the Java interface DynamicComponent.

Force effectors
Components, such as springs or finite elements, that exert forces between dynamic components. All force
effectors are instances of the Java interface ForceEffector.

../artisynth/artisynth.html
http://www.artisynth.org/doc/artisynth.pdf

ArtiSynth Modeling Guide 10

Constrainers
Components that enforce constraints between dynamic components. All constrainers are instances of the Java
interface Constrainer.

Attachments
Attachments between dynamic components. While technically these are constraints, they are implemented using a
different approach. All attachment components are instances of DynamicAttachment.

The positions, velocities, and forces associated with all the dynamic components are denoted by the composite vectors
q, u, and f. In addition, the composite mass matrix is given by M. Newton’s second law then gives

f =
dMu

dt
= Mu̇+Ṁu, (1)

where the Ṁu accounts for various “fictitious” forces.

Each integration step involves solving for the velocities uk+1 at time step k+1 given the velocities and forces at step k.
One way to do this is to solve the expression

Muk+1 = Muk +hf̄ (2)

for uk+1, where h is the step size and f̄≡ f−Ṁu. Given the updated velocities uk+1, one can determine q̇k+1 from

q̇k+1 = Quk+1, (3)

where Q accounts for situations (like rigid bodies) where q̇ 6= u, and then solve for the updated positions using

qk+1 = qk +hq̇k+1. (4)

(2) and (4) together comprise a simple symplectic Euler integrator.

In addition to forces, bilateral and unilateral constraints give rise to locally linear constraints on u of the form

G(q)u = 0, N(q)u≥ 0. (5)

Bilateral constraints may include rigid body joints, FEM incompressibility, and point-surface constraints, while
unilateral constraints include contact and joint limits. Constraints give rise to constraint forces (in the directions G(q)T

and N(q)T) which supplement the forces of (1) in order to enforce the constraint conditions. In addition, for unilateral
constraints, we have a complementarity condition in which Nu > 0 implies no constraint force, and a constraint force
implies Nu = 0. Any given constraint usually involves only a few dynamic components and so G and N are generally
sparse.

Adding constraints to the velocity solve (2) leads to a mixed linear complementarity problem (MLCP) of the formM̂k −GT −NT

G 0 0
N 0 0

uk+1

λ

z

+

−Muk−hf̂k

−gk

−nk

=

0
0
w

 ,

0≤ z⊥ w≥ 0, (6)

where w is a slack variable, λ and z give the force constraint impulses over the time step, and g and n are derivative
terms arising if G and N are time varying. In addition, M̂ and f̂ are M and f̄ augmented with stiffness and damping terms
terms to accommodate implicit integration, which is often required for problems involving deformable bodies.

Attachments can be implemented by constraining the velocities of the attached components using special constraints of
the form

u j =−G jα uα (7)

where u j and uα denote the velocities of the attached and non-attached components. The constraint matrix G jα is
sparse, with a non-zero block entry for each master component to which the attached component is connected. The
simplest case involves attaching a point j to another point k, with the simple velocity relationship

u j = uk (8)

That means that G jα has a single entry of −I (where I is the 3× 3 identity matrix) in the k-th block column. Another
common case involves connecting a point j to a rigid frame k. The velocity relationship for this is

u j = uk− l j×ωk (9)

ArtiSynth Modeling Guide 11

where uk and ωk are the translational and rotational velocity of the frame and l j is the location of the point relative to the
frame’s origin (as seen in world coordinates). The corresponding G jα contains a single 3×6 block entry of the form(

I [l j]
)

(10)

in the k− th block column, where

[l]≡

 0 −lz ly
lz 0 −lx
−ly lx 0

 (11)

is a skew-symmetric cross product matrix. The attachment constraints G jα could be added directly to (6), but their
special form allows us to explicitly solve for u j, and hence reduce the size of (6), by factoring out the attached velocities
before solution.

The MLCP (6) corresponds to a single step integrator. However, higher order integrators, such as Newmark methods,
usually give rise to MLCPs with an equivalent form. Most ArtiSynth integrators use some variation of (6) to determine
the system velocity at each time step.

To set up (6), the MechModel component hierarchy is traversed and the methods of the different component types are
queried for the required values. Dynamic components (type DynamicComponent) provide q, u, and M; force effectors
(ForceEffector) determine f̂ and the stiffness/damping augmentation used to produce M̂; constrainers (Constrainer)
supply G, N, g and n, and attachments (DynamicAttachment) provide the information needed to factor out attached
velocities.

2.3 Basic packages

The core code of the ArtiSynth project is divided into three main packages, each with a number of sub-packages.

2.3.1 maspack

The packages under maspack contain general computational utilities that are independent of ArtiSynth and could be
used in a variety of other contexts. The main packages are:

maspack.util // general utilities
maspack.matrix // matrix and linear algebra
maspack.graph // graph algorithms
maspack.fileutil // remote file access
maspack.properties // property implementation
maspack.spatialmotion // 3D spatial motion and dynamics
maspack.solvers // LCP solvers and linear solver interfaces
maspack.render // viewer and rendering classes
maspack.geometry // 3D geometry and meshes
maspack.collision // collision detection
maspack.widgets // Java swing widgets for maspack data types
maspack.apps // stand -alone programs based only on maspack

2.3.2 artisynth.core

The packages under artisynth.core contain the core code for ArtiSynth model components and its GUI infrastruc-
ture.

artisynth.core.util // general ArtiSynth utilities
artisynth.core.modelbase // base classes for model components
artisynth.core.materials // materials for springs and finite elements
artisynth.core.mechmodels // basic mechanical models
artisynth.core.femmodels // finite element models
artisynth.core.probes // input and output probes
artisynth.core.workspace // RootModel and associated components
artisynth.core.driver // start ArtiSynth and drive the simulation
artisynth.core.gui // graphical interface
artisynth.core.inverse // inverse controller

ArtiSynth Modeling Guide 12

2.3.3 artisynth.demos

These packages contain demonstration models that illustrate ArtiSynth’s modeling capabilities:

artisynth.demos.mech // mechanical model demos
artisynth.demos.fem // demos involving finite elements
artisynth.demos.inverse // demos involving inverse control
artisynth.demos.tutorial // demos in this manual

2.4 Properties

ArtiSynth components expose properties, which provide a uniform interface for accessing their internal parameters and
state. Properties vary from component to component; those for RigidBody include position, orientation, mass,
and density, while those for AxialSpring include restLength and material. Properties are particularly useful
for automatically creating control panels and probes, as described in Section 6. They are also used for automating
component serialization.

Properties are described only briefly in this section; more detailed descriptions are available in the Maspack Reference
Manual and the overview paper.

The set of properties defined for a component is fixed for that component’s class; while property values may vary
between component instances, their definitions are class-specific. Properties are exported by a class through code
contained in the class definition, as described in Section 6.2.

2.4.1 Property handles and paths

Each property has a unique name which may be used to obtain a property handle through which the property’s value
may be queried or set for a particular component. Property handles are implemented by the class Property and are
returned by the component’s getProperty() method. getProperty() takes a property’s name and returns the correspond-
ing handle. For example, components of type Muscle have a property excitation, for which a handle may be obtained
using a code fragment such as

Muscle muscle;
...
Property prop = muscle.getProperty ("excitation");

Property handles can also be obtained for sub-components, using a property path that consists of a path to the sub-
component followed by a colon ‘:’ and the property name. For example, to obtain the excitation property for a
sub-component located by axialSprings/lad relative to a MechModel, once could use a call of the form

MechModel mech;
...
Property prop = mech.getProperty ("axialSprings/lad:excitation");

2.4.2 Composite and inheritable properties

Composite properties are possible, in which a property value is a composite object that in turn has sub-properties. A
good example of this is the RenderProps class, which is associated with the property renderProps for renderable
objects and which itself can have a number of sub-properties such as visible, faceStyle, faceColor, lineStyle,
lineColor, etc.

Properties can be declared to be inheritable, so that their values can be inherited from the same properties hosted by
ancestor components further up the component hierarchy. Inheritable properties require a more elaborate declaration
and are associated with a mode which may be either Explicit or Inherited. If a property’s mode is inherited, then
its value is obtained from the closest ancestor exposing the same property whose mode is explicit. In Figure (1), the
property stiffness is explicitly set in components A, C, and E, and inherited in B and D (which inherit from A) and F
(which inherits from C).

../maspack/maspack.html
../maspack/maspack.html
http://www.artisynth.org/doc/artisynth.pdf

ArtiSynth Modeling Guide 13

Figure 1: Inheritance of a property named stiffness among a component hierarchy. Explicit settings are in bold; inherited
settings are in gray italic.

2.5 Creating an application model

ArtiSynth applications are created by writing and compiling an application model that is a subclass of RootModel. This
application-specific root model is then loaded and run by the ArtiSynth program.

The code for the application model should:

• Declare a no-args constructor

• Override the RootModel build() method to construct the application.

ArtiSynth can load a model either using the build method or by reading it from a file:

Build method
ArtiSynth creates an instance of the model using the no-args constructor, assigns it a name (which is either user-
specified or the simple name of the class), and then calls the build() method to perform the actual construction.

Reading from a file
ArtiSynth creates an instance of the model using the no-args constructor, and then the model is named and
constructed by reading the file.

The no-args constructor should perform whatever initialization is required in both cases, while the build() method
takes the place of the file specification. Unless a model is originally created using a file specification (which is very
tedious), the first time creation of a model will almost always entail using the build() method.

The general template for application model code looks like this:

package artisynth.models.experimental; // package where the model resides
import artisynth.core.workspace.RootModel;
... other imports ...

public class MyModel extends RootModel {

// no-args constructor
public MyModel() {

... basic initialization ...
}

// build method to do model construction
public void build (String[] args) {

... code to build the model
}

}

ArtiSynth Modeling Guide 14

Here, the model itself is called MyModel, and is defined in the (hypothetical) package artisynth.models.experimental
(placing models in the super package artisynth.models is common practice but not necessary).

Note: The build() method was only introduced in ArtiSynth 3.1. Prior to that, application models were con-
structed using a constructor taking a String argument supplying the name of the model. This method of model
construction still works but is deprecated.

2.5.1 Implementing the build() method

As mentioned above, the build() method is responsible for actual model construction. Many applications are built
using a single top-level MechModel. Build methods for these may look like the following:

public void build (String[] args) {
MechModel mech = new MechModel("mech");
addModel (mech);

... create and add components to the mech model ...

... create and add any needed agents to the root model ...

}

First, a MechModel is created (with the name "mech" in this example, although any name, or no name, may be given)
and added to the list of models in the root model. Subsequent code then creates and adds the components required by the
MechModel, as described in Sections 4, 5 and 7. The build() method also creates and adds to the root model any agents
required by the application (controllers, probes, etc.), as described in Section 6.

When constructing a model, there is no fixed order in which components need to be added. For instance, in the above
example, addModel(mech) could be called near the end of the build() method rather than at the beginning. The only
restriction is that when a component is added to the hierarchy, all other components that it refers to should already have
been added to the hierarchy. For instance, an axial spring (Section 4.1) refers to two points. When it is added to the
hierarchy, those two points should already be present in the hierarchy.

The build() method supplies a String array as an argument. (This is analogous to the args argument passed to static
main() methods.) These is reserved for future use to supply application-supplied arguments.

2.5.2 Making models visible to ArtiSynth

In order to load an application model into ArtiSynth, the classes associated with its implementation must be made
visible to ArtiSynth. This usually involves adding the top-level class directory associated with the application code to
the classpath used by ArtiSynth.

The demonstration models referred to in this guide belong to the package artisynth.demos.tutorial and are
already visible to ArtiSynth.

In most current ArtiSynth projects, classes are stored in a directory tree separate from the source code, with the top-level
class directory named classes, located one level below the project root directory. A typical top-level class directory
might be stored in a location like this:

/home/joeuser/artisynthProjects/classes

In the example shown in Section 2.5, the model was created in the package artisynth.models.experimental.
Since Java classes are arranged in a directory structure that mirrors package names, with respect to the sample project
directory shown above, the model class would be located in

/home/joeuser/artisynthProjects/classes/artisynth/models/experimental

At present there are three ways to make top-level class directories known to ArtiSynth:

ArtiSynth Modeling Guide 15

Add projects to your Eclipse launch configuration
If you are using the Eclipse IDE, then you can add the project in which are developing your model code to the
launch configuration that you use to run ArtiSynth. Other IDEs will presumably provide similar functionality.

Add the directories to the EXTCLASSPATH file
You can explicitly list class directories in the file EXTCLASSPATH, located in the ArtiSynth root directory (it
may be necessary to create this file).

Add the directories to your CLASSPATH environment variable
If you are running ArtiSynth from the command line, using the artisynth command (or artisynth.bat on
Windows), then you can define a CLASSPATH environment variable in your environment and add the needed
directories to this.

All of these methods are described in more detail in the “Installing External Models and Packages” section of the
ArtiSynth Installation Guide (available for Linux, Windows, and MacOS).

2.5.3 Loading and running a model

If a model’s classes are visible to ArtiSynth, then it may be loaded into ArtiSynth in several ways:

Loading by class path
A model may be loaded by directly by choosing File > Load from class ... and directly specifying its class name.
It is also possible to use the -model <classname> command line argument to have a model loaded directly into
ArtiSynth when it starts up.

Loading from the Models menu
A faster way to load a model is by selecting it in one of the Models submenus. This may require editing the model
menu configuration files.

Loading from a file
If a model has previously been saved to a file, it may be loaded from that file by choosing File > Load model

These methods are described in detail in the section “Loading and Simulating Models” of the ArtiSynth User Interface
Guide.

The demonstration models referred to in this guide should already be present in the models menu and may be
loaded from the submenu Models > All demos > tutorial.

Once a model is loaded, it can be simulated, or run. Simulation of the model can then be started, paused, single-stepped,
or reset using the play controls (Figure 2) located at the upper right of the ArtiSynth window frame.

Figure 2: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, play/-
pause, and single-step buttons.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.

3 Supporting classes

ArtiSynth uses a large number of supporting classes, mostly defined in the super package maspack, for handling
mathematical and geometric quantities. Those that are referred to in this manual are summarized in this section.

../installation/linuxInstallation.html
../installation/windowsInstallation.html
../installation/macosInstallation.html
../uiguide/uiguide.html
../uiguide/uiguide.html
../uiguide/uiguide.html

ArtiSynth Modeling Guide 16

3.1 Vectors and matrices

Among the most basic classes are those used to implement vectors and matrices, defined in maspack.matrix. All vector
classes implement the interface Vector and all matrix classes implement Matrix, which provide a number of standard
methods for setting and accessing values and reading and writing from I/O streams.

General sized vectors and matrices are implemented by VectorNd and MatrixNd. These provide all the usual methods
for linear algebra operations such as addition, scaling, and multiplication:

VectorNd v1 = new VectorNd (5); // create a 5 element vector
VectorNd v2 = new VectorNd (5);
VectorNd vr = new VectorNd (5);
MatrixNd M = new MatrixNd (5, 5); // create a 5 x 5 matrix

M.setIdentity(); // M = I
M.scale (4); // M = 4*M

v1.set (new double[] {1, 2, 3, 4, 5}); // set values
v2.set (new double[] {0, 1, 0, 2, 0});
v1.add (v2); // v1 += v2
M.mul (vr, v1); // vr = M*v1

System.out.println ("result=" + vr.toString ("%8.3f"));

As illustrated in the above example, vectors and matrices both provide a toString() method that allows their elements
to be formated using a C-printf style format string. This is useful for providing concise and uniformly formatted output,
particularly for diagnostics. The output from the above example is

result= 4.000 12.000 12.000 24.000 20.000

Detailed specifications for the format string are provided in the documentation for NumberFormat.set(String). If either
no format string, or the string "%g", is specified, toString() formats all numbers using the full-precision output
provided by Double.toString(value).

For computational efficiency, a number of fixed-size vectors and matrices are also provided. The most commonly used
are those defined for three dimensions, including Vector3d and Matrix3d:

Vector3d v1 = new Vector3d (1, 2, 3);
Vector3d v2 = new Vector3d (3, 4, 5);
Vector3d vr = new Vector3d ();
Matrix3d M = new Matrix3d();

M.set (1, 2, 3, 4, 5, 6, 7, 8, 9);

M.mul (vr, v1); // vr = M * v1
vr.scaledAdd (2, v2); // vr += 2*v2;
vr.normalize(); // normalize vr
System.out.println ("result=" + vr.toString ("%8.3f"));

3.2 Rotations and transformations

maspack.matrix contains a number classes that implement rotation matrices, rigid transforms, and affine transforms.

Rotations (Section A.1) are commonly described using a RotationMatrix3d, which implements a rotation matrix and
contains numerous methods for setting rotation values and transforming other quantities. Some of the more commonly
used methods are:

RotationMatrix3d(); // create and set to the identity
RotationMatrix3d(u, angle); // create and set using an axis -angle

setAxisAngle (u, ang); // set using an axis -angle
setRpy (roll , pitch , yaw); // set using roll -pitch -yaw angles
setEuler (phi, theta , psi); // set using Euler angles

ArtiSynth Modeling Guide 17

invert (); // invert this rotation
mul (R) // post multiply this rotation by R
mul (R1, R2); // set this rotation to R1*R2
mul (vr, v1); // vr = R*v1, where R is this rotation

Rotations can also be described by AxisAngle, which characterizes a rotation as a single rotation about a specific axis.

Rigid transforms (Section A.2) are used by ArtiSynth to describe a rigid body’s pose, as well as its relative position
and orientation with respect to other bodies and coordinate frames. They are implemented by RigidTransform3d,
which exposes its rotational and translational components directly through the fields R (a RotationMatrix3d) and p
(a Vector3d). Rotational and translational values can be set and accessed directly through these fields. In addition,
RigidTransform3d provides numerous methods, some of the more commonly used of which include:

RigidTransform3d(); // create and set to the identity
RigidTransfrom3d(x, y, z); // create and set translation to x, y, z

// create and set translation to x, y, z and rotation to roll -pitch -yaw
RigidTransfrom3d(x, y, z, roll , pitch , yaw);

invert (); // invert this transform
mul (T) // post multiply this transform by T
mul (T1, T2); // set this transform to T1*T2
mulLeftInverse (T1, T2); // set this transform to inv(T1)*T2

Affine transforms (Section A.3) are used by ArtiSynth to effect scaling and shearing transformations on components.
They are implemented by AffineTransform3d.

Rigid transformations are actually a specialized form of affine transformation in which the basic transform matrix equals
a rotation. RigidTransform3d and AffineTransform3d hence both derive from the same base class AffineTrans-
form3dBase.

3.3 Points and Vectors

The rotations and transforms described above can be used to transform both vectors and points in space.

Vectors are most commonly implemented using Vector3d, while points can be implemented using the subclass Point3d.
The only difference between Vector3d and Point3d is that the former ignores the translational component of rigid and
affine transforms; i.e., as described in Sections A.2 and A.3, a vector v has an implied homogeneous representation of

v∗ ≡
(

v
0

)
, (12)

while the representation for a point p is

p∗ ≡
(

p
1

)
. (13)

Both classes provide a number of methods for applying rotational and affine transforms. Those used for rotations are

void transform (R); // this = R * this
void transform (R, v1); // this = R * v1
void inverseTransform (R); // this = inverse(R) * this
void inverseTransform (R, v1); // this = inverse(R) * v1

where R is a rotation matrix and v1 is a vector (or a point in the case of Point3d).

The methods for applying rigid or affine transforms include:

void transform (X); // transforms this by X
void transform (X, v1); // sets this to v1 transformed by X
void inverseTransform (X); // transforms this by the inverse of X
void inverseTransform (X, v1); // sets this to v1 transformed by inverse of X

where X is a rigid or affine transform. As described above, in the case of Vector3d, these methods ignore the
translational part of the transform and apply only the matrix component (R for a RigidTransform3d and A for an
AffineTransform3d). In particular, that means that for a RigidTransform3d given by X and a Vector3d given by v,
the method calls

ArtiSynth Modeling Guide 18

v.transform (X.R)
v.transform (X)

produce the same result.

3.4 Spatial vectors and inertias

The velocities, forces and inertias associated with 3D coordinate frames and rigid bodies are represented using
the 6 DOF spatial quantities described in Sections A.5 and A.6. These are implemented by classes in the package
maspack.spatialmotion.

Spatial velocities (or twists) are implemented by Twist, which exposes its translational and angular velocity components
through the publicly accessible fields v and w, while spatial forces (or wrenches) are implemented by Wrench, which
exposes its translational force and moment components through the publicly accessible fields f and m.

Both Twist and Wrench contain methods for algebraic operations such as addition and scaling. They also contain
transform() methods for applying rotational and rigid transforms. The rotation methods simply transform each
component by the supplied rotation matrix. The rigid transform methods, on the other hand, assume that the supplied
argument represents a transform between two frames fixed within a rigid body, and transform the twist or wrench
accordingly, using either (66) or (68).

The spatial inertia for a rigid body is implemented by SpatialInertia, which contains a number of methods for setting its
value given various mass, center of mass, and inertia values, and querying the values of its components. It also contains
methods for scaling and adding, transforming between coordinate systems, inversion, and multiplying by spatial vectors.

3.5 Meshes

ArtiSynth makes extensive use of 3D meshes, which are defined in maspack.geometry. They are used for a variety
of purposes, including visualization, collision detection, and computing physical properties (such as inertia or stiffness
variation within a finite element model).

A mesh is essentially a collection of vertices (i.e., points) that are topologically connected in some way. All meshes
extend the abstract base class MeshBase, which supports the vertex definitions, while subclasses provide the topology.

Through MeshBase, all meshes provide methods for adding and accessing vertices. Some of these include:

int getNumVertices(); // return the number of vertices
Vertex3d getVertex (int idx); // return the idx-th vertex
void addVertex (Vertex3d vtx); // add vertex vtx to the mesh
Vertex3d addVertex (Point3d p); // create and return a vertex at position p
void removeVertex (Vertex3d vtx); // remove vertex vtx for the mesh
ArrayList <Vertex3d > getVertices(); // return the list of vertices

Vertices are implemented by Vertex3d, which defines the position of the vertex (returned by the method getPosition()),
and also contains support for topological connections. In addition, each vertex maintains an index, obtainable via
getIndex(), that equals the index of its location within the mesh’s vertex list. This makes it easy to set up parallel array
structures for augmenting mesh vertex properties.

Mesh subclasses currently include:

PolygonalMesh
Implements a 2D surface mesh containing faces implemented using half-edges.

PolylineMesh
Implements a mesh consisting of connected line-segments (polylines).

PointMesh
Implements a point cloud with no topological connectivity.

PolygonalMesh is used quite extensively and provides a number of methods for implementing faces, including:

ArtiSynth Modeling Guide 19

int getNumFaces(); // return the number of faces
Face getFace (int idx); // return the idx-th face
Face addFace (int[] vidxs); // create and add a face from specified vertex ←↩

indices
void removeFace (Face f); // remove the face f
ArrayList <Face > getFaces(); // return the list of faces

The class Face implements a face as a counter-clockwise arrangement of vertices linked together by half-edges (class
HalfEdge). Face also supplies a face’s (outward facing) normal via getNormal().

Some mesh uses within ArtiSynth, such as collision detection, require a triangular mesh; i.e., one where all faces have
three vertices. The method isTriangular() can be used to check for this. Meshes that are not triangular can be made
triangular using triangulate().

3.5.1 Mesh creation

It is possible to create a mesh by direct construction. For example, the following code fragment creates a simple closed
tetrahedral surface:

// a simple four -faced tetrahedral mesh
PolygonalMesh mesh = new PolygonalMesh();
mesh.addVertex (0, 0, 0);
mesh.addVertex (1, 0, 0);
mesh.addVertex (0, 1, 0);
mesh.addVertex (0, 0, 1);
mesh.addFace (new int[] { 0, 2, 1 });
mesh.addFace (new int[] { 0, 3, 2 });
mesh.addFace (new int[] { 0, 1, 3 });
mesh.addFace (new int[] { 1, 2, 3 });

However, meshes are more commonly created using either one of the factory methods supplied by MeshFactory, or by
reading a definition from a file (Section 3.5.2).

Some of the more commonly used factory methods for creating polyhedral meshes include:

MeshFactory.createSphere (radius , nslices , nlevels);
MeshFactory.createBox (widthx , widthy , widthz);
MeshFactory.createCylinder (radius , height , nslices);
MeshFactory.createPrism (double[] xycoords , height);
MeshFactory.createTorus (rmajor , rminor , nmajor , nminor);

Each factory method creates a mesh in some standard coordinate frame. After creation, the mesh can be transformed
using the transform(X) method, where X is either a rigid transform (RigidTransform3d) or a more general affine
transform (AffineTransform3d). For example, to create a rotated box centered on (5,6,7), one could do:

// create a box centered at the origin with widths 10, 20, 30:
PolygonalMesh box = MeshFactor.createBox (10, 20, 20);

// move the origin to 5, 6, 7 and rotate using roll -pitch -yaw
// angles 0, 0, 45 degrees:
box.transform (

new RigidTransform3d (5, 6, 7, 0, 0, Math.toRadians(45)));

One can also scale a mesh using scale(s), where s is a single scale factor, or scale(sx,sy,sz), where sx, sy, and sz are
separate scale factors for the x, y and z axes. This provides a useful way to create an ellipsoid:

// start with a unit sphere with 12 slices and 6 levels ...
PolygonalMesh ellipsoid = MeshFactor.createSphere (1.0, 12, 6);

// and then turn it into an ellipsoid by scaling about the axes:
ellipsoid.scale (1.0, 2.0, 3.0);

MeshFactory can also be used to create new meshes by performing boolean operations on existing ones:

ArtiSynth Modeling Guide 20

MeshFactory.getIntersection (mesh1 , mesh2);
MeshFactory.getUnion (mesh1 , mesh2);
MeshFactory.getSubtraction (mesh1 , mesh2);

3.5.2 Reading and writing mesh files

The package maspack.geometry.io supplies a number of classes for writing and reading meshes to and from files of
different formats.

Some of the supported formats and their associated readers and writers include:

Extension Format Reader/writer classes
.obj Alias Wavefront WavefrontReader, WavefrontWriter
.ply Polygon file format PlyReader, PlyWriter
.stl STereoLithography StlReader, StlWriter
.gts GNU triangulated surface GtsReader, GtsWriter
.off Object file format OffReader, OffWriter

The general usage pattern for these classes is to construct the desired reader or writer with a path to the desired file, and
then call readMesh() or writeMesh() as appropriate:

// read a mesh from a .obj file:
WavefrontReader reader = new WavefrontReader ("meshes/torus.obj");
PolygonalMesh mesh = null;
try {

mesh = reader.readMesh();
}
catch (IOException e) {

System.err.println ("Can’t read mesh:");
e.printStackTrace();

}

Both readMesh() and writeMesh() may throw I/O exceptions, which must be either caught, as in the example above,
or thrown out of the calling routine.

For convenience, one can also use the classes GenericMeshReader or GenericMeshWriter, which internally create an
appropriate reader or writer based on the file extension. This enables the writing of code that does not depend on the file
format:

String fileName;
...
PolygonalMesh mesh = null;
try {

mesh = (PolygonalMesh)GenericMeshReader.readMesh(fileName);
}
catch (IOException e) {

System.err.println ("Can’t read mesh:");
e.printStackTrace();

}

Here, fileName can refer to a mesh of any format supported by GenericMeshReader. Note that the mesh returned by
readMesh() is explicitly cast to PolygonalMesh. This is because readMesh() returns the superclass MeshBase, since
the default mesh created for some file formats may be different from PolygonalMesh.

4 Mechanical Models I

This section details how to build basic multibody-type mechanical models consisting of particles, springs, rigid bodies,
joints, and other constraints.

ArtiSynth Modeling Guide 21

Figure 3: ParticleSpring model loaded into ArtiSynth.

4.1 Springs and particles

The most basic type of mechanical model consists simply of particles connected together by axial springs. Particles
are implemented by the class Particle, which is a dynamic component containing a three-dimensional position state, a
corresponding velocity state, and a mass. It is an instance of the more general base class Point, which is used to also
implement spatial points such as markers which do not have a mass.

4.1.1 Axial springs and materials

An axial spring is a simple spring that connects two points and is implemented by the class AxialSpring. This is a
force effector component that exerts equal and opposite forces on the two points, along the line separating them, with a
magnitude f that is a function f (l, l̇) of the distance l between the points, and the distance derivative l̇.

Each axial spring is associated with an axial material, implemented by a subclass of AxialMaterial, that specifies the
function f (l, l̇). The most basic type of axial material is a LinearAxialMaterial, which determines f according to the
linear relationship

f (l, l̇) = k(l− l0)+dl̇ (14)

where l0 is the rest length and k and d are the stiffness and damping terms. Both k and d are properties of the material,
while l0 is a property of the spring.

Axial springs are assigned a linear axial material by default. More complex, non-linear axial materials may be defined
in the package artisynth.core.materials. Setting or querying a spring’s material may be done with the methods
setMaterial() and getMaterial().

4.1.2 Example: A simple particle-spring model

An complete application model that implements a simple particle-spring model is given below.

1 package artisynth.demos.tutorial;
2

3 import java.awt.Color;
4 import maspack.matrix.*;
5 import maspack.render.*;
6 import artisynth.core.mechmodels.*;
7 import artisynth.core.materials.*;
8 import artisynth.core.workspace.RootModel;
9

10 /**
11 * Demo of two particles connected by a spring

ArtiSynth Modeling Guide 22

12 */
13 public class ParticleSpring extends RootModel {
14

15 public void build (String[] args) {
16

17 // create MechModel and add to RootModel
18 MechModel mech = new MechModel ("mech");
19 addModel (mech);
20

21 // create the components
22 Particle p1 = new Particle ("p1", /*mass=*/2, /*x,y,z=*/0, 0, 0);
23 Particle p2 = new Particle ("p2", /*mass=*/2, /*x,y,z=*/1, 0, 0);
24 AxialSpring spring = new AxialSpring ("spr", /*restLength=*/0);
25 spring.setPoints (p1, p2);
26 spring.setMaterial (
27 new LinearAxialMaterial (/*stiffness=*/20, /*damping=*/10));
28

29 // add components to the mech model
30 mech.addParticle (p1);
31 mech.addParticle (p2);
32 mech.addAxialSpring (spring);
33

34 p1.setDynamic (false); // first particle set to be fixed
35

36 // increase model bounding box for the viewer
37 mech.setBounds (/*min=*/-1, 0, -1, /*max=*/1, 0, 0);
38 // set render properties for the components
39 RenderProps.setSphericalPoints (p1, 0.06, Color.RED);
40 RenderProps.setSphericalPoints (p2, 0.06, Color.RED);
41 RenderProps.setCylindricalLines (spring , 0.02, Color.BLUE);
42 }
43 }

Line 1 of the source defines the package in which the model class will reside, in this case artisynth.demos.tutorial.
Lines 3-8 import definitions for other classes that will be used.

The model application class is named ParticleSpring and declared to extend RootModel (line 13), and the build()
method definition begins at line 15. (A no-args constructor is also needed, but because no other constructors are defined,
the compiler creates one automatically.)

To begin, the build() method creates a MechModel named "mech", and then adds it to the models list of the root model
using the addModel() method (lines 18-19). Next, two particles, p1 and p2, are created, with masses equal to 2 and
initial positions at 0, 0, 0, and 1, 0, 0, respectively (lines 22-23). Then an axial spring is created, with end points set
to p1 and p2, and assigned a linear material with a stiffness and damping of 20 and 10 (lines 24-27). Finally, after the
particles and the spring are created, they are added to the particles and axialSprings lists of the MechModel using
the methods addParticle() and addAxialSpring() (lines 30-32).

At this point in the code, both particles are defined to be dynamically controlled, so that running the simulation would
cause both to fall under the MechModel’s default gravity acceleration of (0,0,−9.8). However, for this example, we
want the first particle to remain fixed in place, so we set it to be non-dynamic (line 34), meaning that the physical
simulation will not update its position in response to forces (Section 4.1.3).

The remaining calls control aspects of how the model is graphically rendered. setBounds() (line 37) increases the
model’s “bounding box” so that by default it will occupy a larger part of the viewer frustum. The covenience method
RenderProps.setSphericalPoints() is used to set points p1 and p2 to render as solid red spheres with a radius of
0.06, while RenderProps.setCylindricalLines() is used to set spring to render as a solid blue cylinder with a
radius of 0.02. More details about setting render properties are given in Section 5.4.

To run this example in ArtiSynth, select All demos > tutorial > ParticleSpring from the Models menu. The model should
load and initially appear as in Figure 3. Running the model (Section 2.5.3) will cause the second particle to fall and
swing about under gravity.

ArtiSynth Modeling Guide 23

4.1.3 Dynamic, parametric, and attached components

By default, a dynamic component is advanced through time in response to the forces applied to it. However, it is also
possible to set a dynamic component’s dynamic property to false, so that it does not respond to force inputs. As shown
in the example above, this can be done using the method setDynamic():

comp.setDynamic (false);

The method isDynamic() can be used to query the dynamic property.

Dynamic components can also be attached to other dynamic components (as mentioned in Section 2.2) so that their
positions and velocities are controlled by the master components that they are attached to. To attach a dynamic com-
ponent, one creates an AttachmentComponent specifying the attachment connection and adds it to the MechModel,
as described in Section 4.5. The method isAttached() can be used to determine if a component is attached, and if it is,
getAttachment() can be used to find the corresponding AttachmentComponent.

Overall, a dynamic component can be in one of three states:

active
Component is dynamic and unattached. The method isActive() returns true. The component will move in
response to forces.

parametric
Component is not dynamic, and is unattached. The method isParametric() returns true. The component will
either remain fixed, or will move around in response to external inputs specifying the component’s position and/or
velocity. One way to supply such inputs is to use controllers or input probes, as described in Section 6.

attached
Component is attached. The method isAttached() returns true. The component will move so as to follow the
other master component(s) to which it is attached.

4.1.4 Custom axial materials

Application authors may create their own axial materials by subclassing AxialMaterial and overriding the functions

double computeF (l, ldot , l0, excitation);
double computeDFdl (l, ldot , l0, excitation);
double computeDFdldot (l, ldot , l0, excitation);
boolean isDFdldotZero ();

where excitation is an additional excitation signal a, which is used to implement active springs and which in
particular is used to implement axial muscles (Section 5.5), for which a is usually in the range [0,1].

The first three methods should return the values of

f (l, l̇,a),
∂ f (l, l̇,a)

∂ l
, and

∂ f (l, l̇,a)
∂ l̇

, (15)

respectively, while the last method should return true if ∂ f (l, l̇,a)/∂ l̇ ≡ 0; i.e., if it is always equals to 0.

4.1.5 Damping parameters

Mechanical models usually contain damping forces in addition to spring-type restorative forces. Damping generates
forces that reduce dynamic component velocities, and is usually the major source of energy dissipation in the model.
Damping forces can be generated by the spring components themselves, as described above.

A general damping can be set for all particles by setting the MechModel’s pointDamping property. This causes a force

fi =−dpvi (16)

to be applied to all particles, where dp is the value of the pointDamping and vi is the particle’s velocity.

pointDamping can be set and queried using the MechModel methods

ArtiSynth Modeling Guide 24

B
r

f

Figure 4: A force f applied to a frame marker attached to a rigid body. The marker is located at the point r with respect
to the body coordinate frame B.

setPointDamping (double d);
double getPointDamping();

In general, whenever a component has a property propX, that property can be set and queried in code using
methods of the form

setPropX (T d);
T getPropX();

where T is the type associated with the property.

pointDamping can also be set for particles individually. This property is inherited (Section 2.4.2), so that if not set
explicitly, it inherits the nearest explicitly set value in an ancestor component.

4.2 Rigid bodies

Rigid bodies are implemented in ArtiSynth by the class RigidBody, which is a dynamic component containing a
six-dimensional position and orientation state, a corresponding velocity state, an inertia, and an optional surface mesh.

A rigid body is associated with its own 3D spatial coordinate frame, and is a subclass of the more general Frame
component. The combined position and orientation of this frame with respect to world coordinates defines the body’s
pose, and the associated 6 degrees of freedom describe its “position” state.

4.2.1 Frame markers

ArtiSynth makes extensive use of markers, which are (massless) points attached to dynamic components in the model.
Markers are used for graphical display, implementing attachments, and transmitting forces back onto the underlying
dynamic components.

A frame marker is a marker that can be attached to a Frame, and most commonly to a RigidBody (Figure 4). They are
frequently used to provide the anchor points for attaching springs and, more generally, applying forces to the body.

Frame markers are implemented by the class FrameMarker, which is a subclass of Point. The methods

Point3d getLocation();
void setLocation (Point3d r);

get and set the marker’s location r with respect to the frame’s coordinate system. When a 3D force f is applied to the
marker, it generates a spatial force f̂ (Section A.5) on the frame given by

f̂ =
(

f
r× f

)
. (17)

ArtiSynth Modeling Guide 25

Figure 5: RigidBodySpring model loaded into ArtiSynth.

4.2.2 Example: A simple rigid body-spring model

A simple rigid body-spring model is defined in

artisynth.demos.tutorial.RigidBodySpring

This differs from ParticleSpring only in the build() method, which is listed below:

1 public void build (String[] args) {
2

3 // create MechModel and add to RootModel
4 MechModel mech = new MechModel ("mech");
5 addModel (mech);
6

7 // create the components
8 Particle p1 = new Particle ("p1", /*mass=*/2, /*x,y,z=*/0, 0, 0);
9 // create box and set it’s pose (position/orientation):

10 RigidBody box =
11 RigidBody.createBox ("box", /*wx,wy,wz=*/0.5, 0.3, 0.3, /*density=*/20);
12 box.setPose (new RigidTransform3d (/*x,y,z=*/0.75, 0, 0));
13 // create marker point and connect it to the box:
14 FrameMarker mkr = new FrameMarker (/*x,y,z=*/ -0.25, 0, 0);
15 mkr.setFrame (box);
16

17 AxialSpring spring = new AxialSpring ("spr", /*restLength=*/0);
18 spring.setPoints (p1, mkr);
19 spring.setMaterial (
20 new LinearAxialMaterial (/*stiffness=*/20, /*damping=*/10));
21

22 // add components to the mech model
23 mech.addParticle (p1);
24 mech.addRigidBody (box);
25 mech.addFrameMarker (mkr);
26 mech.addAxialSpring (spring);
27

28 p1.setDynamic (false); // first particle set to be fixed
29

30 // increase model bounding box for the viewer
31 mech.setBounds (/*min=*/-1, 0, -1, /*max=*/1, 0, 0);
32 // set render properties for the components
33 RenderProps.setSphericalPoints (p1, 0.06, Color.RED);

ArtiSynth Modeling Guide 26

34 RenderProps.setSphericalPoints (mkr, 0.06, Color.RED);
35 RenderProps.setCylindricalLines (mkr, 0.02, Color.BLUE);
36 }

The differences from ParticleSpring begin at line 9. Instead of creating a second particle, a rigid body is created
using the factory method RigidBody.createBox(), which takes x, y, z widths and a (uniform) density and creates a box-
shaped rigid body complete with surface mesh and appropriate mass and inertia. As the box is initially centered at the
origin, moving it elsewhere requires setting the body’s pose, which is done using setPose(). The RigidTransform3d
passed to setPose() is created using a three-argument constructor that generates a translation-only transform. Next,
starting at line 14, a FrameMarker is created for a location (−0.25,0,0)T relative to the rigid body, and attached to the
body using its setFrame() method.

The remainder of build() is the same as for ParticleSpring, except that the spring is attached to the frame marker
instead of a second particle.

To run this example in ArtiSynth, select All demos > tutorial > RigidBodySpring from the Models menu. The model
should load and initially appear as in Figure 5. Running the model (Section 2.5.3) will cause the rigid body to fall and
swing about under gravity.

4.2.3 Creating rigid bodies

As illustrated above, rigid bodies can be created using factory methods supplied by RigidBody. Some of these include:

createBox (name , widthx , widthy , widthz , density);
createCylinder (name , radius , height , density , nsides);
createSphere (name , radius , density , nslices);
createEllipsoid (name , radx , rady , radz , density , nslices);

The bodies do not need to be named; if no name is desired, then name and can be specified as null.

In addition, there are also factory methods for creating a rigid body directly from a mesh:

createFromMesh (name , mesh , density , scale);
createFromMesh (name , meshFileName , density , scale);

These take either a polygonal mesh (Section 3.5), or a file name from which a mesh is read, and use it as the body’s
surface mesh and then compute the mass and inertia properties from the specified (uniform) density.

Alternatively, one can create a rigid body directly from a constructor, and then set the mesh and inertia properties
explicitly:

PolygonalMesh femurMesh;
SpatialInertia inertia;

... initialize mesh and inertia appropriately ...

RigidBody body = new RigidBody ("femur");
body.setMesh (femurMesh);
body.setInertia (inertia);

4.2.4 Pose and velocity

A body’s pose can be set and queried using the methods

setPose (RigidTransform3d T); // sets the pose to T
getPose (RigidTransform3d T); // gets the current pose in T
RigidTransform3d getPose(); // returns the current pose (read -only)

These use a RigidTransform3d (Section 3.2) to describe the pose. Body poses are described in world coordinates and
specify the transform from body to world coordinates. In particular, the pose for a body A specifies the rigid transform
TAW .

Rigid bodies also expose the translational and rotational components of their pose via the properties position and
orientation, which can be queried and set independently using the methods

ArtiSynth Modeling Guide 27

setPosition (Point3d p); // sets the position to p
getPosition (Point3d p); // gets the current position in p
Point3d getPosition(); // returns the current position (read -only)

setOrientation (AxisAngle a); // sets the orientation to a
getOrientation (AxisAngle a); // gets the current orientation in a
AxisAngle getOrientation(); // returns the current orientation (read -only)

The velocity of a rigid body is described using a Twist (Section 3.4), which contains both the translational and rotational
velocities. The following methods set and query the spatial velocity as described with respect to world coordinates:

setVelocity (Twist v); // sets the spatial velocity to v
getVelocity (Twist v); // gets the current spatial velocity in v
Twist getVelocity(); // returns current spatial velocity (read -only)

During simulation, unless a rigid body has been set to be parametric (Section 4.1.3), its pose and velocity are updated in
response to forces, so setting the pose or velocity generally makes sense only for setting initial conditions. On the other
hand, if a rigid body is parametric, then it is possible to control its pose during the simulation, but in that case it is better
to set its target pose and/or target velocity, as described in Section 6.3.1.

4.2.5 Inertia and meshes

The “mass” of a rigid body is described by its spatial inertia (Section A.6), implemented by a SpatialInertia object,
which specifies its mass, center of mass, and rotational inertia with respect to the center of mass.

Most rigid bodies are also associated with a polygonal surface mesh, which can be set and queried using the methods

setMesh (PolygonalMesh mesh);
setMesh (PolygonalMesh mesh , String meshFileName);
PolygonalMesh getMesh();

The second method takes an optional fileName argument that can be set to the name of a file from which the mesh was
read. Then if the model itself is saved to a file, the model file will specify the mesh using the file name instead of explicit
vertex and face information, which can reduce the model file size considerably.

The inertia of a rigid body can be explicitly set using a variety of methods including

setInertia (M) // set using SpatialInertia M
setInertia (mass , Jxx, Jyy, Jzz); // mass and diagonal rotational inertia
setInertia (mass , J); // mass and full rotational inertia
setInertia (mass , J, com); // mass , rotational inertia , center -of-mass

and can be queried using

getInertia (M); // get SpatialInertia in M
getInertia (); // return read -only SpatialInertia

In practice, it is often more convenient to simply specify a mass or a density, and then use the volume defined by the
surface mesh to compute the remaining inertial values. How a rigid body’s inertia is computed is determined by its
inertiaMethod property, which can be one

Density
Inertia is computed from density;

Mass
Inertia is computed from mass;

Explicit
Inertia is set explicitly.

This property can be set and queried using

ArtiSynth Modeling Guide 28

setInertiaMethod (InertiaMethod method);
InertiaMethod getInertiaMethod();

and its default value is Density. Explicitly setting the inertia using one of setInertia() methods described above will
set inertiaMethod to Explicit. The method

setInertiaFromDensity (density);

will (re)compute the inertia using the mesh and a density value and set inertiaMethod to Density, and the method

setInertiaFromMass (mass);

will (re)compute the inertia using the mesh and mass value and set inertiaMethod to Mass.

Finally, the (assumed uniform) density of the body can be queried using

getDensity();

4.2.6 Damping parameters

As with particles, it is possible to set damping parameters for rigid bodies.

MechModel provides two properties, frameDamping and rotaryDamping, which generate a spatial force centered on
each rigid body’s coordinate frame

f̂i =

(
−d f vi
−drω i

)
, (18)

where d f and dr are the frameDamping and rotaryDamping values, and vi and ω i are the translational and angular
velocity of the body’s coordinate frame. The damping parameters can be set and queried using the MechModel methods

setFrameDamping (double df);
setRotaryDamping (double dr);
double getFrameDamping();
double getRotaryDamping();

For models involving rigid bodies, it is often necessary to set rotaryDamping to a non-zero value because
frameDamping will provide no damping at all when a rigid body is simply rotating about its coordinate frame
origin.

Frame and rotary damping can also be set for individual bodies using their own (inherited) frameDamping and
rotaryDamping properties.

4.3 Joints and connectors

In a typical mechanical model, many of the rigid bodies are interconnected, either using spring-type components that
exert binding forces on the bodies, or through joint-type connectors that enforce the connection using hard constraints.

4.3.1 Joints and coordinate frames

Consider two bodies A and B. The pose of body B with respect to body A can be described by the 6 DOF rigid trans-
form TBA. If bodies A and B are unconnected, TBA may assume any possible value and has a full six degrees of freedom.
A joint between A and B restricts the set of poses that are possible between the two bodies and reduces the degrees
of freedom available to TBA. For simplicity, joints have their own coordinate frames for describing their constraining
actions, and then these frames are related to the frames A and B of the associated bodies by auxiliary transformations.

Each joint is associated with two coordinate frames C and D which move with respect to each other as the joint moves.
The allowed joint motions therefore correspond to the allowed values of the joint transform TCD. D is the base frame

ArtiSynth Modeling Guide 29

x

y

x’

y’

z, z’

θ

D
C

Figure 6: Coordinate frames D and C for a revolute joint.

and C is the motion frame. For a revolute joint (Figure 6), C can move with respect to D by rotating about the z axis.
Other motions are prohibited. TCD should therefore alway have the form

TCD =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (19)

where θ is the angle of joint rotation and is known as the joint parameter. Other joints have different parameterizations,
with the number of parameters equaling the number of degrees of freedom available to the joint. When TCD = I (where I
is the identity transform), the parameters are all (usually) equal to zero, and the joint is said to be in the zero state.

D

T
GD

C

T
CD

T
CG

G

 joint transform

valid transform

errors

Figure 7: 2D schematic showing the joint frames D and C, along with the intermediate frame G that accounts for nu-
meric error and complaint motion.

In practice, due to numerical errors and/or compliance in the joint, the joint transform TCD may sometimes deviate
from the allowed set of values dictated by the joint type. In ArtiSynth, this is accounted for by introducing an additional
constraint frame G between D and C (Figure 7). G is computed to be the nearest frame to C that lies exactly in the joint
constraint space. TGD is therefore a valid transform for the joint, TGC accommodates the error, and the whole joint
transform is given by the composition

TCD = TGD TCG. (20)

If there is no compliance or joint error, then frames G and C are the same, TCG = I, and TCD = TGD.

In general, each joint is attached to two rigid bodies A and B, with frame C being fixed to body A and frame D being
fixed to body B. The restrictions of the joint transform TCD therefore restrict the relative poses of A and B.

Except in special cases, the joint coordinate frames C and D are not coincident with the body frames A and B. Instead,
they are located relative to A and B by the transforms TCA and TDB, respectively (Figure 8). Since TCA and TDB are both

ArtiSynth Modeling Guide 30

A
B

D

T
DB

T
BA

T

T

C

CD

CA

Figure 8: Transforms connecting joint coordinate frames C and D with rigid bodies A and B.

fixed, the pose of B relative to A can be determined from the joint transform TCD:

TBA = TCA T−1
CD T−1

DB. (21)

(See Section A.2 for a discussion of determining transforms between related coordinate frames).

4.3.2 Creating Joints

Joint components in ArtiSynth are implemented by subclasses of BodyConnector. Some of the commonly used ones are
described in Section 4.3.4.

An application creates a joint by constructing it and adding it to a MechModel. Most joints generally have a constructor
of the form

JointType (bodyA , bodyB , TDW);

which specifies the rigid bodies A and B which the joint connects, along with the transform TDW giving the pose of the
joint base frame D in world coordinates. Then constructor then assumes that the joint is in the zero state, so that C and D
are the same and TCD = I and TCW = TDW , and then computes TCA and TDB from

TCA = T−1
AW TCW (22)

TDB = T−1
BW TDW (23)

where TAW and TBW are the poses of A and B. The same body and transform settings can be made on an existing joint
using the method setBodies(bodyA, bodyB, TDW).

Alternatively, if we prefer to explicitly specify TCA or TDB, then we can determine TDW from TAW or TBW using

TDW = TAW TCA (24)
TDW = TBW TDB. (25)

For example, if we know TCA, this can be accomplished using the following code fragment:

RigidBody bodyA , bodyB;
RigidTransform3d TCA;

... initialize bodyA , bodyB , and TCA ...

RigidTransform3d TDW = new RigidTransform3d();
TDW.mul (bodyA.getPose(), TCA); // bodyA.getPose() returns TAW
RevoluteJoint joint = new RevoluteJoint (bodyA , bodyB , TDW);

ArtiSynth Modeling Guide 31

Another method, setBodies(bodyA, TCA, bodyB, TDB), allows us to set both values of TCA or TBA explicitly. This is
useful if the joint transform TCD is known to be some value other than the identity, in which case TCA or TBA can be
computed from (21), where TBA is given by

TBA = T−1
AW TBW . (26)

For instance, if we know TCA and the joint transform TCD, then we can compute TDB from

TDB = T−1
BA TCA T−1

CD = T−1
BW TAW TCA T−1

CD (27)

and set up the joint as follows:

RigidBody bodyA , bodyB;
RigidTransform3d TCA, TCD;

... initialize bodyA , bodyB , TCA, TCD ...

RigidTransform3d TBD = new RigidTransform3d();
TDB.mulInverseLeft (bodyB.getPose(), bodyA.getPose());
TDB.mul (TCA);
TDB.mulInverse (TCD);
RevoluteJoint joint = new RevoluteJoint ();
joint.setBodies (bodyA , TCA, bodyB , TDB);

Some joint implementations provide the ability to explicitly set the joint parameter(s) after it has been created and added
to the MechModel, making it easy to “move” the joint to a specific configuration. For example, RevoluteJoint provides
the method setTheta(). This causes the transform TCD to be explicitly set to the value implied by the joint parameters,
and the pose of either body A or B is changed to accommodate this. Whether body A or B is moved depends on which
one is the least connected to “ground”, and other bodies that have joint connections to the moved body are moved as
well.

If desired, joints can be connected to only a single rigid body. In this case, the second body B is simply assumed to be
“ground”, and the coordinate frame B is instead taken to be the world coordinate frame W. The corresponding calls to
the joint constructor or setBodies() take the form

JointType joint = new JointType (bodyA , null , TDW);

or

JointType joint = new JointType();
joint.setBodies (bodyA , null , TDW);

4.3.3 Example: A simple revolute joint

A simple model showing two rigid bodies connected by a joint is defined in

artisynth.demos.tutorial.RigidBodyJoint

The build method for this model is given below:

1 public void build (String[] args) {
2

3 // create MechModel and add to RootModel
4 mech = new MechModel ("mech");
5 mech.setGravity (0, 0, -98);
6 mech.setFrameDamping (1.0);
7 mech.setRotaryDamping (4.0);
8 addModel (mech);
9

10 PolygonalMesh mesh; // bodies will be defined using a mesh
11

12 // create first body and set its pose
13 mesh = MeshFactory.createRoundedBox (lenx1 , leny1 , lenz1 , /*nslices=*/8);
14 RigidTransform3d TMB =

ArtiSynth Modeling Guide 32

Figure 9: RigidBodyJoint model loaded into ArtiSynth.

15 new RigidTransform3d (0, 0, 0, /*axisAng=*/1, 1, 1, 2*Math.PI/3);
16 mesh.transform (TMB);
17 bodyB = RigidBody.createFromMesh ("bodyB", mesh , /*density=*/0.2, 1.0);
18 bodyB.setPose (new RigidTransform3d (0, 0, 1.5*lenx1 , 1, 0, 0, Math.PI/2));
19 bodyB.setDynamic (false);
20

21 // create second body and set its pose
22 mesh = MeshFactory.createRoundedCylinder (
23 leny2/2, lenx2 , /*nslices=*/16, /*nsegs=*/1, /*flatBottom=*/false);
24 mesh.transform (TMB);
25 bodyA = RigidBody.createFromMesh ("bodyA", mesh , 0.2, 1.0);
26 bodyA.setPose (new RigidTransform3d (
27 (lenx1+lenx2)/2, 0, 1.5*lenx1 , 1, 0, 0, Math.PI/2));
28

29 // create the joint
30 RigidTransform3d TDW =
31 new RigidTransform3d (lenx1/2, 0, 1.5*lenx1 , 1, 0, 0, Math.PI/2);
32 RevoluteJoint joint = new RevoluteJoint (bodyA , bodyB , TDW);
33

34 // add components to the mech model
35 mech.addRigidBody (bodyB);
36 mech.addRigidBody (bodyA);
37 mech.addBodyConnector (joint);
38

39 joint.setTheta (35); // set joint position
40

41 // set render properties for components
42 RenderProps.setLineRadius (joint , 0.2);
43 joint.setAxisLength (4);
44 }

A MechModel is created as usual at line 4. However, in this example, we also set some parameters for it: setGravity()
is used to set the gravity acceleration vector to (0,0,−98)T instead of the default value of (0,0,−9.8)T , and the
frameDamping and rotaryDamping properties (Section 4.2.6) are set to provide appropriate damping.

Each of the two rigid bodies are created from a mesh and a density. The meshes themselves are created using the factory
methods MeshFactory.createRoundedBox() and MeshFactory.createRoundedCylinder() (lines 13 and 22), and then
RigidBody.createFromMesh() is used to turn these into rigid bodies with a density of 0.2 (lines 17 and 25). The pose of
the two bodies is set using RigidTransform3d objects created with x, y, z translation and axis-angle orientation values
(lines 18 and 26).

ArtiSynth Modeling Guide 33

x

y

θ

z

x

y

θ

z

φ

x

y

z

x

y

z

Figure 10: Commonly used joints. Clockwise from top left: revolute, roll-pitch, spherical, planer connector.

The revolute joint is implemented using RevoluteJoint, which is constructed at line 32 with the joint coordinate frame D
being located in world coordinates by TDW as described in Section 4.3.2.

Once the joint is created and added to the MechModel, the method setTheta() is used to explicitly set the joint parameter
to 35 degrees. The joint transform TCD is then set appropriately and bodyA is moved to accommodate this (bodyA being
chosen since it is the freest to move).

Finally, render properties are set starting at line 42. A revolute joint is rendered as a line segment, using the line
render properties (Section 5.4), with lineStyle and lineColor set to Cylinder and BLUE, respectively, by default.
The cylinder radius and length are specified by the line render property lineRadius and the revolute joint property
axisLength, which are set explicitly in the code.

To run this example in ArtiSynth, select All demos > tutorial > RigidBodyJoint from the Models menu. The model should
load and initially appear as in Figure 9. Running the model (Section 2.5.3) will cause bodyA to fall and swing under
gravity.

4.3.4 Commonly used joints

Some of the joints commonly used by ArtiSynth are shown in Figure 10. Each illustration shows the allowed joint
motion relative to the base coordinate frame D. Clockwise from the top-left, these joints are:

Revolute joint
A one DOF joint which allows rotation by an angle θ about the z axis.

Roll-pitch joint
A two DOF joint, similar to the revolute joint, which allows the rotation about z to be followed by an additional
rotation φ about the (new) y axis.

Spherical joint
A three DOF joint in which the origin remains fixed but any orientation may be assumed.

Planar connector
A five DOF joint which connects a point on a single rigid body to a plane in space. The point may slide freely in
the x-y plane, and the body may assume any orientation about the point.

ArtiSynth Modeling Guide 34

4.4 Frame springs

Another way to connect two rigid bodies together is to use a frame spring, which is a six dimensional spring that
generates restoring forces and moments between coordinate frames.

4.4.1 Frame spring coordinate frames

C
D

Figure 11: A frame spring connecting two coordinate frames D and C.

The basic idea of a frame spring is shown in Figure 11. It generates restoring forces and moments on two frames C and
D which are a function of TDC and v̂DC (the spatial velocity of frame D with respect to frame C).

Decomposing forces into stiffness and damping terms, the force fC and moment τC acting on C can be expressed as

fC = fk(TDC)+ fd(v̂DC)

τC = τk(TDC)+ τd(v̂DC). (28)

where the translational and rotational forces fk, fd , τk, and τd are general functions of TDC and v̂DC.

The forces acting on D are equal and opposite, so that

fD =−fC,

τD =−τC. (29)

A

B

T
DB

D
C

T
CA

Figure 12: A frame spring connecting two rigid bodies A and B.

If frames C and D are attached to a pair of rigid bodies A and B, then a frame spring can be used to connect them in a
manner analogous to a joint. As with joints, C and D generally do not coincide with the body frames, and are instead
offset from them by fixed transforms TCA and TDB (Figure 12).

ArtiSynth Modeling Guide 35

4.4.2 Frame materials

The restoring forces (28) generated in a frame spring depend on the frame material associated with the spring. Frame
materials are defined in the package artisynth.core.materials, and are subclassed from FrameMaterial. The most
basic type of material is a LinearFrameMaterial, in which the restoring forces are determined from

fC = Kt xDC +Dt vDC

τC = Kr θ̂ DC +Dr ωDC

where θ̂ DC gives the small angle approximation of the rotational components of XDC with respect to the x, y, and z axes,
and

Kt ≡

ktx 0 0
0 kty 0
0 0 ktz

 , Dt ≡

dtx 0 0
0 dty 0
0 0 dtz

 ,

Kr ≡

krx 0 0
0 kry 0
0 0 krz

 , Dr ≡

drx 0 0
0 dry 0
0 0 drz

 .

are the stiffness and damping matrices. The diagonal values defining each matrix are stored in the 3-dimensional vectors
kt , kr, dt , and dr which are exposed as the stiffness, rotaryStiffness, damping, and rotaryDamping properties
of the material. Each of these specifies stiffness or damping values along or about a particular axis. Specifying different
values for different axes will result in anisotropic behavior.

Other frame materials offering nonlinear behaviour may be defined in artisynth.core.materials.

4.4.3 Creating frame springs

Frame springs are implemented by the class FrameSpring. Creating a frame spring generally involves instantiating this
class, and then setting the material, the bodies A and B, and the transforms TCA and TDB.

A typical construction sequence might look like this:

FrameSpring spring = new FrameSpring ("springA");
spring.setMaterial (new LinearFrameMaterial (kt, kr, dt, dr));
spring.setFrames (bodyA , bodyB , TDW);

The material is set using setMaterial(). The example above uses a LinearFrameMaterial, created with a constructor
that sets kt , kr, dt , and dr to uniform isotropic values specified by kt, kr, dt, and dr.

The bodies and transforms can be set in the same manner as for joints (Section 4.3.2), with the methods
setFrames(bodyA,bodyB,TDW) and setFrames(bodyA,TCA,bodyB,TDB) assuming the role of the setBodies()
methods used for joints. The former takes D specified in world coordinates and computes TCA and TDB assuming that
there is no initial spring displacement (i.e., that TDC = I), while the latter allows TCA and TDB to be specified explicitly
with TDC assuming whatever value is implied.

Frame springs and joints are often placed together, using the same transforms TCA and TDB, with the spring providing
restoring forces to help keep the joint within prescribed bounds.

As with joints, a frame spring can be connected to only a single body, by specifying frameB as null. Frame B is then
taken to be the world coordinate frame W.

4.4.4 Example: Two bodies connected by a frame spring

A simple model showing two simplified lumbar vertebrae, modeled as rigid bodies and connected by a frame spring, is
defined in

artisynth.demos.tutorial.LumbarFrameSpring

The definition for the entire model class is shown here:

ArtiSynth Modeling Guide 36

Figure 13: LumbarFrameSpring model loaded into ArtiSynth.

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4 import java.io.File;
5 import java.awt.Color;
6 import artisynth.core.modelbase.*;
7 import artisynth.core.mechmodels.*;
8 import artisynth.core.materials.*;
9 import artisynth.core.util.*;

10 import artisynth.core.workspace.RootModel;
11 import maspack.matrix.*;
12 import maspack.geometry.*;
13 import maspack.render.*;
14

15 /**
16 * Demo of two rigid bodies connected by a 6 DOF frame spring
17 */
18 public class LumbarFrameSpring extends RootModel {
19

20 double density = 1500;
21

22 // path from which meshes will be read
23 private String geometryDir = ArtisynthPath.getSrcRelativePath (
24 LumbarFrameSpring.class , "../mech/geometry/");
25

26 // create and add a rigid body from a mesh
27 public RigidBody addBone (MechModel mech , String name) throws IOException {
28 PolygonalMesh mesh = new PolygonalMesh (new File (geometryDir+name+".obj"));
29 RigidBody rb = RigidBody.createFromMesh (name , mesh , density , /*scale=*/1);
30 mech.addRigidBody (rb);
31 return rb;
32 }
33

34 public void build (String[] args) throws IOException {
35

36 // create mech model and set it’s properties
37 MechModel mech = new MechModel ("mech");
38 mech.setGravity (0, 0, -1.0);
39 mech.setFrameDamping (0.10);
40 mech.setRotaryDamping (0.001);
41 addModel (mech);

ArtiSynth Modeling Guide 37

42

43 // create two rigid bodies and second one to be fixed
44 RigidBody lumbar1 = addBone (mech , "lumbar1");
45 RigidBody lumbar2 = addBone (mech , "lumbar2");
46 lumbar1.setPose (new RigidTransform3d (-0.016, 0.039, 0));
47 lumbar2.setDynamic (false);
48

49 // flip entire mech model around
50 mech.transformGeometry (
51 new RigidTransform3d (0, 0, 0, 0, 0, Math.toRadians (90)));
52

53 //create and add the frame spring
54 FrameSpring spring = new FrameSpring (null);
55 spring.setMaterial (
56 new LinearFrameMaterial (
57 /*ktrans=*/100, /*krot=*/0.01, /*dtrans=*/0, /*drot=*/0));
58 spring.setFrames (lumbar1 , lumbar2 , lumbar1.getPose());
59 mech.addFrameSpring (spring);
60

61 // set render properties for components
62 RenderProps.setLineColor (spring , Color.RED);
63 RenderProps.setLineWidth (spring , 3);
64 spring.setAxisLength (0.02);
65 }
66 }

For convenience, the code to create and add each vertebrae is wrapped into the method addBone() defined at lines
27-32. This method takes two arguments: the MechModel to which the bone should be added, and the name of the bone.
Surface meshes for the bones are located in .obj files located in the directory ../mech/geometry relative to the source
directory for the model itself. ArtisynthPath.getSrcRelativePath() is used to find a proper path to this directory given the
model class type (LumbarFrameSpring.class), and this is stored in the static string geometryDir. Within addBone(),
the directory path and the bone name are used to create a path to the bone mesh itself, which is in turn used to create a
PolygonalMesh (line 28). The mesh is then used in conjunction with a density to create a rigid body which is added to
the MechModel (lines 29-30) and returned.

The build() method begins by creating and adding a MechModel, specifying a low value for gravity, and setting the
rigid body damping properties frameDamping and rotaryDamping (lines 37-41). (The damping parameters are needed
here because the frame spring itself is created with no damping.) Rigid bodies representing the vertebrae lumbar1 and
lumbar2 are then created by calling addBone() (lines 44-45), lumbar1 is translated by setting the origin of its pose to
(−0.016,0.039,0)T , and lumbar2 is set to be fixed by making it non-dynamic (line 47).

Figure 14: LumbarFrameSpring model as it would appear if not rotated about the x axis.

ArtiSynth Modeling Guide 38

At this point in the construction, if the model were to be loaded, it would appear as in Figure 14. To change the
viewpoint to that seen in Figure 13, we rotate the entire model about the x axis (line 50). This is done using transfor-
mGeometry(X), which transforms the geometry of an entire model using a rigid or affine transform. This method is
described in more detail in Section 5.3.

The frame spring is created and added at lines 54-59, using the methods described in Section 4.4.3, with frame D set to
the (initial) pose of lumbar1.

Render properties are set starting at line 62. By default, a frame spring renders as a pair of red, green, blue coordinate
axes showing frames C and D, along with a line connecting them. The line width and the color of the connecting line are
controlled by the line render properties lineWidth and lineColor, while the length of the coordinate axes is controlled
by the special frame spring property axisLength.

To run this example in ArtiSynth, select All demos > tutorial > LumbarFrameSpring from the Models menu. The model
should load and initially appear as in Figure 13. Running the model (Section 2.5.3) will cause lumbar1 to fall slightly
under gravity until the frame spring arrests the motion. To get a sense of the spring’s behavior, one can interactively
apply forces to lumbar1 using the pull manipulator (see the section “Pull Manipulator” in the ArtiSynth User Interface
Guide).

4.5 Attachments

ArtiSynth provides the ability to rigidly attach dynamic components to other dynamic components, allowing different
parts of a model to be connected together. Attachments are made by adding to a MechModel special attachment
components that manage the attachment physics as described briefly in Section 2.2.

4.5.1 Point attachments

Point attachments allow particles and other point-based components to be attached to other, more complex components,
such as frames, rigid bodies, or finite element models (Section 7.4). Point attachments are implemented by creating
attachment components that are instances of PointAttachment. Modeling applications do not generally handle the
attachment components directly, but instead create them implicitly using the following MechModel method:

attachPoint (Point p1, PointAttachable comp);

This attaches a point p1 to any component which implements the interface PointAttachable, indicating that it is capable
creating an attachment to a point. Components that implement PointAttachable currently include rigid bodies,
particles, and finite element models. The attachment is created based on the the current position of the point and
component in question. For attaching a point to a rigid body, another method may be used:

attachPoint (Point p1, RigidBody body , Point3d loc);

This attaches p1 to body at the point loc specified in body coordinates. Finite element attachments are discussed in
Section 7.4.

Once at point is attached, it will be in the attached state, as described in Section 4.1.3. Attachments can be removed by
calling

detachPoint (Point p1);

4.5.2 Example: model with particle attachments

A model illustrating particle-particle and particle-rigid body attachments is defined in

artisynth.demos.tutorial.ParticleAttachment

and most of the code is shown here:

../uiguide/uiguide.html
../uiguide/uiguide.html

ArtiSynth Modeling Guide 39

Figure 15: ParticleAttachment model loaded into ArtiSynth.

1 public Particle addParticle (MechModel mech , double x, double y, double z) {
2 // create a particle at x, y, z and add it to mech
3 Particle p = new Particle (/*name=*/null , /*mass=*/.1, x, y, z);
4 mech.addParticle (p);
5 return p;
6 }
7

8 public AxialSpring addSpring (MechModel mech , Particle p1, Particle p2){
9 // create a spring connecting p1 and p2 and add it to mech

10 AxialSpring spr = new AxialSpring (/*name=*/null , /*restLength=*/0);
11 spr.setMaterial (new LinearAxialMaterial (/*k=*/20, /*d=*/10));
12 spr.setPoints (p1, p2);
13 mech.addAxialSpring (spr);
14 return spr;
15 }
16

17 public void build (String[] args) {
18

19 // create MechModel and add to RootModel
20 MechModel mech = new MechModel ("mech");
21 addModel (mech);
22

23 // create the components
24 Particle p1 = addParticle (mech , 0, 0, 0.55);
25 Particle p2 = addParticle (mech , 0.1, 0, 0.35);
26 Particle p3 = addParticle (mech , 0.1, 0, 0.35);
27 Particle p4 = addParticle (mech , 0, 0, 0.15);
28 addSpring (mech , p1, p2);
29 addSpring (mech , p3, p4);
30 // create box and set its pose (position/orientation):
31 RigidBody box =
32 RigidBody.createBox ("box", /*wx,wy,wz=*/0.5, 0.3, 0.3, /*density=*/20);
33 box.setPose (new RigidTransform3d (/*x,y,z=*/0.2, 0, 0));
34 mech.addRigidBody (box);
35

36 p1.setDynamic (false); // first particle set to be fixed
37

38 // set up the attachments
39 mech.attachPoint (p2, p3);
40 mech.attachPoint (p4, box, new Point3d (0, 0, 0.15));
41

ArtiSynth Modeling Guide 40

42 // increase model bounding box for the viewer
43 mech.setBounds (/*min=*/ -0.5, 0, -0.5, /*max=*/0.5, 0, 0);
44 // set render properties for the components
45 RenderProps.setSphericalPoints (mech , 0.06, Color.RED);
46 RenderProps.setCylindricalLines (mech , 0.02, Color.BLUE);
47 }

The code is very similar to ParticleSpring and RigidBodySpring described in Sections 4.1.2 and 4.2.2, except that
two convenience methods, addParticle() and addSpring(), are defined at lines 1-15 to create particles and spring
and add them to a MechModel. These are used in the build() method to create four particles and two springs (lines
24-29), along with a rigid body box (lines 31-34). As with the other examples, particle p1 is set to be non-dynamic (line
36) in order to fix it in place and provide a ground.

The attachments are added at lines 39-40, with p2 attached to p3 and p4 connected to the box at the location (0,0,0.15)
in box coordinates.

Finally, render properties are set starting at line 43. In this example, point and line render properties are set for the
entire MechModel instead of individual components. Since render properties are inherited, this will implicitly set the
specified render properties in all sub-components for which these properties are not explicitly set (either locally or in an
intermediate ancestor).

To run this example in ArtiSynth, select All demos > tutorial > ParticleAttachment from the Models menu. The model
should load and initially appear as in Figure 15. Running the model (Section 2.5.3) will cause the box to fall and swing
under gravity.

4.5.3 Frame attachments

Frame attachments allow rigid bodies and other frame-based components to be attached to other components, including
frames, rigid bodies, or finite element models (Section 7.6). Frame attachments are implemented by creating attachment
components that are instances of FrameAttachment.

As with point attachments, modeling applications do not generally handle frame attachment components directly, but
instead create and add them implicitly using the following MechModel methods:

attachFrame (Frame frame , FrameAttachable comp);

attachFrame (Frame frame , FrameAttachable comp , RigidTransform3d TFW);

These attach frame to any component which implements the interface FrameAttachable, indicating that it is capable
of creating an attachment to a frame. Components that implement FrameAttachable currently include frames, rigid
bodies, and finite element models. For the first method, the attachment is created based on the the current position of the
frame and component in question. For the second method, the attachment is created so that the initial pose of the frame
(in world coordinates) is described by TFW.

Once a frame is attached, it will be in the attached state, as described in Section 4.1.3. Frame attachments can be
removed by calling

detachFrame (Frame frame);

While it is possible to create composite rigid bodies using FrameAttachments, this is much less computationally
efficient (and less accurate) than creating a single rigid body through mesh merging or similar techniques.

4.5.4 Example: model with frame attachments

A model illustrating rigidBody-rigidBody and frame-rigidBody attachments is defined in

artisynth.demos.tutorial.FrameBodyAttachment

Most of the code is identical to that for RigidBodyJoint as described in Section 4.3.3, except that the joint is further to
the left and connects bodyB to ground, rather than to bodyA, and the initial pose of bodyA is changed so that it is aligned
vertically. bodyA is then connected to bodyB, and an auxiliary frame is created and attached to bodyA, using code at the
end of the build() method as shown here:

ArtiSynth Modeling Guide 41

Figure 16: FrameBodyAttachment model loaded into ArtiSynth.

1 public void build (String[] args) {
2

3 ... create model mostly similar to RigidBodyJoint ...
4

5 // now connect bodyA to bodyB using a FrameAttachment
6 mech.attachFrame (bodyA , bodyB);
7

8 // create an auxiliary frame and add it to the mech model
9 Frame frame = new Frame();

10 mech.addFrame (frame);
11

12 // set the frames axis length > 0 so we can see it
13 frame.setAxisLength (4.0);
14 // set the attached frame’s pose to that of bodyA ...
15 RigidTransform3d TFW = new RigidTransform3d (bodyA.getPose());
16 // ... plus a translation of lenx2/2 along the x axis:
17 TFW.mulXyz (lenx2/2, 0, 0);
18 // finally , attach the frame to bodyA
19 mech.attachFrame (frame , bodyA , TFW);
20 }

To run this example in ArtiSynth, select All demos > tutorial > FrameBodyAttachment from the Models menu. The
model should load and initially appear as in Figure 15. The frame attached to bodyA is visible in the lower right corner.
Running the model (Section 2.5.3) will cause both bodies to fall and swing about the joint under gravity.

5 Mechanical Models II

This section provides additional material on building basic multibody-type mechanical models.

5.1 Simulation control properties

Both RootModel and MechModel contain properties that control the simulation behavior. One of the most important
of these is maxStepSize. By default, simulation proceeds using the maxStepSize value defined for the root model.
A MechModel (or any other type of Model) contained in the root model’s models list may also request a smaller step
size by specifying a smaller value for its own maxStepSize property. For all models, the maxStepSize may be set and
queried using

ArtiSynth Modeling Guide 42

void setMaxStepSize (double maxh);
double getMaxStepSize();

Another important simulation property is integrator in MechModel, which determines the type of integrator used for
the physics simulation. The value type of this property is the enumerated type MechSystemSolver.Integrator, for
which the following values are currently defined:

ForwardEuler
First order forward Euler integrator. Unstable for stiff systems.

SymplecticEuler
First order symplectic Euler integrator, more energy conserving that forward Euler. Unstable for stiff systems.

RungeKutta4
Fourth order Runge-Kutta integrator, quite accurate but also unstable for stiff systems.

ConstrainedBackwardEuler
First order backward order integrator. Generally stable for stiff systems.

Trapezoidal
Second order trapezoidal integrator. Generally stable for stiff systems, but slightly less so than ConstrainedBackwardEuler.

The term “Unstable for stiff systems” means that the integrator is likely to go unstable in the presence of “stiff” systems,
which typically include systems containing finite element models, unless the simulation step size is set to an extremely
small value. The default value for integrator is ConstrainedBackwardEuler.

Stiff systems tend to arise in models containing interconnected deformable elements, for which the step size should
not exceed the propagation time across the smallest element, an effect known as the Courant-Friedrichs-Lewy
(CFL) condition. Larger stiffness and damping values decrease the propagation time and hence the allowable step
size.

Another MechModel simulation property is stabilization, which controls the stabilization method used to correct
drift from position constraints and correct interpenetrations due to collisions. The value type of this property value is the
enumerated type MechSystemSolver.PosStabilization, which presently has two values:

GlobalMass
Uses only a diagonal mass matrix for the MLCP that is solved to determine the position corrections. This is the
default method.

GlobalStiffness
Uses a stiffness-corrected mass matrix for the MLCP that is solved to determine the position corrections. Slower
than GlobalMass, but more likely to produce stable results, particularly for problems involving FEM collisions.

5.2 Units

ArtiSynth is primarily “unitless”, in the sense that it does not define default units for the fundamental physical quantities
of time, length, and mass. Although time is generally understood to be in seconds, and often declared as such in method
arguments and return values, there is no hard requirement that it be interpreted as seconds. There are no assumptions at
all regarding length and mass. Some components may have default parameter values that reflect a particular choice of
units, such as MechModel’s default gravity value of (0,0,−9.8)T , which is associated with the MKS system, but these
values can always be overridden by the application.

Nevertheless, it is important, and up to the application developer to ensure, that units be consistent. For example, if one
decides to switch length units from meters to centimeters (a common choice), then all units involving length will have
to be scaled appropriately. For example, density, whose fundamental units are m/d3, where m is mass and d is distance,
needs to be scaled by 1/1003, or 0.000001, when converting from meters to centimeters.

Table 1 lists a number of common physical quantities used in ArtiSynth, along with their associated fundamental units.

ArtiSynth Modeling Guide 43

unit fundamental units
time t
distance d
mass m
velocity d/t
acceleration d/t2

force md/t2

work/energy md2/t2

torque md2/t2 same as energy (somewhat counterintuitive)
angular velocity 1/t
angular acceleration 1/t2

rotational inertia md2

pressure m/(dt2)
Young’s modulus m/(dt2)
Poisson’s ratio 1 no units; it is a ratio
density m/d3

linear stiffness m/t2

linear damping m/t
rotary stiffness md2/t2 same as torque
rotary damping md2/t
mass damping 1/t used in FemModel
stiffness damping t used in FemModel

Table 1: Physical quantities and their representation in terms of the fundamental units of mass (m), distance (d), and
time (t).

5.2.1 Scaling units

For convenience, many ArtiSynth components, including MechModel, implement the interface ScalableUnits, which
provides the following methods for scaling mass and distance units:

scaleDistance (s); // scale distance units by s
scaleMass (s); // scale mass units by s

A call to one of these methods should cause all physical quantities within the component (and its descendants) to be
scaled as required by the fundamental unit relationships as shown in Table 1.

Converting a MechModel from meters to centimeters can therefore be easily done by calling

mech.scaleDistance (100);

As an example, adding the following code to the end of the build() method in RigidBodySpring (Section 4.2.2)

System.out.println ("length=" + spring.getLength());
System.out.println ("density=" + box.getDensity());
System.out.println ("gravity=" + mech.getGravity());
mech.scaleDistance (100);
System.out.println ("");
System.out.println ("scaled length=" + spring.getLength());
System.out.println ("scaled density=" + box.getDensity());
System.out.println ("scaled gravity=" + mech.getGravity());

will scale the distance units by 100 and print the values of various quantities before and after scaling. The resulting
output is:

length=0.5
density=20.0
gravity=0.0 0.0 -9.8

scaled length=50.0
scaled density=2.0E-5
scaled gravity=0.0 0.0 -980.0

ArtiSynth Modeling Guide 44

It is important not to confuse scaling units with scaling the actual geometry or mass. Scaling units should change
all physical quantities so that the simulated behavior of the model remains unchanged. If the distance-scaled
version of RigidBodySpring shown above is run, it should behave exactly the same as the non-scaled version.

5.3 Transforming geometry

Certain ArtiSyth components, including MechModel, implement the interface TransformableGeometry, which permits
the simultaneous transformation of all a component’s geometry (i.e., meshes, point and frame loctions, etc.), as well as
the geometry of it’s child components. The interface provides the following method

public void transformGeometry (AffineTransform3dBase X);

where X is an AffineTransform3dBase that may be either a RigidTransform3d or a more general AffineTransform3d
(Section 3.2).

tranformGeometry can be used to translate, rotate, shear or scale model components. It can be applied to an entire
model or just a set of it’s components. Unlike scaleDistance(), it actually changes the physical geometry and so will
change the simulation behaviour. It is often used to either scale or rotate components. For example,

MechModel mech;

... build mech model ...

AffineTransform3d X = new AffineTransform3d();
X.applyScaling (1.5, 2, 3);
mech.transformGeometry (X);

RigidTransform3d T =
new RigidTransform3d (/*x,y,z=*/0, 0, 0, /*r,p,y=*/0, 0, Math.PI));

mech.transformGeomerty (T);

first scales a MechModel by 1.5, 2, and 3 along the x, y, and z axes, and then flips the model upside down using a
RigidTransform3d that rotates it by 180 degrees about the x axis.

5.4 Render properties

All ArtiSynth components that are renderable maintain a property renderProps, which stores a RenderProps object that
contains a number of subproperties used to control an object’s rendered appearance.

In code, the renderProps property for an object can be set or queried using the methods

setRenderProps (RenderProps props); // set render properties
RenderProps getRenderProps(); // get render properties (read -only)

Render properties can also be set in the GUI by selecting one or more components and the choosing Set render props ...
in the right-click context menu. More details on setting render properties through the GUI can be found in the section
“Render properties” in the ArtiSynth User Interface Guide.

For many components, the default value of renderProps is null; i.e., no RenderProps object is assigned by default
and render properties are instead inherited from ancestor components further up the hierarchy. The reason for this is
because RenderProps objects are fairly large (many kilobytes), and so assigning a unique one to every component
could consume too much memory. Even when a RenderProps object is assigned, most of its properties are inherited by
default, and so only those properties which are explicitly set will differ from those specified in ancestor components.

5.4.1 Render property taxonomy

In general, the properties in RenderProps are used to control the color, size, style, and resolution of the three
primary rendering primitives: faces, lines, and points. Table 2 contains a complete list. Values for the shading,
faceStyle, lineStyle and pointStyle properties are defined using the enumerated types RenderProps.Shading,

../uiguide/uiguide.html

ArtiSynth Modeling Guide 45

property purpose usual default value
visible whether or not the component is visible true
alpha transparency for polygonal faces (range 0 to 1) 1 (opaque)
shading polygon shading: (FLAT, GOURARD, PHONG) FLAT
shininess shininess parameter for polygons (range 0 to 32) 32
faceStyle which polygonal faces are drawn (FRONT, BACK, FRONT_AND_BACK, NONE) FRONT
faceColor color used for drawing faces GREY
backColor color used for drawing backs of faces. If null, faceColor is used. null
drawEdges if true, polygon edges are drawn explicitly false
edgeColor color for edges GREY
edgeWidth edge width in pixels 1
lineStyle: how lines are drawn (CYLINDER, LINE, or ELLIPSOID) LINE
lineColor color for lines GREY
lineWidth width in pixels when LINE style is selected 1
lineRadius radius when CYLINDER or ELLIPSOID style is selected 1
lineSlices number of slices used to render CYLINDER or ELLIPSOID style lines 32
pointStyle how points are drawn (SPHERE or POINT) POINT
pointColor color for points GREY
pointSize point size in pixels when POINT style is selected 1
pointRadius sphere radius when SPHERE style is selected 1
pointSlices number of slices used to render SPHERE style spheres 32

Table 2: Render properties and their default values.

RenderProps.Faces, RenderProps.LineStyle, and RenderProps.PointStyle. Colors are specified using
java.awt.Color.

To increase and improve their visibility, both the line and point primitives are associated with styles (CYLINDER,
ELLIPSOID, and SPHERE) that allow them to be rendered using 3D surface geometry.

Exactly how a component interprets its render properties is up to the component (and more specifically, up to the ren-
dering method for that component). Not all render properties are relevant to all components, particularly if the rendering
does not use all of the rendering primitives. For example, Particle components use only the point primitives and Axial-
Spring components use only the line primitives. For this reason, some components use subclasses of RenderProps, such
as PointRenderProps and LineRenderProps, that expose only a subset of the available render properties. All renderable
components provide the method createRenderProps() that will create and return a RenderProps object suitable for that
component.

5.4.2 Setting render properties

When setting render properties, it is important to note that the value returned by getRenderProps() should be treated as
read-only and should not be used to set property values. For example, applications should not do the following:

particle.getRenderProps().setPointColor (Color.BLUE);

This can cause problems for two reasons. First, getRenderProps() will return null if the object does not currently
have a RenderProps object. Second, because RenderProps objects are large, ArtiSynth may try to share them between
components, and so by setting them for one component, the application my inadvertently set them for other components
as well.

Instead, RenderProps provides a static method for each property that can be used to set that property’s value for a
specific component. For example, the correct way to set pointColor is

RenderProps.setPointColor (particle , Color.BLUE);

One can also set render properties by calling setRenderProps() with a predefined RenderProps object as an argument.
This is useful for setting a large number of properties at once:

RenderProps props = new RenderProps();
props.setPointColor (Color.BLUE);

ArtiSynth Modeling Guide 46

props.setPointRadius (2);
props.setPointStyle (RenderProps.PointStyle.SPHERE);

...

particle.setRenderProps (props);

Note that even though components may use a subclass of RenderProps internally, one can always use the base
RenderProps class to set values; properties which are not relevant to the component will simply be ignored.

Finally, as mentioned above, render properties are inherited. Values set high in the component hierarchy will be
inherited by descendant components, unless those descendants (or intermediate components) explicitly set overriding
values. For example, a MechModel maintains its own RenderProps (and which is never null). Setting its pointColor
property to RED will cause all point-related components within that MechModel to be rendered as red except for
components that set their pointColor to a different property.

There are typically three levels in a MechModel component hierarchy at which render properties can be set:

• The MechModel itself;

• Lists containing components;

• Individual components.

For example, consider the following code:

MechModel mech = new MechModel ("mech");

Particle p1 = new Particle (/*name=*/null , 2, 0, 0, 0);
Particle p2 = new Particle (/*name=*/null , 2, 1, 0, 0);
Particle p3 = new Particle (/*name=*/null , 2, 1, 1, 0);

mech.addParticle (p1);
mech.addParticle (p2);
mech.addParticle (p3);

RenderProps.setPointColor (mech , Color.BLUE);
RenderProps.setPointColor (mech.particles(), Color.GREEN);
RenderProps.setPointColor (p3, Color.RED);

Setting the MechModel render property pointColor to BLUE will cause all point-related items to be rendered blue by
default. Setting the pointColor render property for the particle list (returned by mech.particles()) will override this
and cause all particles in the list to be rendered green by default. Lastly, setting pointColor for p3 will cause it to be
rendered as red.

5.5 Point-to-point muscles

Point-to-point muscles are a simple type of component in biomechanical models that provide muscle-activated forces
acting along a line between two points. ArtiSynth provides this through Muscle, which is a subclass of AxialSpring that
generates an active muscle force in response to its excitation property. The excitation property can be set and queried
using the methods

setExcitation (double a);
double getExcitation();

ArtiSynth Modeling Guide 47

5.5.1 Muscle materials

As with AxialSprings, Muscle components use an AxialMaterial to compute the applied force f (l, l̇,a) in response to
the muscle’s length l, length velocity l̇, and excitation signal a. Usually the force is the sum of a passive component plus
an active component that arises in response to the excitation signal.

The default AxialMaterial for a Muscle is SimpleAxialMuscle, which is essentially an activated version of LinearAxi-
alMaterial and which computes a simple force according to

f (l, l̇) = k(l− l0)+dl̇ +m f a (30)

where k and d are stiffness and damping terms, a is the excitation value, and m f is the maximum excitation force. k, d
and m f are exposed through the properties stiffness, damping, and maxForce.

More complex muscle materials are typically used for biomechanical modeling applications, generally with non-
linear passive terms and active terms that depend on the muscle length l. Some of those available in ArtiSynth include
ConstantAxialMuscle, BlemkerAxialMuscle, PaiAxialMuscle, and PeckAxialMuscle.

5.5.2 Example: Muscle attached to a rigid body

Figure 17: SimpleMuscle model loaded into ArtiSynth.

A simple model showing a single muscle connected to a rigid body is defined in

artisynth.demos.tutorial.SimpleMuscle

This model is identical to RigidBodySpring described in Section 4.2.2, except that the code to create the spring is
replaced with code to create a muscle with a SimpleAxialMuscle material:

// create the muscle:
muscle = new Muscle ("mus", /*restLength=*/0);
muscle.setPoints (p1, mkr);
muscle.setMaterial (

new SimpleAxialMuscle (/*stiffness=*/20, /*damping=*/10, /*maxf=*/10));

Also, so that the muscle renders differently, the rendering style for lines is set to ELLIPSOID using the convenience
method

RenderProps.setEllipsoidalLines (muscle , 0.02, Color.RED);

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscle from the Models menu. The model should
load and initially appear as in Figure 17. Running the model (Section 2.5.3) will cause the box to fall and sway under
gravity. To see the effect of the excitation property, select the muscle in the viewer and then choose Edit properties
... from the right-click context menu. This will open an editing panel that allows the muscle’s properties to be adjusted
interactively. Adjusting the excitation property using the adjacent slider will cause the muscle force to vary.

ArtiSynth Modeling Guide 48

5.6 Collision Handling

Collision handling in ArtiSynth is implemented by a collision handling mechanism build into MechModel. Collisions are
disabled by default, but can be enabled between rigid and deformable bodies (finite element models in particular), and
more generally between any body that implements the interface Collidable.

It is important to understand that collison handling is both computationally expensive and, due to it’s discontinuous
nature, less accurate than other aspects of the simulation. ArtiSynth therefore provides a number of ways to selectively
control collision handling between different pairs of bodies.

5.6.1 Enabling collisions in code

Collisions can be enabled as either a default behavior between all bodies, a default behavior between certain types of
bodies, or a specific behavior between individual pairs of bodies.

The default collision behavior between all collidables can be controlled using two equivalent methods:

setDefaultCollisionBehavior (enabled , mu);
setDefaultCollisionBehavior (behavior);

where enabled is true or false depending on whether collisions are enabled, mu is the coefficient of Coulomb (or
dry) friction, and behavior is a CollisionBehavior object that specifies both enabled and mu. The mu value is ignored if
enabled is false. In addition, collisions can be controlled for specific types of collidables using

setDefaultCollisionBehavior (typeA , typeB , enabled , mu);
setDefaultCollisionBehavior (typeA , typeB , behavior);

where typeA and typeB should be either Collidable.RigidBody or Collidable.Deformable. In addition,
Collidable.Deformable can be paired with Collidable.Self to enable/disable self-collisions between deformable
objects. Self-collision is described in greater detail in Section 5.6.3.

A call to one of the setDefaultCollisionBehavior() methods will override the effects of previous calls. So for
instance, the code sequence

setDefaultCollisionBehvaior (true , 0);
setDefaultCollisionBehvaior (

Collidable.Deformable , Collidable.RigidBody , false , 0);
setDefaultCollisionBehavior (true , 0.2);

will initially enable collisions between all bodies with a friction coefficient of 0, then disable collisions between
deformable and rigid bodies, and finally re-enable collisions between all bodies with a friction coefficient of 0.2.

The default collision behavior between any pair of body types can be queried using

CollisionBehavior getDefaultCollisionBehavior (typeA , typeB);

In addition to default behaviors, collisions between individual collidables can be controlled and queried using

setCollisionBehavior (collidableA , collidableB , enabled , mu);
setCollisionBehavior (collidableA , collidableB , behavior);
getCollisionBehavior (collidableA , collidableB);

where collidableA and collidableB are individual collidable components such as rigid bodies or FEM models.
Collision behaviors specified by setCollisionBehavior() override the default collision behaviors, and are not
invalidated by subsequent calls to the setDefaultCollisionBehavior() methods. An overide collision behavior for a
specific pair of collidables can be removed by

clearCollisionBehavior (collidableA , collidableB);

and all override behaviors in a MechModel can be removed by

clearCollisionBehaviors ();

ArtiSynth Modeling Guide 49

Note: It is usually necessary to ensure that collisions are disabled between adjacent bodies connected by joints,
since otherwise these would be forced into a state of permanent collision.

5.6.2 Example: Collision with a plane

Figure 18: JointedCollide model loaded into ArtiSynth.

A simple model illustrating collision between two jointed rigid bodies and a plane is defined in

artisynth.demos.tutorial.JointedCollide

This model is simply a subclass of RigidBodyJoint that overrides the build() method to add an inclined plane and
enable collisions between it and the two connected bodies:

1 public void build (String[] args) {
2

3 super.build (args);
4

5 bodyB.setDynamic (true); // allow bodyB to fall freely
6

7 // create and add the inclined plane
8 RigidBody base = RigidBody.createBox ("base", 25, 25, 2, 0.2);
9 base.setPose (new RigidTransform3d (5, 0, 0, 0, 1, 0, -Math.PI/8));

10 base.setDynamic (false);
11 mech.addRigidBody (base);
12

13 // turn on collisions
14 mech.setDefaultCollisionBehavior (true , 0.20);
15 mech.setCollisionBehavior (bodyA , bodyB , false);
16 }

The superclass build() method called at line 3 creates everything contained in RigidBodyJoint. The remaining code
then alters that model: bodyB is set to be dynamic (line 5) so that it will fall freely, and an inclined plane is created from
a thin box that is translated and rotated and then set to be be non-dynamic (lines 8-11). Finally, collisions are enabled
by setting the default collision behavior (line 14), and then specifically disabling collisions between bodyA and bodyB
(line 15). As indicated above, the latter step is necessary because the joint would otherwise keep the two bodies in a
permanent state of collision.

To run this example in ArtiSynth, select All demos > tutorial > JointedCollide from the Models menu. The model should
load and initially appear as in Figure 18. Running the model (Section 2.5.3) will cause the jointed assembly to collide
with and slide off the inclined plane.

ArtiSynth Modeling Guide 50

5.6.3 Self-collision and collidable hierarchies

At present, ArtiSynth does not support the detection or handling of self-collision within single meshes. However,
self-collision can still be effected by allowing a collidable to have multiple sub-collidables and then enabling collisions
between some or all of these.

Any descendant component of a Collidable component A which is itself Collidable is considered to be a sub-
collidable of A. Certain types of components maintain sub-collidables by default. For example, some components (such
as finite element models; Section 7) maintain a list of meshes in a child component list named meshes; these can be used
to implement self-collision as described below.

Note: A collidable does not need to be an immediate child component of a collidable A in order to be a sub-
collidable of A; it need only be a descendent of A.

A

A1 A2 A3

C

C1 C2

B

Figure 19: A collection of collidable components, where A possesses sub-collidables A1, A2, and A3, B is solitary, and
C possesses sub-collidables C1 and C2. Internal collisions are enabled among those sub-collidables which are shaded
grey.

In general, an ArtiSynth model will contain a collection of collidables, some of which posses sub-collidables and others
which are solitary (Figure 19). Within a collection of collidables:

• Actual collisions happen only between leaf collidables; ancestor collidables are used only for grouping purposes.

• By default, the sub-collidables of a component A will only collide among themselves if self-collision is specified for
A (via either a default or override collision behavior). If self-collision is specified for A, then collisions may occur
only among those sub-collidables for which internal collisions are enabled. Internal collisions are enabled for a
collidable if its collidable property (Section 5.6.4) is set to either ALL or INTERNAL.

• Self-collision is also only possible among the sub-collidables of A if A is itself deformable; i.e., its isDeformable()
method returns true.

• Sub-collidables may collide with collidables outside their hierarchy if their collidable property is set to either ALL
or EXTERNAL.

• Collision among specific pairs of sub-collidables may also be explicitly enabled or disabled with an override behavior
set using one of the setCollisionBehavior() methods.

• Specifying a collision behavior among two collidables A and B which are not within the same hierarchy will cause
that behavior to be specified among all sub-collidables of A and B whose collidable property enables the collision.

This is best illustrated with some examples. Refer to Figure 19, assume that components A, B and C are deformable,
and that self-collision is allowed among those sub-collidables which are shaded grey (A1 and A2 for A, B1 and B2 for
B). Then:

// Set default collision among deformable components with friction = 0.2:
setDefaultCollisionBehavior (

Collidable.DEFORMABLE , Collidable.DEFORMABLE , true , 0.2);
// Collisions are now enabled between A1, A2, and A3 and each of B, C1, and
// C2, and between B and C1 and C2, but not among A1, A2, and A3 or C1 and C2.

ArtiSynth Modeling Guide 51

// Enable self -collision between A1 and A2 and B1 and B2 with friction = 0:
setDefaultCollisionBehavior (Collidable.DEFORMABLE , Collidable.SELF , true , 0);

// Specifically disable collision between B and A3:
setCollisionBehavior (B, A3, false);

// Specifically enable collision between A3 and C with friction = 0.3:
setCollisionBehavior (A3, C, true , 0.3);
// This behavior will be applied between A3 and each of C1 and C2.

// Disable self -collision within A:
setCollisionBehavior (A, A, false);
// This will disable all self -collisions among A1, A2 and A3.

5.6.4 Collidability

Each collidable component maintains a collidable property (which can be queried using getCollidable()) which
specifically enables or disables the ability of that collidable to collide with other collidables.

The collidable property value is of the enumerated type Collidable.Collidability, which has four possible settings:

OFF
All collisions disabled: the collidable will not collide with anything.

INTERNAL
Internal (self) collisions enabled: the collidable may only collide with other Collidables with which it shares a
common ancestor.

EXTERNAL
External collisions enabled: the collidable may only collide with other Collidables with which it does not share a
common ancestor.

ALL
All collisions (both self and external) enabled: the collidable may collide with any other Collidable.

Note that collidability only enables collisions. In order for collisions to actually occur between two collidables, a default
or override collision behavior must also be specified for them in the MechModel.

5.6.5 Implementation and limitations

The ArtiSynth collision mechanism works by finding intersections between the surface meshes of each collidable
object. These surface meshes must (at present) be triangular, closed, and manifold. A bounding-box hierarchy is
used to determine if any two surfaces meshes intersect. If they do, then a tracing algorithm is used to compute all the
intersection contours between the two meshes as shown in Figure 20.

Determining the intersection contour allows us to create a set of constraints for correcting the interpenetration and
preventing interpenetrating velocities. For rigid bodies, this is done by fitting a plane to each contour, projecting the
contour onto this plane, and then sampling the vertices of the projection’s 2D convex hull to create individual contact
points, with the contact normal set from the normal of the plane. For deformable FEM models, the intersection contour
is used to locate all the interpenetrating nodes, and then collision constraints are established between each node and the
nearest triangular face of the opposing surface.

Because ArtiSynth currently uses static collision detection, it is possible for objects that are fast enough or thin enough
to completely pass through each other in one simulation step. This means that for thin objects, it is important to keep the
step size small enough to prevent such undetected interpenetration.

ArtiSynth also uses a “box” friction approximation [4] to compute dry friction, instead of the polyhedralized friction
cones common in the multibody dynamics literature [1, 7]. This allows for a less expensive and more robust computa-
tion at the expense of some accuracy.

ArtiSynth Modeling Guide 52

t = 0s t = 0.25s t = 0.5s

Figure 20: Time sequence of contact handling between two deformable models falling under gravity, showing the inter-
section contours (yellow) and the contact normals (green lines).

Another issue is that ArtiSynth’s attempt to separate colliding bodies at the end of each time step may cause a jittering
behavior around the colliding area, as the surface collides, separates, and re-collides. This can usually be stabilized by
maintaining a certain interpenetration distance during contact. This distance is controlled by the MechModel property
penetrationTol. ArtiSynth attempts to compute a suitable default value for this property, but for some applications it
may be necessary to control the value explicitly using the MechModel methods

setInterpenetrationTol (double dist);
double getInterpenetrationTol();

Other aspects of collision handling can be adjusted by directly setting properties of the MechModel’s collision manager,
which can be accessed graphically via the navigation panel, or in code using getCollisionManager().

One of these properties is collisionPointTol, which for collisions between rigid bodies specifies a minimum distance
between contact points and therefore can be used to reduce the number of contact constraints and improve computation
time.

5.6.6 Contact rendering

The MechModel’s collision manager component contains render properties that can be used to render the contact points,
normals, and mesh intersection contours associated with contact.

By default, contact and contour rendering is disabled. To enable it, one can use the following code fragment:

RenderProps.setVisible (mechModel.getCollisionManager(), true);

The following render properties are used:

lineStyle Style of the line used for rendering the contact normals

lineWidth Width (in pixels) of the contact normal if the Line line style is used

lineRadius Radius of the contact normal if a solid line style is used

lineSlices Number of slices in the contact normal for a solid line style

lineColor Color of the contact normal

edgeWidth Width (in pixels) of the line used to render the contour

ArtiSynth Modeling Guide 53

edgeColor Color of the contour

These properties can be set in the same way as the visibility, using the RenderProps methods presented in Section 5.4.2:

Renderable colManager = mechModel.getCollisionManager();
RenderProps.setEdgeWidth (col, 2);
RenderProps.setEdgeColor (col, Color.Red);

To access these properties on a read-only basis, one can do

RenderProps props = mechModel.getCollisionManager().getRenderProps();

Finally, to set the length of the rendered contact normals, set the contactNormalLen property in collision manager.
Since contact normals have no preferred direction, it may be necessary to use a negative length value in order to
visualize them properly.

A simple model showing a contact rendering is defined in

artisynth.demos.tutorial.BallPlateCollide

and the complete source code is shown below:

1 package artisynth.demos.tutorial;
2

3 import java.awt.Color;
4 import maspack.matrix.*;
5 import maspack.render.*;
6 import artisynth.core.workspace.*;
7 import artisynth.core.mechmodels.*;
8

9 public class BallPlateCollide extends RootModel {
10

11 public void build (String[] args) {
12

13 // create MechModel and add to RootModel
14 MechModel mech = new MechModel ("mech");
15 addModel (mech);
16

17 // create and add the ball and plate
18 RigidBody ball = RigidBody.createIcosahedralSphere ("ball", 0.8, 0.1, 1);
19 ball.setPose (new RigidTransform3d (0, 0, 2, 0.4, 0.1, 0.1));
20 mech.addRigidBody (ball);
21 RigidBody plate = RigidBody.createBox ("plate", 5, 5, 0.4, 1);
22 plate.setDynamic (false);
23 mech.addRigidBody (plate);
24

25 // turn on collisions
26 mech.setDefaultCollisionBehavior (true , 0.20);
27

28 // make ball transparent so that contacts can be seen more clearly
29 RenderProps.setFaceStyle (ball , RenderProps.Faces.NONE);
30 RenderProps.setDrawEdges (ball , true);
31 RenderProps.setEdgeColor (ball , Color.WHITE);
32

33 // enable rendering of contacts normals and contours
34 CollisionManager cm = mech.getCollisionManager();
35 RenderProps.setVisible (cm, true);
36 RenderProps.setLineWidth (cm, 3);
37 RenderProps.setLineColor (cm, Color.RED);
38 RenderProps.setEdgeWidth (cm, 3);
39 RenderProps.setEdgeColor (cm, Color.BLUE);
40 cm.setContactNormalLen (0.5);
41 cm.setDrawIntersectionContours (true);
42 }
43 }

ArtiSynth Modeling Guide 54

To run this example in ArtiSynth, select All demos > tutorial > BallPlateCollide from the Models menu. When run, the
ball will collide with the plate and the contact normals and collision contours with be draw and shown in Figure 21.

Figure 21: BallPlateCollide showing contact normals (red) and collision contour (blue) of the ball colliding with the
plate.

5.7 General component arrangements

As discussed in Section 2.1.5 and elsewhere, a MechModel provides a number of predefined child components for
storing particles, rigid bodies, springs, constraints, and other components. However, applications are not required to
store their components in these containers, and may instead create any sort of component arrangement desired.

For example, suppose that one wishes to create a biomechanical model of both the right and left human arms, consisting
of bones, point-to-point muscles, and joints. The standard containers supplied by MechModel would require that all the
components be placed within the following containers:

rigidBodies // all bones
axialSprings // all point -to-point muscles
connectors // all joints

Instead of this, one may wish to set up a more appropriate component hierarchy, such as

leftArm // left -arm components
bones // left bones
muscles // left muscles
joints // left joints

rightArm // right -arm components
bones // right bones
muscles // right muscles
joints // right joints

To do this, the application build() method can create the necessary hierarchy and then populate it with whatever
components are desired. Before simulation begins (or whenever the model structure is changed), the MechModel will
recursively traverse the component hierarchy and update whatever internal structures are needed to run the simulation.

5.7.1 Container components

The generic class ComponentList can be used as a container for model components of a specific type. It can be created
using a declaration of the form

ComponentList <Particle > list = new ComponentList <Type > (Type.class , name);

ArtiSynth Modeling Guide 55

where Type is the class type of the components and name is the name for the container. Once the container is created, it
should be added to the MechModel (or another internal container) and populated with child components of the specified
type. For example,

MechModel mech;
...
ComponentList <Particle > parts =

new ComponentList <Particle > (Particle.class , "parts");
ComponentList <Frame > frames =

new ComponentList <Frame > (Frame.class , "frames");

// add containers to the mech model
mech.add (parts);
mech.add (frames);

creates two containers named "parts" and "frames" for storing components of type Particle and Frame, respec-
tively, and adds them to a MechModel referenced by mech.

In addition to ComponentList, applications may use several "specialty" container types which are subclasses of
ComponentList:

RenderableComponentList
A subclass of ComponentList, that has its own set of render properties which can be inherited by its children.
This can be useful for compartmentalizing render behavior. Note that it is not necessary to store renderable
components in a RenderableComponentList; components stored in a ComponentList will be rendered too.

PointList
A RenderableComponentList that is optimized for rendering points, and also contains its own pointDamping
property that can be inherited by its children.

PointSpringList
A RenderableComponentList designed for storing point-based springs. It contains a material property that
specifies a default axial material that can be used by its children.

AxialSpringList
A PointSpringList that is optimized for rendering two-point axial springs.

If necessary, it is relatively easy to define one’s own customined list by subclassing one of the other list types. One of the
main reasons for doing so, as suggested above, is to supply default properties to be inherited by the list’s descendents.

A component list which declares ModelComponent as its type can be used to store any type of component, including
other component lists. This allows the creation of arbitrary component hierarchies. Generally either
ComponentList<ModelComponent> or RenderableComponentList<ModelComponent> are best suited to implement
hierarchical groupings.

5.7.2 Example: a net formed from balls and springs

A simple example showing an arrangement of balls and springs formed into a net is defined in

artisynth.demos.tutorial.NetDemo

The build() method and some of the supporting definitions for this example are shown below.

1 protected double stiffness = 1000.0; // spring stiffness
2 protected double damping = 10.0; // spring damping
3 protected double maxForce = 5000.0; // max force with excitation = 1
4 protected double mass = 1.0; // mass of each ball
5 protected double widthx = 20.0; // width of the net along x
6 protected double widthy = 20.0; // width of the net along y
7 protected int numx = 8; // num balls along x
8 protected int numy = 8; // num balls along y

ArtiSynth Modeling Guide 56

Figure 22: NetDemo model loaded into ArtiSynth.

9

10 // custom component containers
11 protected MechModel mech;
12 protected PointList <Particle > balls;
13 protected ComponentList <ModelComponent > springs;
14 protected RenderableComponentList <AxialSpring > greenSprings;
15 protected RenderableComponentList <AxialSpring > blueSprings;
16

17 private AxialSpring createSpring (
18 PointList <Particle > parts , int idx0 , int idx1) {
19 // create a "muscle" spring connecting particles indexed by ’idx0’ and
20 // ’idx1’ in the list ’parts’
21 Muscle spr = new Muscle (parts.get(idx0), parts.get(idx1));
22 spr.setMaterial (new SimpleAxialMuscle (stiffness , damping , maxForce));
23 return spr;
24 }
25

26 public void build (String[] args) {
27

28 // create MechModel and add to RootModel
29 mech = new MechModel ("mech");
30 mech.setGravity (0, 0, -980.0);
31 mech.setPointDamping (1.0);
32 addModel (mech);
33

34 int nump = (numx+1)*(numy+1); // nump = total number of balls
35

36 // create custom containers:
37 balls = new PointList <Particle > (Particle.class , "balls");
38 springs = new ComponentList <ModelComponent >(ModelComponent.class ,"springs");
39 greenSprings = new RenderableComponentList <AxialSpring > (
40 AxialSpring.class , "greenSprings");
41 blueSprings = new RenderableComponentList <AxialSpring > (
42 AxialSpring.class , "blueSprings");
43

44 // create balls in a grid pattern and add to the list ’balls’
45 for (int i=0; i<=numx; i++) {
46 for (int j=0; j<=numy; j++) {
47 double x = widthx*(-0.5+i/(double)numx);

ArtiSynth Modeling Guide 57

48 double y = widthy*(-0.5+j/(double)numy);
49 Particle p = new Particle (mass , x, y, /*z=*/0);
50 balls.add (p);
51 // fix balls along the edges parallel to y
52 if (i == 0 || i == numx) {
53 p.setDynamic (false);
54 }
55 }
56 }
57

58 // connect balls by green springs parallel to y
59 for (int i=0; i<=numx; i++) {
60 for (int j=0; j<numy; j++) {
61 greenSprings.add (
62 createSpring (balls , i*(numy+1)+j, i*(numy+1)+j+1));
63 }
64 }
65 // connect balls by blue springs parallel to x
66 for (int j=0; j<=numy; j++) {
67 for (int i=0; i<numx; i++) {
68 blueSprings.add (
69 createSpring (balls , i*(numy+1)+j, (i+1)*(numy+1)+j));
70 }
71 }
72

73 // add containers to the mechModel
74 springs.add (greenSprings);
75 springs.add (blueSprings);
76 mech.add (balls);
77 mech.add (springs);
78

79 // set render properties for the components
80 RenderProps.setLineColor (greenSprings , new Color(0f, 0.5f, 0f));
81 RenderProps.setLineColor (blueSprings , Color.BLUE);
82 RenderProps.setSphericalPoints (mech , widthx/50.0, Color.RED);
83 RenderProps.setCylindricalLines (mech , widthx/100.0, Color.BLUE);
84 }

The build() method begins by creating a MechModel in the usual way (lines 29-30). It then creates a net composed of
a set of balls arranged as a uniform grid in the x-y plane, connected by a set of green colored springs running parallel to
the y axis and a set of blue colored springs running parallel to the x axis. These are arranged into a component hierarchy
of the form

balls
springs

greenSprings
blueSprings

using containers created at lines 37-42. The balls are then created and added to balls (lines 45-56), the springs are
created and added to greenSprings and blueSprings (lines 59-71), and the containers are added to the MechModel at
lines 74-77. The balls along the edges parallel to the y axis are fixed. Render properties are set at lines 80-83, with the
colors for greenSprings and blueSprings being explicitly set to dark green and blue.

MechModel, along with other classes derived from ModelBase, enforces reference containment. That means that all
components referenced by components within a MechModel must themselves be contained within the MechModel.
This condition is checked whenever a component is added directly to a MechModel or one of its ancestors. This
means that the components must be added to the MechModel in an order that ensures any referenced components
are already present. For example, in the NetDemo example above, adding the particle list after the spring list would
generate an error.

To run this example in ArtiSynth, select All demos > tutorial > NetDemo from the Models menu. The model should load
and initially appear as in Figure 22. Running the model will cause the net to fall and sway under gravity. When the

ArtiSynth Modeling Guide 58

ArtiSynth navigation panel is opened and expanded, the component hierarchy will appear as in Figure 23. While the
standard MechModel containers are still present, they are not displayed by default because they are empty.

Figure 23: NetDemo components displayed in the ArtiSynth navigation panel.

5.7.3 Adding containers to other models

In addition to MechModel, application-defined containers can be added to any model that inherits from ModelBase.
This includes RootModel and FemModel. However, at the present time, components added to such containers won’t do
anything, other than be rendered in the viewer if they are Renderable.

6 Simulation Control

This section describes different devices which an application may use to control the simulation. These include control
panels to allow for the interactive adjustment of properties, as well as agents which are applied every time step. Agents
include controllers and input probes to supply and modify input parameters at the beginning of each time step, and
monitors and output probes to observe and record simulation results at the end of each time step.

6.1 Control Panels

A control panel is an editing panel that allows for the interactive adjustment of component properties.

It is always possible to adjust component properties through the GUI by selecting one or more components and then
choosing Edit properties ... in the right-click context menu. However, it may be tedious to repeatedly select the required
components, and the resulting panels present the user with all properties common to the selection. A control panel
allows an application to provide a customized editing panel for selected properties.

6.1.1 General principles

Control panels are implemented by the ControlPanel model component. They can be set up within a model’s build()
method by creating an instance of ControlPanel, populating it with widgets for editing the desired properties, and then
adding it to the root model using the latter’s addControlPanel() method.

One of the most commonly used means of adding widgets to a control panel is the method addWidget(comp,propertyPath),
which creates a widget for a property specified by propertyPath with respect to the component comp. Property paths
are discussed in the Section 2.4.1, and can consist solely of a property name, or, for properties located in descendant
components, a component path followed by a colon ‘:’ and the property name.

Other flavors of addWidget() also exist, as described in the API documentation for ControlPanel. In addition to
property widgets, any type of Swing or awt component can be added using the method addWidget(awtcomp).

Control panels can also be created interactively using the GUI; see the section “Control Panels” in the ArtiSynth User
Interface Guide.

../uiguide/uiguide.html
../uiguide/uiguide.html

ArtiSynth Modeling Guide 59

Figure 24: Control panel created by the model SimpleMuscleWithPanel.

6.1.2 Example: Creating a simple control panel

An application model showing a control panel is defined in

artisynth.demos.tutorial.SimpleMuscleWithPanel

This model simply extends SimpleMuscle (Section 5.5.2) to provide a control panel for adjusting gravity, the mass and
color of the box, and the muscle excitation. The class definition, excluding include statements, is shown below:

1 public class SimpleMuscleWithPanel extends SimpleMuscle {
2 ControlPanel panel;
3

4 public void build (String[] args) throws IOException {
5

6 super.build (args);
7

8 // add control panel for gravity , rigod body mass and color , and excitation
9 panel = new ControlPanel("controls");

10 panel.addWidget (mech , "gravity");
11 panel.addWidget (mech , "rigidBodies/box:mass");
12 panel.addWidget (mech , "rigidBodies/box:renderProps.faceColor");
13 panel.addWidget (new JSeparator());
14 panel.addWidget (muscle , "excitation");
15

16 addControlPanel (panel);
17 }
18 }

The build() method calls super.build() to create the model used by SimpleMuscle. It then proceeds to create
a ControlPanel, populate it with widgets, and add it to the root model (lines 8-15). The panel is given the name
"controls" in the constructor (line 8); this is its component name and is also used as the title for the panel’s window
frame. A control panel does not need to be named, but if it is, then that name must be unique among the control panels.

Lines 9-11 create widgets for three properties located relative to the MechModel referenced by mech. The first is the
MechModel’s gravity. The second is the mass of the box, which is a component located relative to mech by the path
name (Section 2.1.3) "rigidBodies/box". The third is the box’s face color, which is the sub-property faceColor of
the box’s renderProps property.

Line 12 adds a JSeparator to the panel, using the addWidget() method that accepts general components, and line 13
adds a widget to control the excitation property for muscle.

It should be noted that there are different ways to specify target properties in addWidget(). First, compo-
nent paths may contain numbers instead of names, and so the box’s mass property could be specified using
"rigidBodies/0:mass" instead of "rigidBodies/box:mass" since the box’s number is 0. Second, if a reference
to a sub-component is available, one can specify properties directly with respect to that, instead of indicating the
sub-component in the property path. For example, if the box was referenced by a variable body, then one could use
the construction

panel.addWidget (body, "mass");

in place of

panel.addWidget (mech, "rigidBodies/box:mass");

ArtiSynth Modeling Guide 60

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithPanel from the Models menu. The
properties shown in the panel can be adjusted interactively by the user, while the model is either stationary or running.

6.2 Custom properties

Because of the usefulness of properties in creating control panels and probes (Sections 6.1) and Section 6.4), model
developers may wish to add their own properties, either to the root model, or to a custom component.

This section provides only a brief summary of how to define properties. Full details are available in the “Properties”
section of the Maspack Reference Manual.

6.2.1 Adding properties to a component

As mentioned in Section 2.4, properties are class-specific, and are exported by a class through code contained in the
class’s definition. Often, it is convenient to add properties to the RootModel subclass that defines the application model.
In more advanced applications, developers may want to add properties to a custom component.

The property definition steps are:

Declare the property list:
The class exporting the properties creates its own static instance of a PropertyList, using a declaration like

static PropertyList myProps = new PropertyList (MyClass.class , MyParent.class ←↩
);

@Override
public PropertyList getAllPropertyInfo() {

return myProps;
}

where MyClass and MyParent specify the class types of the exporting class and its parent class. The PropertyList
declaration creates a new property list, with a copy of all the properties contained in the parent class. If one does
not want the parent class properties, or if the parent class does not have properties, then one would use the con-
structor PropertyList(MyClass.class) instead. If the parent class is an ArtiSynth model component (including the
RootModel), then it will always have its own properties. The declaration of the method getAllPropertyInfo()
exposes the property list to other classes.

Add properties to the list:
Properties can then be added to the property list, by calling the PropertyList’s add() method:

PropertyDesc add (String name , String description , Object defaultValue);

where name contains the name of the property, description is a comment describing the property, and
defaultValue is an object containing the property’s default value. This is done inside a static code block:

static {
myProps.add ("stiffness", "spring stiffness", /*defaultValue=*/1);
myProps.add ("damping", "spring damping", /*defaultValue=*/0);

}

Variations on the add() method exist for adding read-only or inheritable properties, or for setting various
property options. Other methods allow the property list to be edited.

Declare property accessor functions:
For each property propXXX added to the property list, accessor methods of the form

void setPropXXX (TypeX value) {
...

}

TypeX getPropXXX() {
TypeX value = ...
return value;

}

../maspack/maspack.html

ArtiSynth Modeling Guide 61

must be declared, where TypeX is the value associated with the property.

It is possible to specify different names for the accessor functions in the string argument name supplied to the
add() method. Read-only properties only require a get accessor.

6.2.2 Example: a visibility property

An model illustrating the exporting of properties is defined in

artisynth.demos.tutorial.SimpleMuscleWithProperties

This model extends SimpleMuscleWithPanel (Section 5.5.2) to provide a custom property boxVisible that is added
to the control panel. The class definition, excluding include statements, is shown below:

1 public class SimpleMuscleWithProperties extends SimpleMuscleWithPanel {
2

3 // internal property list; inherits properties from SimpleMuscleWithPanel
4 static PropertyList myProps =
5 new PropertyList (
6 SimpleMuscleWithProperties.class , SimpleMuscleWithPanel.class);
7

8 // override getAllPropertyInfo() to return property list for this class
9 public PropertyList getAllPropertyInfo() {

10 return myProps;
11 }
12

13 // add new properties to the list
14 static {
15 myProps.add ("boxVisible", "box is visible", false);
16 }
17

18 // declare property accessors
19 public boolean getBoxVisible() {
20 return box.getRenderProps().isVisible();
21 }
22

23 public void setBoxVisible (boolean visible) {
24 RenderProps.setVisible (box, visible);
25 }
26

27 public void build (String[] args) throws IOException {
28

29 super.build (args);
30

31 panel.addWidget (this , "boxVisible");
32 panel.pack();
33 }
34 }

First, a property list is created for the application class SimpleMuscleWithProperties.class which contains a
copy of all the properties from the parent class SimpleMuscleWithPanel.class (lines 4-6). This property list is
made visible by overriding getAllPropertyInfo() (lines 9-11). The boxVisible property itself is then added to the
property list (line 15), and accessor functions for it are declared (lines 19-25).

The build() method calls super.build() to perform all the model creation required by the super class, and then adds
an additional widget for the boxVisible property to the control panel.

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithProperties from the Models menu. The
control panel will now contain an additional widget for the property boxVisible as shown in Figure 25. Toggling this
property will make the box visible or invisible in the viewer.

ArtiSynth Modeling Guide 62

Figure 25: Control panel created by the model SimpleMuscleWithProperties, showing the newly defined property
boxVisible.

6.3 Controllers and monitors

Application models can define custom controllers and monitors to control input values and monitor output values
as a simulation progresses. Controllers are called every time step immediately before the advance() method, and
monitors are called immediately after (Section 2.1.4). An example of controller usage is provided by ArtiSynth’s inverse
modeling feature, which uses an internal controller to estimate the actuation signals required to follow a specified
motion trajectory.

More precise details about controllers and monitors and how they interact with model advancement are given in the
ArtiSynth Reference Manual.

6.3.1 Implementation

Applications may declare whatever controllers or monitors they require and then add them to the root model using the
methods addController() and addMonitor(). They can be any type of ModelComponent that implements the Controller
or Monitor interfaces. For convenience, most applications simply subclass ControllerBase or MonitorBase and then
override the necessary methods.

The primary methods associated with both controllers and monitors are:

public void initialize (double t0);

public void apply (double t0, double t1);

apply(t0, t1) is the “business” method and is called once per time step, with t0 and t1 indicating the start and end
times t0 and t1 associated with the step. initialize(t0) is called whenever an application model’s state is set (or reset)
at a particular time t0. This occurs when a simulation is first started or after it is reset (with t0 = 0), and also when the
state is reset at a waypoint or during adaptive stepping.

Controllers and monitors may be associated with a particular model (among the list of models owned by the root model).
This model may be set or queried using

void setModel (Model m);

Model getModel();

If associated with a model, apply() will be called immediately before (for controllers) or after (for monitors) the
model’s advance() method. If not associated with a model, then apply() will be called before or after the advance of
all the models owned by the root model.

Controllers and monitors may also contain state, in which case they should implement the relevant methods from the
HasState interface.

Typical actions for a controller include setting input forces or excitation values on components, or specifying the motion
trajectory of parametric components (Section 4.1.3). Typical actions for a monitor include observing or recording the
motion profiles or constraint forces that arise from the simulation.

When setting the position and/or velocity of a dynamic component that has been set to be parametric (Section 4.1.3), a
controller should not set its position or velocity directly, but should instead set its target position and/or target velocity,
since this allows the solver to properly interpolate the position and velocity during the time step. The methods to set or
query target positions and velocities for Point-based components are

../artisynth/artisynth.html

ArtiSynth Modeling Guide 63

setTargetPosition (Point3d pos);
Point3d getTargetPosition (); // read -only

setTargetVelocity (Vector3d vel);
Vector3d getTargetVelocity (); // read -only

while for Frame-based components they are

setTargetPosition (Point3d pos);
setTargetOrientation (AxisAngle axisAng);
setTargetPose (RigidTransform3d TFW);
Point3d getTargetPosition (); // read -only
AxisAngle getTargetOrientation (); // read -only
RigidTransform3d getTargetPose(); // read -only

setTargetVelocity (Twist vel);
Twist getTargetVelocity (); // read -only

6.3.2 Example: A controller to move a point

A model showing an application-defined controller is defined in

artisynth.demos.tutorial.SimpleMuscleWithController

This simply extends SimpleMuscle (Section 5.5.2) and adds a controller which moves the fixed particle p1 along a
circular path. The complete class definition is shown below:

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4 import maspack.matrix.*;
5

6 import artisynth.core.modelbase.*;
7 import artisynth.core.mechmodels.*;
8 import artisynth.core.gui.*;
9

10 public class SimpleMuscleWithController extends SimpleMuscleWithPanel
11 {
12 private class PointMover extends ControllerBase {
13

14 Point myPnt; // point to be moved
15 Point3d myPos0; // initial point position
16

17 public PointMover (Point pnt) {
18 myPnt = pnt;
19 myPos0 = new Point3d (pnt.getPosition());
20 }
21

22 public void apply (double t0, double t1) {
23 double ang = Math.PI*t1/2; // angle associated with time t1
24 Point3d pos = new Point3d (myPos0);
25 pos.x += 0.5*Math.sin (ang); // compute position for t1 ...
26 pos.z += 0.5*(1-Math.cos (ang));
27 myPnt.setTargetPosition (pos); // ... and the set point’s target
28 }
29 }
30

31 public void build (String[] args) throws IOException {
32 super.build (args);
33

34 addController (new PointMover (p1));
35 // increase model bounding box for the viewer

ArtiSynth Modeling Guide 64

36 mech.setBounds (-1, 0, -1, 1, 0, 1);
37 }
38

39 }

A controller called PointMover is defined by extending ControllerBase and overriding the apply() method. It stores
the point to be moved in myPnt, and the initial position in myPos0. The apply() method computes a target position for
the point that starts at myPos0 and then moves in a circle in the x− z plane with an angular velocity of π/2 rad/sec (lines
22-28).

The build() method calls super.build() to create the model used by SimpleMuscle, and then creates an instance
of PointMover to move particle p1 and adds it to the root model (line 34). The viewer bounds are updated to make the
circular motion more visible (line 36).

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithController from the Models menu.
When the model is run, the fixed particle p1 will trace out a circular path in the x− z plane.

6.4 Probes

In addition to controllers and monitors, applications can also attach streams of data, known as probes, to input and
output values associated with the simulation. Probes derive from the same base class ModelAgentBase as controllers
and monitors, but differ in that

1. They are associated with an explicit time interval during which they are applied;

2. They can have an attached file for supplying input data or recording output data;

3. They are displayable in the ArtiSynth timeline panel.

A probe is applied (by calling its apply() method) only for time steps that fall within its time interval. This interval can
be set and queried using the following methods:

setStartTime (double t0);
setStopTime (double t1);
setInterval (double t0, double t1);

double getStartTime();
double getStopTime();

The probe’s attached file can be set and queried using:

setAttachedFileName (String fileName);
String getAttachedFileName ();

where fileName is a string giving the file’s path name.

Details about the timeline display can be found in the section “The Timeline” in the ArtiSynth User Interface Guide.

There are two types of probe: input probes, which are applied at the beginning of each simulation step before the
controllers, and output probes, which are applied at the end of the step after the monitors.

While applications are free to construct any type of probe by subclassing either InputProbe or OutputProbe, most
applications utilize either NumericInputProbe or NumericOutputProbe, which explicitly implement streams of numeric
data which are connected to properties of various model components. The remainder of this section will focus on
numeric probes.

6.4.1 Numeric probe structure

Numeric probes are associated with:

• A vector of temporally-interpolated numeric data;

../uiguide/uiguide.html

ArtiSynth Modeling Guide 65

• One or more properties to which the probe is bound and which are either set by the numeric data (input probes), or
used to set the numeric data (output probes).

The numeric data is implemented internally by a NumericList, which stores the data as a series of vector-valued knot
points at prescribed times tk and then interpolates the data for an arbitrary time t using an interpolation scheme provided
by Interpolation.

Some of the numeric probe methods associated with the interpolated data include:

int getVsize(); // returns the size of the data vector
setInterpolationOrder (Order order); // sets the interpolation scheme
Order getInterpolationOrder(); // returns the interpolation scheme

VectorNd getData (double t); // interpolates data for time t
NumericList getNumericList(); // returns the underlying NumericList

Interpolation schemes are described by the enumerated type Interpolation.Order and presently include:

Step
Values at time t are set to the values of the closest knot point k such that tk ≤ t.

Linear
Values at time t are set by linear interpolation of the knot points (k,k+1) such that tk ≤ t ≤ tk+1.

Parabolic
Values at time t are set by quadratic interpolation of the knots (k−1,k,k+1) such that tk ≤ t ≤ tk+1.

Cubic
Values at time t are set by cubic Catmull interpolation of the knots (k−1, . . . ,k+2) such that tk ≤ t ≤ tk+1.

Each property bound to a numeric probe must have a value that can be mapped onto a scalar or vector value. Such
properties are know as numeric properties, and whether or not a value is numeric can be tested using Numeric-
Converter.isNumeric(value).

By default, the total number of scalar and vector values associated with all the properties should equal the size of the
interpolated vector (as returned by getVsize()). However, it is possible to establish more complex mappings between the
property values and the interpolated vector. These mappings are beyond the scope of this document, but are discussed in
the sections “General input probes” and “General output probes” of the ArtiSynth User Interface Guide.

6.4.2 Creating probes in code

This section discusses how to create numeric probes in code. They can also be created and added to a model graphically,
as described in the section “Adding and Editing Numeric Probes” in the ArtiSynth User Interface Guide.

Numeric probes have a number of constructors and methods that make it relatively easy to create instances of them in
code. For NumericInputProbe, there is the constructor

NumericInputProbe (ModelComponent c, String propPath , String filePath);

which creates a NumericInputProbe, binds it to a property located relative to the component c by propPath, and then
attaches it to the file indicated by filePath and loads data from this file (see Section 6.4.4). The probe’s start and stop
times are specified in the file, and its vector size is set to match the size of the scalar or vector value associated with the
property.

To create a probe attached to multiple properties, one may use the constructor

NumericInputProbe (ModelComponent c, String propPaths[], String filePath);

which binds the probe to multiple properties specified relative to c by propPaths. The probe’s vector size is set to the
sum of the sizes of the scalar or vector values associated with these properties.

For NumericOutputProbe, one may use the constructor

../uiguide/uiguide.html
../uiguide/uiguide.html

ArtiSynth Modeling Guide 66

NumericOutputProbe (ModelComponent c, String propPath , String filePath , double ←↩
sample);

which creates a NumericOutputProbe, binds it to the property propPath located relative to c, and then attaches it to
the file indicated by filePath. The argument sample indicates the sample time associated with the probe, in seconds;
a value of 0.01 means that data will be added to the probe every 0.01 seconds. If sample is specified as -1, then the
sample time will default to the maximum step size associated with the root model.

To create an output probe attached to multiple properties, one may use the constructor

NumericOutputProbe (
ModelComponent c, String propPaths[], String filePath , double sample);

As the simulation proceeds, an output probe will accumulate data, but this data will not be saved to any attached file
until the probe’s save() method is called. This can be requested in the GUI for all probes by clicking on the Save
button in the timeline toolbar, or for specific probes by selecting them in the navigation panel (or the timeline) and
then choosing Save data in the right-click context menu.

Output probes created with the above constructors have a default interval of [0, 1]. A different interval may be set using
setInterval(), setStartTime(), or setStopTime().

6.4.3 Example: probes connected to SimpleMuscle

A model showing a simple application of probes is defined in

artisynth.demos.tutorial.SimpleMuscleWithProbes

This extends SimpleMuscle (Section 5.5.2) to add an input probe to move particle p1 along a defined path, along with
an output probe to record the velocity of the frame marker. The complete class definition is shown below:

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4 import maspack.matrix.*;
5

6 import artisynth.core.modelbase.*;
7 import artisynth.core.mechmodels.*;
8 import artisynth.core.probes.*;
9 import artisynth.core.util.*;

10

11 public class SimpleMuscleWithProbes extends SimpleMuscleWithPanel
12 {
13 public void createInputProbe() throws IOException {
14 NumericInputProbe p1probe =
15 new NumericInputProbe (
16 mech , "particles/p1:targetPosition",
17 ArtisynthPath.getSrcRelativePath (this , "simpleMuscleP1Pos.txt"));
18 p1probe.setName("Particle Position");
19 addInputProbe (p1probe);
20 }
21

22 public void createOutputProbe() throws IOException {
23 NumericOutputProbe mkrProbe =
24 new NumericOutputProbe (
25 mech , "frameMarkers/0:velocity",
26 ArtisynthPath.getSrcRelativePath (this , "simpleMuscleMkrVel.txt"),
27 0.01);
28 mkrProbe.setName("FrameMarker Velocity");
29 mkrProbe.setDefaultDisplayRange (-4, 4);
30 mkrProbe.setStopTime (10);

ArtiSynth Modeling Guide 67

31 addOutputProbe (mkrProbe);
32 }
33

34 public void build (String[] args) throws IOException {
35 super.build (args);
36

37 createInputProbe ();
38 createOutputProbe ();
39 mech.setBounds (-1, 0, -1, 1, 0, 1);
40 }
41

42 }

The input and output probes are added using the custom methods createInputProbe() and createOutputProbe().
At line 14, createInputProbe() creates a new input probe bound to the targetPosition property for the component
particles/p1 located relative to the MechModel mech. The same constructor attaches the probe to the file
simpleMuscleP1Pos.txt, which is read to load the probe data. The format of this and other probe data files is
described in Section 6.4.4. The method ArtisynthPath.getSrcRelativePath() is used to locate the file relative to the source
directory for the application model. The probe is then given the name "Particle Position" (line 18) and added to the
root model (line 19).

Similarly, createOutputProbe() creates a new output probe which is bound to the velocity property for the
component particles/0 located relative to mech, is attached to the file simpleMuscleMkrVel.txt located in
the application model source directory, and is assigned a sample time of 0.01 seconds. This probe is then named
"FrameMarker Velocity" and added to the root model.

The build() method calls super.build() to create everything required for SimpleMuscle, calls createInputProbe()
and createOutputProbe() to add the probes, and adjusts the MechModel viewer bounds to make the resulting probe
motion more visible.

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithProbes from the Models menu. After
the model is loaded, the input and output probes should appear on the timeline (Figure 26). Expanding the probes should
display their numeric contents, with the knot points for the input probe clearly visible. Running the model will cause
particle p1 to trace the trajectory specified by the input probe, while the velocity of the marker is recorded in the output
probe. Figure 27 shows an expanded view of both probes after the simulation has run for about six seconds.

Figure 26: Timeline view of the probes created by SimpleMuscleWithProbes.

6.4.4 Data file format

The data files associated with numeric probes are ASCII files containing two lines of header information followed by
a set of knot points, one per line, defining the numeric data. The time value (relative to the probe’s start time) for each
knot point can be specified explicitly at the start of the each line, in which case the file takes the following format:

startTime stopTime scale
interpolation vsize explicit
t0 val00 val01 val02 ...

ArtiSynth Modeling Guide 68

Figure 27: Expanded view of the probes after SimpleMuscleWithProbes has run for about 6 seconds, showing the data
accumulated in the output probe "FrameMarker Velocity".

t1 val10 val11 val12 ...
t0 val20 val21 val22 ...
...

Knot point information begins on line 3, with each line being a sequence of numbers giving the knot’s time followed by
n values, where n is the vector size of the probe (i.e., the value returned by getVsize()).

Alternatively, time values can be implicitly specified starting at 0 (relative to the probe’s start time) and incrementing by
a uniform timeStep, in which case the file assumes a second format:

startTime stopTime scale
interpolation vsize timeStep
val00 val01 val02 ...
val10 val11 val12 ...
val20 val21 val22 ...
...

For both formats, startTime, startTime, and scale are numbers giving the probe’s start and stop time in seconds
and scale gives the scale factor (which is typically 1.0). interpolation is a word describing how the data should be
interpolated between knot points and is the string value of Interpolation.Order as described in Section 6.4.1 (and
which is typically Linear, Parabolic, or Cubic). vsize is an integer giving the probe’s vector size.

The last entry on the second line is either a number specifying a (uniform) time step for the knot points, in which case
the file assumes the second format, or the keyword explicit, in which case the file assumes the first format.

As an example, the file used to specify data for the input probe in the example of Section 6.4.3 looks like the following:

0 4.0 1.0
Linear 3 explicit
0.0 0.0 0.0 0.0
1.0 0.5 0.0 0.5
2.0 0.0 0.0 1.0
3.0 -0.5 0.0 0.5
4.0 0.0 0.0 0.0

Since the data is uniformly spaced beginning at 0, it would also be possible to specify this using the second file format:

0 4.0 1.0
Linear 3 1.0
0.0 0.0 0.0
0.5 0.0 0.5
0.0 0.0 1.0

-0.5 0.0 0.5
0.0 0.0 0.0

ArtiSynth Modeling Guide 69

6.4.5 Adding probe data in-line

It is also possible to specify input probe data directly in code, instead of reading it from a file. For this, one would use
the constructor

NumericInputProbe (ModelComponent c, String propPath , double t0, double t1);

which creates a NumericInputProbe with the specified property and with start and stop times indicated by t0 and t1.
Data can then be added to this probe using the method

addData (double[] data , double timeStep);

where data is an array of knot point data. This contains the same knot point information as provided by a file (Section
6.4.4), arranged in row-major order. Times values for the knots are either implicitly specified, starting at 0 (relative to
the probe’s start time) and increasing uniformly by the amount specified by timeStep, or are explicitly specified at the
beginning of each knot if timeStep is set to the built-in constant NumericInputProbe.EXPLICIT_TIME. The size of
the data array should then be either n ∗m (implicit time values) or (n+ 1) ∗m (explicit time values), where n is the
probe’s vector size and m is the number of knots.

As an example, the data for the input probe in Section 6.4.3 could have been specified using the following code:

NumericInputProbe p1probe =
new NumericInputProbe (

mech , "particles/p1:targetPosition", 0, 5);
p1probe.addData (

new double[] {
0.0, 0.0, 0.0, 0.0,
1.0, 0.5, 0.0, 0.5,
2.0, 0.0, 0.0, 1.0,
3.0, -0.5, 0.0, 0.5,
4.0, 0.0, 0.0, 0.0 },
NumericInputProbe.EXPLICIT_TIME);

When specifying data in code, the interpolation defaults to Linear unless explicitly specified using setInterpolationOrder(),
as in, for example:

probe.setInterpolationOrder (Order.Cubic);

7 Finite Element Models

This section details how to construct three-dimensional finite element models, and how to couple them with the other
simulation components described in previous sections (e.g. particles and rigid bodies). Finite element muscles, which
have additional properties that allow them to contract given activation signals, are discussed in Section 7.8. An example
FEM model of the masseter, coupled to a rigid jaw and maxilla, is shown in Figure 28.

7.1 Overview

The finite element method (FEM) is a numerical technique used for solving a system of partial differential equations
(PDEs) over some domain. The general approach is to divide the domain into a set of building blocks, referred to
as elements. These partition the space, and form local domains over which the system of equations can be locally
approximated. The corners of these elements, the nodes, become control points in a discretized system. The solution
is then assumed to be smoothly interpolated across the elements based on values determined at the nodes. Using this
discretization, the differential system is converted into an algebraic one, which is often linearized and solved iteratively.

In ArtiSynth, the PDEs considered are the governing equations of continuum mechanics: the conservation of mass,
momentum, and energy. To complete the system, a constitutive equation is required that describes the stress-strain
response of the material. This constitutive equation is what distinguishes between material types. The domain is the
three-dimensional space that the model occupies. This must be divided into small elements which accurately represent
the geometry. Within each element, the PDEs are sampled at a set of points, referred to as integration points, and terms
are numerically integrated to form an algebraic system to solve.

ArtiSynth Modeling Guide 70

Figure 28: Finite element model of the masseter, coupled to the jaw and maxilla.

The purpose of the rest of this section is to describe the construction and use of finite elements models within ArtiSynth.
It does not further discuss the mathematical framework or theory. For an in-depth coverage of the nonlinear finite
element method, as applied to continuum mechanics, the reader is referred to the textbook by Bonet and Wood [3].

7.1.1 FemModel3d

The basic type of finite element model is implemented in the class FemModel3d. This class controls some properties
that are used by the model as a whole. The key ones that affect simulation dynamics are:

Property Description
density The density of the model
material An object that describes the material’s constitutive law (i.e. its stress-strain relationship).
particleDamping Proportional damping associated with the particle-like motion of the FEM nodes.
stiffnessDamping Proportional damping associated with the system’s stiffness term.

These properties can be set and retrieved using the methods

setDensity (double density); // sets the density
double getDensity (); // gets the density

setMaterial (FemMaterial mat); // sets the FEM’s material
FemMaterial getMaterial (); // gets the FEM’s material

setParticleDamping (double d); // sets the particle (mass) damping coefficient
double getParticleDamping (); // gets the particle (mass) damping coefficient

setStiffnessDamping (double d); // sets the stiffness damping coefficient
double getStiffnessDamping (); // gets the stiffness damping coefficient

Keep in mind that ArtiSynth is essentially “unitless” (Section 5.2), so it is the responsibility of the developer to ensure
that all properties are specified in a compatible way.

The density of the model is used to compute the mass distribution throughout the volume. Note that we use a diagonally
lumped mass matrix (DLMM) formulation, so the mass is assumed to be concentrated at the location of the discretized
FEM nodes. To allow for a spatially-varying density, a mass can later be specified for each node individually.

The FEM’s material is a delegate object used to compute stress and stiffness within individual elements. It handles the
constitutive component of the model. Materials will be discussed in more detail in Section 7.1.3.

The two damping parameters are related to Rayleigh damping, which is used to dissipate energy within finite element
models. There are two proportional damping terms: one related to the system’s mass, and one related to stiffness. The

ArtiSynth Modeling Guide 71

resulting damping force applied is

fd =−(dMM+dKK)v, (31)

where dM is the value of particleDamping, dK is the value of stiffnessDamping, M is the FEM model’s lumped
mass matrix, K is the FEM’s stiffness matrix, and v is the concatenated vector of FEM node velocities. Since the lumped
mass matrix is diagonal, the mass-related component of damping can be applied separately to each FEM node. Thus, the
mass component reduces to the same system as Equation (16), which is why it is referred to as “particle damping”.

7.1.2 Component Structure

Each FemModel3d contains three lists of sub-components:

nodes

The particle-like dynamic components of the model. These lie at the corners of the elements and carry all the
mass (due to DLMM formulation).

elements

The spatial building blocks of the model. These define the sub-units over which the system is numerically
integrated.

meshes

The geometry in the model. This includes the surface mesh, and any other embedded geometries.

An example showing each of these components is shown in Figure 29.

(a) FEM model (b) Nodes (c) Elements (d) Geometry

Figure 29: Sub-components of FemModel3d.

Nodes

The set of nodes belong to a finite element model can be obtained by the method

PointList <FemNode3d > getNodes(); // returns list of FEM nodes

Nodes are implemented in the class FemNode3d, which is a subclass of Particle (Section 4.1). They are the main
dynamic components of the finite element model. The key properties affecting simulation dynamics are:

Property Description
restPosition The initial position of the node.
position The current position of the node.
velocity The current velocity of the node.
mass The mass of the node.
dynamic Whether the node is considered dynamic or parametric (e.g. boundary condition).

ArtiSynth Modeling Guide 72

Each of these properties has corresponding getXxx() and setXxx(...) functions to access and modify them.

The restPosition property defines the node’s position in the FEM model’s “natural” or “undeformed” state. Rest
positions are used to compute an initial configuration for the model, from which strains are determined. A node’s rest
position can be updated in code using the method: FemNode3d.setRestPosition(Point3d).

If any node’s rest positions are changed, the current values for stress and stiffness will become invalid. They can
be manually updated using the method FemModel3d.updateStressAndStiffness() for the parent model. Otherwise,
stress and stiffness will be automatically updated at the beginning of the next time step.

The properties position and velocity give the node’s current 3D state. These are common to all point-like particles,
as is the mass property. Here, however, mass represents the lumped mass of the immediately surrounding material. Its
value is initialized by equally dividing mass contributions from each adjacent element, given their densities. For a finer
control of spatially-varying density, node masses can be set manually after FEM creation.

The FEM node’s dynamic property specifies whether or not the node is considered when computing the dynamics of the
system. If not, it is treated as being parametrically controlled. This has implications when setting boundary conditions
(Section 7.1.4).

Elements

Elements are the spatial building blocks of the domain. Within each element, the displacement (or strain) field is
interpolated from displacements at nodes:

u(x) =
N

∑
i=1

φi(x)ui, (32)

where ui is the displacement of the ith node that is adjacent to the element, and φi(·) is referred to as the shape function
(or basis function) associated with that node. Elements are classified by their shape, number of nodes, and shape
function order (Table 3). ArtiSynth supports the following element types:

TetElement, PyramidElement, WedgeElement, HexElement,
QuadtetElement QuadpyramidElement QuadwedgeElement QuadhexElement

Table 3: Supported element types
Element Type # Nodes Order # Integration Points
TetElement 4 linear 1
PyramidElement 5 linear 5
WedgeElement 6 linear 6
HexElement 8 linear 8
QuadtetElement 10 quadratic 4
QuadpyramidElement 13 quadratic 5
QuadwedgeElement 15 quadratic 9
QuadhexElement 20 quadratic 14

The base class for all of these is FemElement3d. A numerical integration is performed within each element to create
the (tangent) stiffness matrix. This integration is performed by evaluating the stress and stiffness at a set of integration
points within each element, and applying numerical quadrature. The list of elements in a model can be obtained with the
method

RenderableComponentList <FemElement3d > getElements(); // return the list of elements

ArtiSynth Modeling Guide 73

All objects of type FemModel3d have the following properties:

Property Description
density Density of the element
material An object that describes the constitutive law within the element (i.e. its stress-strain relationship).

If left unspecified, the element’s density is inherited from the containing FemModel3d object. When set, the mass of
the element is computed and divided amongst all its nodes, updating the lumped mass matrix.

Each element’s’ material property is also inherited by default from the containing FemModel3d. Specifying a material
here allows for spatially-varying material properties across the model. Materials will be discussed further in Section
7.1.3.

Meshes

The geometry associated with a finite element model consists of a collection of meshes (e.g. PolygonalMesh, Poly-
lineMesh, PointMesh) that move along with the model in a way that maintains the shape function interpolation equation
(32) at each vertex location. These geometries can be used for visualizations, or for physical interactions like collisions.
However, they have no physical properties themselves. FEM geometries will be discussed in more detail in Section 7.3.
The list of meshes can be obtained with the method

MeshComponentList <FemMeshComp > getMeshComps(); // return the list of meshes in a ←↩
FEM

7.1.3 Materials

The stress-strain relationship within each element is defined by a “material” delegate object, implemented by a subclass
of FemMaterial. This material object is responsible for implementing the functions:

public void computeStress (...) // computes the symmetric stress tensor
public void computeTangent (...) // computes the local tangent stiffness matrix

Inputs include a deformation gradient, pressure, and a coordinate frame that specifies potential directions of anisotropy.
The default material type is LinearMaterial, where stress is related to strain through:

σ(x) = Dε(x), (33)

where D =


λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , λ =
Eν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

,

σ is the standard 6×1 stress vector, ε is the strain vector, E is the Young’s Modulus, and ν is Poisson’s ratio. This linear
material uses a corotational formulation, so rotations are removed per element before computing the strain [6]. To enable
or disable this corotational formulation, use LinearMaterial.setCorotated(boolean).

All material models, including linear and non-linear, are available in the package artisynth.core.materials.
A list of common materials is provided in Table 4. Those that are subclasses of IncompressibleMaterial allow for
incompressibility.

7.1.4 Boundary conditions

Boundary conditions can be implemented in one of several ways:

1. Explicitly setting FEM node positions/velocities

2. Attaching FEM nodes to other dynamic components

ArtiSynth Modeling Guide 74

Table 4: Commonly used FEM materials
Material Parameters
LinearMaterial E Young’s modulus

ν Poisson’s ratio
corotated corotational formulation

StVenantKirchoffMaterial E Young’s modulus
ν Poisson’s ratio

NeoHookeanMaterial E Young’s modulus
ν Poisson’s ratio

IncompressibleNeoHookeanMaterial G shear modulus
κ bulk modulus

MooneyRivlinMaterial C10,C01,C20,C02 distortional parameters
κ bulk modulus

OgdenMaterial µ1, . . . ,µ6 material parameters
α1, . . . ,α6
κ bulk modulus

3. Enabling collisions

To enforce an explicit (Dirichlet) boundary condition for a set of nodes, their dynamic property must be set to false.
This notifies ArtiSynth that the state of these nodes (both position and velocity) will be controlled parametrically. By
disabling dynamics, a fixed boundary condition is applied. For a moving boundary, positions and velocities of the
boundary nodes must be explicitly set every timestep. This can be accomplished with either a Controller (see Section
6.3) or an InputProbe (see Section 6.4). Note that both the position and velocity of the nodes should be explicitly set for
consistency.

Another type of supported boundary condition is to attach FEM nodes to other components, including particles, springs,
rigid bodies, and locations within other FEM elements. Here, the node is still considered dynamic, but its motion is
coupled to that of the attached component through a constraint mechanism. Attachments will be discussed further in
Section 7.4.

Finally, the boundary of a FEM can be constrained by enabling collisions with other components. This will be covered
in Section 7.9.

7.2 FEM model creation

Creating a finite element model in ArtiSynth typically follows the pattern:

// Create and add main MechModel
MechModel mech = new MechModel("mech");
addModel(mech);

// Create FEM
FemModel3d fem = new FemModel3d("fem");

/* ... Setup FEM structure and properties ... */

// Add FEM to model
mech.addModel(fem);

The main code block for the FEM setup should do the following:

• Build the node/element structure
• Set physical properties

– density
– damping
– material

• Set boundary conditions

ArtiSynth Modeling Guide 75

• Set render properties

Building the FEM structure can be done with the use of factory methods for simple shapes, by loading external files, or
by writing code to manually assemble the nodes and elements.

7.2.1 Factory methods

For simple shapes such as beams and ellipsoids, there are factory methods to automatically build the node and element
structure. These methods are found in the FemFactory class. Some common methods are

FemFactory.createGrid (...) // basic beam
FemFactory.createCylinder (...) // cylinder
FemFactory.createTube (...) // hollowed cylinder
FemFactory.createEllipsoid (...) // ellipsoid
FemFactory.createTorus (...) // torus

The inputs specify the dimensions, resolution, and potentially the type of element to use. The following code creates a
basic beam made up of hexahedral elements:

// Create FEM
FemModel3d beam = new FemModel3d("beam");

// Build FEM structure
double[] size = {1.0, 0.25, 0.25}; // widths
int[] res = {8, 2, 2}; // resolution (# elements)

FemFactory.createGrid(beam , FemElementType.Hex,
size[0], size[1], size[2],
res[0], res[1], res[2]);

/* ... Set FEM properties ... */

// Add FEM to model
mech.addModel(beam);

7.2.2 Loading external FEM meshes

For more complex geometries, volumetric meshes can be loaded from external files. A list of supported file types is
provided in Table 5. To load a geometry, an appropriate file reader must be created. Readers capable of reading FEM
models implement the interface FemReader, which has the method

readFem(FemModel3d fem) // populates the FEM based on file contents

Additionally, many FemReader classes have static methods to handle the loading of files for convenience.

Table 5: Supported FEM geometry files
Format File extensions Reader Writer
ANSYS .node, .elem AnsysReader AnsysWriter
TetGen .node, .ele TetGenReader TetGenWriter
Abaqus .inp AbaqusReader AbaqusWriter
VTK (ASCII) .vtk VtkAsciiReader –

The following code snippet demonstrates how to load a model using the AnsysReader.

// Create FEM
FemModel3d tongue = new FemModel3d("tongue");

// Read FEM from file
try {

// Get files relative to THIS class

ArtiSynth Modeling Guide 76

String nodeFileName = ArtisynthPath.getSrcRelativePath(this ,
"data/tongue.node");

String elemFileName = ArtisynthPath.getSrcRelativePath(this ,
"data/tongue.elem");

AnsysReader.read(tongue , nodeFileName , elemFileName);

} catch (IOException ioe) {
// Wrap error , fail to create model
throw new RuntimeException("Failed to read model", ioe);

}

// Add to model
mech.addModel(tongue);

The method ArtisynthPath.getSrcRelativePath() is used to find a path within the ArtiSynth source tree that is relative to
the current model’s source file. Note the try-catch block. Most of these readers throw an IOException if the read fails.

7.2.3 Generating from surfaces

There are two ways a FEM model can be generated from a surface: by using a FEM mesh generator, and by extruding a
surface along its normal direction.

ArtiSynth has the ability to interface directly with the TetGen library (http://tetgen.org) to create a tetrahedral volumetric
mesh given a closed and manifold surface. The main Java class for calling TetGen directly is TetgenTesselator. The
tesselator has several advanced options, allowing for the computation of convex hulls, and for adding points to a
volumetric mesh. For simply creating a FEM from a surface, there is a convenience routine within FemFactory that
handles both mesh generation and constructing a FemModel3d:

// Create a FEM from a manifold mesh with a given quality
FemFactory.createFromMesh(PolygonalMesh mesh , double quality);

If quality > 0, then points will be added in an attempt to bound the maximum radius-edge ratio (see the -q switch for
TetGen). According to the TetGen documentation, the algorithm usually succeeds for a quality ratio of 1.2.

It’s also possible to create thin layer of elements by extruding a surface along its normal direction.

// Create a FEM by extruding a surface
FemFactory.createExtrusion(

FemModel3d model , int nLayers , double layerThickness , double zOffset ,
PolygonalMesh surface);

For example, to create a two-layer slice of elements centered about a surface of a tendon mesh, one might use

// Load the tendon surface mesh
PolygonalMesh tendonSurface = new PolygonalMesh("tendon.obj");

// Create the tendon
FemModel3d tendon = new FemModel3d("tendon");
int layers = 2; // 2 layers
double thickness = 0.0005; // 0.5 mm layer thickness
double offset = thickness; // center the layers about the surface

// Create the extrusion
FemFactory.createExtrusion(tendon , layers , thickness , offset , tendonSurface);

For this type of extrusion, triangular faces become wedge elements, and quadrilateral faces become hexahedral elements.

Note: for extrusions, no care is taken to ensure element quality; if the surface has a high curvature relative to the
total extrusion thickness, then some elements will be inverted.

http://tetgen.org

ArtiSynth Modeling Guide 77

7.2.4 Building elements in code

A finite element model’s structure can also be manually constructed in code. FemModel3d has the methods:

addNode (FemNode3d); // add a node to the model
addElement (FemElement3d) // add an element to the model

For an element to successfully be added, all its nodes must already have been added to the model. Nodes can be con-
structed from a 3D location, and elements from an array of nodes. A convenience routine is available in FemElement3d
that automatically creates the appropriate element type given the number of nodes (Table 3):

// Creates an element using the supplied nodes
FemElement3d FemElement3d.createElement(FemNode3d[] nodes);

Be aware of node orderings when supplying nodes. For linear elements, ArtiSynth uses a clockwise convention with
respect to the outward normal for the first face, followed by the opposite node(s). To determine the correct ordering for
a particular element, check the coordinates returned by the function FemElement3d.getNodeCoords(). This returns the
concatenated coordinate list for an “ideal” element of the given type.

7.2.5 Example: a simple beam model

Figure 30: FemBeam model loaded into ArtiSynth.

A complete application model that implements a simple FEM beam is given below.

1 package artisynth.demos.tutorial;
2

3 import java.awt.Color;
4 import java.io.IOException;
5

6 import maspack.render.RenderProps;
7 import artisynth.core.femmodels.FemFactory;
8 import artisynth.core.femmodels.FemModel.SurfaceRender;
9 import artisynth.core.femmodels.FemModel3d;

10 import artisynth.core.femmodels.FemNode3d;
11 import artisynth.core.materials.LinearMaterial;
12 import artisynth.core.mechmodels.MechModel;
13 import artisynth.core.workspace.RootModel;
14

15 public class FemBeam extends RootModel {
16

17 // Models and dimensions
18 FemModel3d fem;
19 MechModel mech;

ArtiSynth Modeling Guide 78

20 double length = 1;
21 double density = 10;
22 double width = 0.3;
23 double EPS = 1e-15;
24

25 public void build (String[] args) throws IOException {
26

27 // Create and add MechModel
28 mech = new MechModel ("mech");
29 addModel(mech);
30

31 // Create and add FemModel
32 fem = new FemModel3d ("fem");
33 mech.add (fem);
34

35 // Build hex beam using factory method
36 FemFactory.createHexGrid (
37 fem, length , width , width , /*nx=*/6, /*ny=*/3, /*nz=*/3);
38

39 // Set FEM properties
40 fem.setDensity (density);
41 fem.setParticleDamping (0.1);
42 fem.setMaterial (new LinearMaterial (4000, 0.33));
43

44 // Fix left -hand nodes for boundary condition
45 for (FemNode3d n : fem.getNodes()) {
46 if (n.getPosition().x <= -length/2+EPS) {
47 n.setDynamic (false);
48 }
49 }
50

51 // Set rendering properties
52 setRenderProps (fem);
53

54 }
55

56 // sets the FEM’s render properties
57 protected void setRenderProps (FemModel3d fem) {
58 fem.setSurfaceRendering (SurfaceRender.Shaded);
59 RenderProps.setLineColor (fem, Color.BLUE);
60 RenderProps.setFaceColor (fem, new Color (0.5f, 0.5f, 1f));
61 }
62

63 }

This example can be found in artisynth.demos.tutorial.FemBeam. The build() method first creates a MechModel
and FemModel3d. A FEM beam is created using a factory method on line 36. This beam is centered at the origin, so its
length extends from -length/2 to length/2. The density, damping and material properties are then assigned.

On lines 45–49, a fixed boundary condition is set to the left-hand side of the beam by setting the corresponding nodes to
be non-dynamic. Due to numerical precision, a small EPSILON buffer is required to ensure all left-hand boundary nodes
are identified (line 46).

Rendering properties are then assigned to the FEM model on line 52. These will be discussed further in Section 7.10.

7.3 FEM Geometry

Associated with each FEM model is a list of geometry with the heading meshes. This geometry can be used for either
display purposes, or for interactions such as collisions. A geometry itself has no physical properties; its motion is
entirely governed by the FEM model that contains it.

All FEM geometries are of type FemMeshComp, which stores a reference to a mesh object (Section 3.5), as well as
attachment information that links vertices of the mesh to points within the FEM. The attachments enforce the shape
function interpolation in Equation (32) to hold at each mesh vertex, with constant shape function coefficients.

ArtiSynth Modeling Guide 79

7.3.1 Surface meshes

By default, every FemModel3d has an auto-generated geometry representing the “surface mesh”. The surface mesh
consists of all un-shared element faces (i.e. the faces of individual elements that are exposed to the world), and its
vertices correspond to the nodes that make up those faces. As the FEM nodes move, so do the mesh vertices due to the
attachment framework.

The surface mesh can be obtained using one of the following functions in FemModel3d:

FemMeshComp getSurfaceMeshComp (); // returns the FemMeshComp surface component
PolygonalMesh getSurfaceMesh (); // returns the underlying polygonal surface mesh

The first returns the surface complete with attachment information. The latter method directly returns the PolygonalMesh
that is controlled by the FEM.

It is possible to manually set the surface mesh:

setSurfaceMesh (PolygonalMesh surface); // manually set surface mesh

However, doing so is normally not necessary. It is always possible to add additional mesh geometries to a finite element
model, and the visibility settings can be changed so that the default surface mesh is not rendered.

7.3.2 Embedding geometry within an FEM

Any geometry of type MeshBase can be added to a FemModel3d. To do so, first position the mesh so that its vertices are
in the desired locations inside the FEM, then call one of the FemModel3d methods:

FemMeshComp addMesh (MeshBase mesh); // creates and returns ←↩
FemMeshComp

FemMeshComp addMesh (String name , MeshBase mesh);

The latter is a convenience routine that also gives the newly embedded FemMeshComp a name.

7.3.3 Example: a beam with an embedded sphere

Figure 31: FemEmbeddedSphere model loaded into ArtiSynth.

A complete model demonstrating embedding a mesh is given below.

1 package artisynth.demos.tutorial;
2

3 import java.awt.Color;
4 import java.io.IOException;
5

ArtiSynth Modeling Guide 80

6 import maspack.geometry.*;
7 import maspack.render.RenderProps;
8 import artisynth.core.mechmodels.Collidable.Collidability;
9 import artisynth.core.femmodels.*;

10 import artisynth.core.femmodels.FemModel.SurfaceRender;
11 import artisynth.core.materials.LinearMaterial;
12 import artisynth.core.mechmodels.MechModel;
13 import artisynth.core.workspace.RootModel;
14

15 public class FemEmbeddedSphere extends RootModel {
16

17 // Internal components
18 protected MechModel mech;
19 protected FemModel3d fem;
20 protected FemMeshComp sphere;
21

22 @Override
23 public void build(String[] args) throws IOException {
24 super.build(args);
25

26 mech = new MechModel("mech");
27 addModel(mech);
28

29 fem = new FemModel3d("fem");
30 mech.addModel(fem);
31

32 // Build hex beam and set properties
33 double[] size = {0.4, 0.4, 0.4};
34 int[] res = {4, 4, 4};
35 FemFactory.createHexGrid (fem,
36 size[0], size[1], size[2], res[0], res[1], res[2]);
37 fem.setParticleDamping(2);
38 fem.setDensity (10);
39 fem.setMaterial(new LinearMaterial(4000, 0.33));
40

41 // Add an embedded sphere mesh
42 PolygonalMesh sphereSurface = MeshFactory.createOctahedralSphere(0.15, 3);
43 sphere = fem.addMesh("sphere", sphereSurface);
44 sphere.setCollidable (Collidability.EXTERNAL);
45

46 // Boundary condition: fixed LHS
47 for (FemNode3d node : fem.getNodes()) {
48 if (node.getPosition().x < -0.49) {
49 node.setDynamic(false);
50 }
51 }
52

53 // Set rendering properties
54 setFemRenderProps (fem);
55 setMeshRenderProps (sphere);
56 }
57

58 // FEM render properties
59 protected void setFemRenderProps (FemModel3d fem) {
60 fem.setSurfaceRendering (SurfaceRender.Shaded);
61 RenderProps.setLineColor (fem, Color.BLUE);
62 RenderProps.setFaceColor (fem, new Color (0.5f, 0.5f, 1f));
63 RenderProps.setAlpha(fem, 0.2); // translucent
64 }
65

66 // FemMeshComp render properties
67 protected void setMeshRenderProps (FemMeshComp mesh) {
68 mesh.setSurfaceRendering(SurfaceRender.Shaded);
69 RenderProps.setFaceColor (mesh , new Color (1f, 0.5f, 0.5f));
70 RenderProps.setAlpha (mesh , 1.0); // opaque

ArtiSynth Modeling Guide 81

71 }
72

73 }

This example can be found in artisynth.demos.tutorial.FemEmbeddedSphere. The model is very similar to
FemBeam. A MechModel and FemModel3d are created and added. At line 41, a PolygonalMesh of a sphere is created
using a factory method. The sphere is already centered inside the beam, so it does not need to be repositioned. At Line
42, the sphere is embedded inside model fem, creating a FemMeshComp with the name “sphere”. The full model is shown
in Figure 31.

7.4 Node attachments

To couple FEM models to other dynamic components, the “attachment” mechanism described in Section 2.2 is used.
This involves creating and adding to the model attachment components, which are instances of DynamicAttachment, as
described in Section 4.5. Common point-based attachment classes are listed in Table 6.

Table 6: Point-based attachments
Attachment Description
PointParticleAttachment Attaches one “point” to one “particle”
PointFrameAttachment Attaches one “point” to one “frame”
PointFem3dAttachment Attaches one “point” to a linear combination of FEM nodes

FEM models are connected to other model components by attaching their nodes to various components. This can be
done by creating an attachment object of the appropriate type, and then adding it to the MechModel using

addAttachment (DynamicAttachment attach); // adds an attachment constraint

There are also convenience routines inside MechModel that will create the appropriate attachments automatically (see
Section 4.5.1).

7.4.1 Connecting nodes to rigid bodies or particles

Since FemNode3d is a subclass of Particle, the same methods described in Section 4.5.1 for attaching particles to other
particles and frames are available. For example, we can attach an FEM node to a rigid body using a either a statement of
the form

mech.addAttachment (new PointFrameAttachment(body , node));

or the following equivalent statement which does the same thing:

mech.attachPoint (node , body);

Both of these create a PointFrameAttachment between a rigid body (called body) and an FEM node (called node) and
then adds it to the MechModel mech.

One can also attach the nodes of one FEM model to the nodes of another using statements like

mech.addAttachment (new PointParticle (node1 , node2));

or

mech.attachPoint (node2 , node1);

which attaches node2 to node1.

ArtiSynth Modeling Guide 82

Figure 32: FemBeamWithBlock model loaded into artisynth.

7.4.2 Example: connecting a beam to a block

The following model demonstrates attaching a FEM beam to a rigid block.

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4

5 import maspack.matrix.RigidTransform3d;
6 import artisynth.core.femmodels.FemNode3d;
7 import artisynth.core.mechmodels.PointFrameAttachment;
8 import artisynth.core.mechmodels.RigidBody;
9

10 public class FemBeamWithBlock extends FemBeam {
11

12 public void build (String[] args) throws IOException {
13

14 // Build simple FemBeam
15 super.build (args);
16

17 // Create a rigid block and move to the side of FEM
18 RigidBody block = RigidBody.createBox (
19 "block", width/2, 1.2*width , 1.2*width , 2*density);
20 mech.addRigidBody (block);
21 block.setPose (new RigidTransform3d (length/2+width/4, 0, 0));
22

23 // Attach right -side nodes to rigid block
24 for (FemNode3d node : fem.getNodes()) {
25 if (node.getPosition().x >= length/2-EPS) {
26 mech.addAttachment (new PointFrameAttachment (block , node));
27 }
28 }
29 }
30

31 }

This model extends the FemBeam example of Section 7.2.5. The build() method then creates and adds a RigidBody
block (lines 18–20). On line 21, the block is repositioned to the side of the beam to prepare for the attachment. On lines
24–28, all right-most nodes of the beam are then set to be attached to the block using a PointFrameAttachment. In this
case, the attachments are explicitly created. They could also have been attached using

mech.attachPoint (node , block); // attach node to rigid block

ArtiSynth Modeling Guide 83

7.4.3 Connecting nodes directly to elements

Typically, nodes do not align in a way that makes it possible to connect them to other FEM models and/or points based
on simple point-to-node attachments. Instead, we use a different mechanism that allows us to attach a point to an
arbitrary location within a FEM model. This is done using an attachment component of type PointFem3dAttachment,
which implements an attachment where the position p and velocity u of the attached point is determined by a weighted
sum of the positions pk and velocities uk of selected fem nodes:

p = ∑wkpk (34)

Any force f acting on the attached point is then propagated back to the nodes, according to the relation

fk = wkf (35)

where fk is the force acting on node k due to f. This relation can be derived based on the conservation of energy. If
p is embedded within a single element, then the pk are simply the element nodes and the wi are corresponding shape
function values; this is known as an element-based attachment. On the other hand, as desribed below, it is sometimes
desirable to form an attachment using a more general set of nodes that extends beyond a single element; this is known as
a nodal-based attachment (Section 7.4.5).

An element-based attachment can be created using a code fragment of the form

PointFem3dAttachment ax = new PointFem3dAttachment(pnt);
ax.setFromElement (pnt.getPosition(), elem);
mech.addAttachment (ax);

First, a PointFem3dAttachment is created for the point pnt. Next, setFromElement() is used to determine the nodal
weights within the element elem for the specified position (which in this case is simply the point’s current position). To
do this, it computes the “natural coordinates” coordinates of the position within the element. For this to be guaranteed
to work, the position should be on or inside the element. If natural coordinates cannot be found, the method will return
false and the nearest estimates coordinates will be used instead. However, it is sometimes possible to find natural
coordinates outside a given element as long as the shape functions are well-defined. Finally, the attachment is added to
the model.

More conveniently, the exact same functionality is provided by the attachPoint() method in MechModel:

mech.attachPoint (pnt, elem);

This creates an attachment identical to that created by the previous code fragment.

Often, one does not want to have to determine the element to which a point should be attached. In that case, one can call

PointFem3dAttachment ax = new PointFem3dAttachment(pnt);
ax.setFromFem (pnt.getPosition(), fem);
mech.addAttachment (ax);

or, equivalently,

mech.attachPoint (pnt, fem);

This will find the nearest element to the node in question and use that to create the attachment. If the node is outside the
FEM model, then it will be attached to the nearest point on the FEM’s surface.

7.4.4 Example: connecting two FEMs together

The following model demonstrates how to attach two FEM models together:

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4

5 import maspack.matrix.RigidTransform3d;
6 import artisynth.core.femmodels.*;
7 import artisynth.core.materials.LinearMaterial;

ArtiSynth Modeling Guide 84

Figure 33: FemBeamWithFemSphere model loaded into ArtiSynth.

8 import artisynth.core.util.ArtisynthPath;
9

10 public class FemBeamWithFemSphere extends FemBeam {
11

12 public void build (String[] args) throws IOException {
13

14 // Build simple FemBeam
15 super.build (args);
16

17 // Create a FEM sphere
18 FemModel3d femSphere = new FemModel3d("sphere");
19 mech.addModel(femSphere);
20 // Read from TetGen file
21 TetGenReader.read(femSphere ,
22 ArtisynthPath.getSrcRelativePath(FemModel3d.class , "meshes/sphere2.1.node"),
23 ArtisynthPath.getSrcRelativePath(FemModel3d.class , "meshes/sphere2.1.ele"));
24 femSphere.scaleDistance (0.22);
25 // FEM properties
26 femSphere.setDensity (10);
27 femSphere.setParticleDamping(2);
28 femSphere.setMaterial(new LinearMaterial(4000, 0.33));
29

30 // Reposition FEM to side of beam
31 femSphere.transformGeometry(new RigidTransform3d(length/2+width/2, 0, 0));
32

33 // Attach sphere nodes that are inside beam
34 for (FemNode3d node : femSphere.getNodes()) {
35 // Find element containing node (if exists)
36 FemElement3d elem = fem.findContainingElement(node.getPosition());
37 // Add attachment if node is inside "fem"
38 if (elem != null) {
39 mech.attachPoint(node , elem);
40 }
41 }
42

43 // Set render properties
44 setRenderProps(femSphere);
45

46 }
47

48 }

ArtiSynth Modeling Guide 85

This example can be found in artisynth.demos.tutorial.FemBeamWithFemSphere. The model extends FemBeam,
adding a finite element sphere and coupling them together. The sphere is created and added on lines 18–28. It is read
from TetGen-generated files using the TetGenReader class. The model is then scaled to match the dimensions of the
current model, and transformed to the right side of the beam. To create attachments, the code first checks for any nodes
that belong to the sphere that fall inside the beam using the FemModel3d.findContainingElement(Point3d) method (line
36), which returns the containing element if the point is inside the model, or null if the point is outside. Internally,
this spatial search uses a bounding volume hierarchy for efficiency (see BVTree and BVFeatureQuery). If the point is
contained within the beam, then mech.attachPoint() is used to attach it to the nodes of the element (line 39).

7.4.5 Nodal-based attachments

The example of Section 7.4.4 uses element-based attachments to connect the nodes of one FEM to elements of another.
As mentioned above, element-based attachments assume that the attached point is associated with a specific FEM model
element. While this often gives good results, there are situations where it may be desirable to distribute the connection
more broadly among a larger set of nodes.

In particular, this is sometimes the case when connecting FEM models to point-to-point springs. The end-point of such a
spring may end up exerting a large force on the FEM, and then if the number of nodes to which the end-point is attached
are too small, the resulting forces on these nodes (Equation 35) may end up being too large. In other words, it may be
desirable to distribute the spring’s force more evenly throughout the FEM model.

To handle such situations, it is possible to create a nodal-based attachment in which the nodes and weights are explicitly
specified. This involves explicitly creating a PointFem3dAttachment for the point or particle to be attached and the
specifying the nodes and weights directly,

PointFem3dAttachment ax = new PointFem3dAttachment (part);
ax.setFromNodes (nodes , weights);
mech.addAttachment (ax);

where nodes and weights are arrays of FemNode and double, respectively. It is up to the application to determine
these.

PointFem3dAttachment provides several methods for explicitly specifying nodes and weights. The signatures for these
include:

void setFromNodes (FemNode[] nodes , double[] weights)
void setFromNodes (Collection <FemNode > nodes , VectorNd weights)
boolean setFromNodes (Point3d pos, FemNode[] nodes)
boolean setFromNodes (Point3d pos, Collection <FemNode > nodes)

The last two methods determine the weights automatically, using an inverse-distance-based calculation in which each
weight wk is initially computed as

wk =
dmax

dk +dmax
(36)

where dk is the distance from node k to pos and dmax is the maximum distance. The weights are then adjusted to ensure
that they sum to one and that the weighted sum of the nodes equals pos. In some cases, the specified nodes may not
provide enough support for the last condition to be met, in which case the methods return false.

7.4.6 Example: element vs. nodal-based attachments

The model demonstrating the difference between element and nodal-based attachments is defined in

artisynth.demos.tutorial.PointFemAttachment

It creates two FEM models, each with a single point-to-point spring attached to a particle at their center. The model at
the top (fem1 in the code below) is connected to the particle using an element-based attachment, while the lower model
(fem2 in the code) is connected using a nodal-based attachment with a larger number of nodes. Figure 34 shows the
result after the model is run until stable. The element-based attachment results in significantly higher deformation in the
immediate vicinity around the attachment, while for the nodal-based attachment, the deformation is distributed much
more evenly through the model.

ArtiSynth Modeling Guide 86

Figure 34: PointFemAttachment loaded into ArtiSynth and run until stable. The top and bottom models are connected
to their springs using element and nodal-based attachments, respectively. The nodes associated with each attachment are
rendered as white spheres.

The build method and some of the auxiliary code for this model is shown below. Code for the other auxiliary methods,
including addFem(), addParticle(), addSpring(), and setAttachedNodesWhite(), can be found in the actual
source file.

1 // Filter to select only elements for which the nodes are entirely on the
2 // positive side of the x-z plane.
3 private class MyFilter extends ElementFilter {
4 public boolean elementIsValid (FemElement e) {
5 for (FemNode n : e.getNodes()) {
6 if (n.getPosition().y < 0) {
7 return false;
8 }
9 }

10 return true;
11 }
12 }
13

14 // Collect and return all the nodes of a FEM model associated with a
15 // set of elements specified by an array of element numbers
16 private HashSet <FemNode3d > collectNodes (FemModel3d fem, int[] elemNums) {
17 HashSet <FemNode3d > nodes = new HashSet <FemNode3d >();
18 for (int i=0; i<elemNums.length; i++) {
19 FemElement3d e = fem.getElements().getByNumber (elemNums[i]);
20 for (FemNode3d n : e.getNodes()) {
21 nodes.add (n);
22 }
23 }
24 return nodes;
25 }
26

27 public void build (String[] args) {
28 MechModel mech = new MechModel ("mech");
29 addModel (mech);
30 mech.setGravity (0, 0, 0); // turn off gravity
31

32 // create and add two FEM beam models centered at the specified locations
33 FemModel3d fem1 = addFem (mech , 0.0, 0.0, 0.25);
34 FemModel3d fem2 = addFem (mech , 0.0, 0.0, -0.25);
35

ArtiSynth Modeling Guide 87

36 // reconstruct the FEM surface meshes so that they show only elements on
37 // the positive side of the x-y plane. Also , set surface rendering to
38 // show strain values.
39 fem1.createSurfaceMesh (new MyFilter());
40 fem1.setSurfaceRendering (SurfaceRender.Strain);
41 fem2.createSurfaceMesh (new MyFilter());
42 fem2.setSurfaceRendering (SurfaceRender.Strain);
43

44 // create and add the particles for the point -to-point springs
45 // that will apply forces to each FEM.
46 Particle p1 = addParticle (mech , 0.9, 0.0, 0.25);
47 Particle p2 = addParticle (mech , 0.9, 0.0, -0.25);
48 Particle m1 = addParticle (mech , 0.0, 0.0, 0.25);
49 Particle m2 = addParticle (mech , 0.0, 0.0, -0.25);
50

51 // attach spring end-point to fem1 using an element -based marker
52 mech.attachPoint (m1, fem1);
53

54 // attach spring end-point to fem2 using a larger number of nodes , formed
55 // from the node set for elements 22, 31, 40, 49, and 58. This is done by
56 // explicitly creating the attachment and then setting it to use the
57 // specified nodes
58 HashSet <FemNode3d > nodes =
59 collectNodes (fem2 , new int[] { 22, 31, 40, 49, 58 });
60

61 PointFem3dAttachment ax = new PointFem3dAttachment (m2);
62 ax.setFromNodes (m2.getPosition(), nodes);
63 mech.addAttachment (ax);
64

65 // finally , create the springs
66 addSpring (mech , /*stiffness=*/10000, p1, m1);
67 addSpring (mech , /*stiffness=*/10000, p2, m2);
68

69 // set the attachments nodes for m1 and m2 to render as white spheres
70 setAttachedNodesWhite (m1);
71 setAttachedNodesWhite (m2);
72 // set render properties for m1
73 RenderProps.setSphericalPoints (m1, 0.015, Color.GREEN);
74 }

The build() method begins by creating a MechModel and then adding to it two FEM beams (created using the auxiliary
method addFem(). Rendering of each FEM model’s surface is then set up to show strain values (setSurfaceRendering(),
lines 41 and 43). The surface meshes themselves are also redefined to exclude the frontmost elements, allowing the
strain values to be displayed closer model centers. This redefinition is done using calls to createSurfaceMesh() (lines
40, 41) with a custom ElementFilter defined at lines 3-12.

Next, the end-point particles for the axial springs are created (using the auxiliary method addParticle(), lines 46-49),
and particle m1 is attached to fem1 using mech.attachPoint() (line 52), which creates an element-based attachment at
the point’s current location. Point m2 is then attached to fem2 using a nodal-based attachment. The nodes for these are
collected as the union of all nodes for a specufied set of elements (lines 58-59, and the method collectNodes() defined
at lines 16-25). These are then used to create a nodal-based attachment (lines 61-63), where the weights are determined
automatically using the method associated with equation (36).

Finally, the springs are created (auxiliary method addSpring(), lines 66-67), the nodes associated for each attachment
are set to render as white spheres (setAttachedNodesWhites(), lines 70-71), and the particles are set to render as
green spheres.

To run this example in ArtiSynth, select All demos > tutorial > PointFemAttachment from the Models menu. Running the
model will cause it to settle into the state shown in Figure 34. Selecting and dragging one of the spring anchor points at
the right will cause the spring tension to vary and further illustrate the difference between the element and nodal-based
attachments.

ArtiSynth Modeling Guide 88

7.5 FEM markers

Just as there are FrameMarkers to act as anchor points on a frame or rigid body (Section 4.2.1), there are also
FemMarkers that can mark a point inside a finite element. They are frequently used to provide anchor points for
attaching springs and forces to a point inside an element, but can also be used for graphical purposes.

FEM markers are implemented by the class FemMarker, which is a subclass of Point. They are essentially massless
points that contain their own attachment component, so when creating and adding a marker there is no need to create a
separate attachment component.

Within the component hierarchy, FEM markers are typically stored in the markers list of their associated FEM model.
They can be created and added using a code fragment of the form

FemMarker mkr = new FemMarker (1, 0, 0);
mkr.setFromFem (fem); // attach to the nearest fem element
fem.addMarker (mkr); // add to fem

This creates a marker at the location (1,0,0) (in world coordinates), calls setFromFem() to attach it to the nearest
element in the FEM model (which is either the containing element or the nearest element on the model’s surface), and
then adds it to the markers list.

If the marker’s attachment has not already been set when addMarker() is called, then addMarker() will call
setFromFem() automatically. Therefore the above code fragment is equivalent to the following:

FemMarker mkr = new FemMarker (1, 0, 0);
fem.addMarker (mkr);

Alternatively, one may want to explicitly specify the nodes associated with the attachment, as described in Section 7.4.5:

FemMarker mkr = new FemMarker (1, 0, 0);
mkr.setFromNodes (nodes , weights);
fem.addMarker (mkr);

There are a variety of methods available to set the attachment, mirroring those available in the underlying base class
PointFem3dAttachment:

void setFromFem (FemModel3d fem)
boolean setFromElement (FemElement3d elem)
void setFromNodes (FemNode[] nodes , double[] weights)
void setFromNodes (Collection <FemNode > nodes , VectorNd weights)
boolean setFromNodes (FemNode[] nodes)
boolean setFromNodes (Collection <FemNode > nodes)

The last two methods compute nodal weights automatically, as described in Section 7.4.5, based on the marker’s
currently assigned position. If the supplied nodes do not provide sufficient support, then the methods return false.

Another set of convenience methods are supplied by FemModel3d, which combine these with the addMarker() call:

void addMarker (FemMarker mkr, FemElement3d elem)
void addMarker (FemMarker mkr, FemNode[] nodes , double[] weights)
void addMarker (FemMarker mkr, Collection <FemNode > nodes , VectorNd weights)
boolean addMarker (FemMarker mkr, FemNode[] nodes)
boolean addMarker (FemMarker mkr, Collection <FemNode > nodes)

For example, one can do

FemMarker mkr = new FemMarker (1, 0, 0);
fem.addMarker (mkr, nodes , weights);

Markers are often used to track movement within an FEM model. For that, one can examine their positions and
velocities, as with any other particles, using the methods

Point3d getPosition(); // returns the current position
Vectord getVelocity(); // returns the current velocity

The return values from these methods should not be modified. Alternatively, when a 3D force f is applied to the marker,
it is distributed to the attached nodes according to the nodel weights, as described in Equation (35).

ArtiSynth Modeling Guide 89

7.5.1 Example: attaching a FEM beam to a muscle

Figure 35: FemBeamWithMuscle model loaded into ArtiSynth.

A complete application model that employs a fem marker as an anchor for a spring is given below.

1 package artisynth.demos.tutorial;
2

3 import java.awt.Color;
4 import java.io.IOException;
5

6 import maspack.render.RenderProps;
7 import artisynth.core.femmodels.FemMarker;
8 import artisynth.core.femmodels.FemModel3d;
9 import artisynth.core.materials.SimpleAxialMuscle;

10 import artisynth.core.mechmodels.Muscle;
11 import artisynth.core.mechmodels.Particle;
12 import artisynth.core.mechmodels.Point;
13

14 public class FemBeamWithMuscle extends FemBeam {
15

16 // Creates a point -to-point muscle
17 protected Muscle createMuscle () {
18 Muscle mus = new Muscle (/*name=*/null , /*restLength=*/0);
19 mus.setMaterial (
20 new SimpleAxialMuscle (/*stiffness=*/20, /*damping=*/10, /*maxf=*/10));
21 RenderProps.setLineStyle (mus, RenderProps.LineStyle.ELLIPSOID);
22 RenderProps.setLineColor (mus, Color.RED);
23 RenderProps.setLineRadius (mus, 0.03);
24 return mus;
25 }
26

27 // Creates a FEM Marker
28 protected FemMarker createMarker (
29 FemModel3d fem, double x, double y, double z) {
30 FemMarker mkr = new FemMarker (/*name=*/null , x, y, z);
31 RenderProps.setSphericalPoints (mkr, 0.02, Color.BLUE);
32 fem.addMarker (mkr);
33 return mkr;
34 }
35

36 public void build (String[] args) throws IOException {
37

38 // Create simple FEM beam

ArtiSynth Modeling Guide 90

39 super.build (args);
40

41 // Add a particle fixed in space
42 Particle p1 = new Particle (/*mass=*/0, -length/2, 0, 2*width);
43 mech.addParticle (p1);
44 p1.setDynamic (false);
45 RenderProps.setSphericalPoints (p1, 0.02, Color.BLUE);
46

47 // Add a marker at the end of the model
48 FemMarker mkr = createMarker (fem, length/2-0.1, 0, width/2);
49

50 // Create a muscle between the point an marker
51 Muscle muscle = createMuscle();
52 muscle.setPoints (p1, mkr);
53 mech.addAxialSpring (muscle);
54 }
55

56 }

This example can be found in artisynth.demos.tutorial.FemBeamWithMuscle. This model extends the FemBeam
example, adding a FemMarker for the spring to attach to. The method createMarker(...) on lines 28–34 is used to
create and add a marker to the FEM. Since the element is initially set to null, when it is added to the FEM, the model
searches for the containing or nearest element. The loaded model is shown in Figure 35.

7.6 Frame attachments

It is also possible to attach frame components, including rigid bodies, directly to FEM models, using the attachment
component FrameFem3dAttachment. Analagously to PointFem3dAttachment, the attachment is implemented by
connecting the frame to a set of FEM nodes, and attachments can be either element-based or nodal-based. The frame’s
origin is computed in the same way as for point attachments, using a weighted sum of node positions (Equation 34),
while the orientation is computed using a polar decomposition on a deformation gradient determined from either
element shape functions (for element-based attachments) or a Procrustes type analysis using nodal rest positions (for
nodal-based attachments).

An element-based attachment can be created using either a code fragment of the form

FrameFem3dAttachment ax = new FrameFem3dAttachment(frame);
ax.setFromElement (frame.getPose(), elem);
mech.addAttachment (ax);

or, equivalently, the attachFrame() method in MechModel:

mech.attachFrame (frame , elem);

This attaches the frame frame to the nodes of the FEM element elem. As with PointFem3dAttachment, if the frame’s
origin is not inside the element, it may not be possible to accurately compute the internal nodal weights, in which case
setFromElement() will return false.

In order to have the appropriate element located automatically, one can instead use

FrameFem3dAttachment ax = new FrameFem3dAttachment(frame);
ax.setFromFem (frame.getPose(), fem);
mech.addAttachment (ax);

or, equivalently,

mech.attachFrame (frame , fem);

As with point-to-FEM attachments, it may be desirable to create a nodel-based attachment in which the nodes and
weights are not tied to a specific element. The reasons for this are generally the same as with nodal-based point
attachments (Section 7.4.5): the need to distribute the forces and moments acting on the frame across a broader set
of element nodes. Also, element-based frame attachments use element shape functions to determine the frame’s

ArtiSynth Modeling Guide 91

orientation, which may produce slightly asymmetric results if the frame’s origin is located particularly close to a specific
node.

FrameFem3dAttachment provides several methods for explicitly specifying nodes and weights. The signatures for these
include:

void setFromNodes (RigidTransform3d TFW, FemNode[] nodes , double[] weights)
void setFromNodes (RigidTransform3d TFW, Collection <FemNode > nodes ,

VectorNd weights)
boolean setFromNodes (RigidTransform3d TFW, FemNode[] nodes)
boolean setFromNodes (RigidTransform3d TFW, Collection <FemNode > nodes)

Unlike their counterparts in PointFem3dAttachment, the first two methods also require the current desired pose of
the frame TFW (in world coordinates). This is because while nodes and weights will unambiguously specify the frame’s
origin, they do not specify the desired orientation.

7.6.1 Example: attaching frames to a FEM beam

Figure 36: FrameFemAttachment loaded into ArtiSynth and run until stable.

A model illustrating how to connect frames to a FEM model is defined in

artisynth.demos.tutorial.FrameFemAttachment

It creates a FEM beam, along with a rigid body block and a massless coordinate frame, that are then attached to the
beam using nodal and element-based attachments. The build method is shown below:

1 public void build (String[] args) {
2

3 MechModel mech = new MechModel ("mech");
4 addModel (mech);
5

6 // create and add FEM beam
7 FemModel3d fem = FemFactory.createHexGrid (null , 1.0, 0.2, 0.2, 6, 3, 3);
8 fem.setMaterial (new LinearMaterial (500000, 0.33));
9 RenderProps.setLineColor (fem, Color.BLUE);

10 RenderProps.setLineWidth (mech , 2);
11 mech.addModel (fem);
12 // fix leftmost nodes of the FEM
13 for (FemNode3d n : fem.getNodes()) {
14 if ((n.getPosition().x-(-0.5)) < 1e-8) {
15 n.setDynamic (false);

ArtiSynth Modeling Guide 92

16 }
17 }
18

19 // create and add rigid body box
20 RigidBody box = RigidBody.createBox (
21 "box", 0.25, 0.1, 0.1, /*density=*/1000);
22 mech.add (box);
23

24 // create a basic frame and set its pose and axis length
25 Frame frame = new Frame();
26 frame.setPose (new RigidTransform3d (0.4, 0, 0, 0, Math.PI/4, 0));
27 frame.setAxisLength (0.3);
28 mech.addFrame (frame);
29

30 mech.attachFrame (frame , fem); // attach using element -based attachment
31

32 // attach the box to the FEM, using all the nodes of elements 31 and 32
33 HashSet <FemNode3d > nodes = collectNodes (fem, new int[] { 22, 31 });
34 FrameFem3dAttachment attachment = new FrameFem3dAttachment(box);
35 attachment.setFromNodes (box.getPose(), nodes);
36 mech.addAttachment (attachment);
37

38 // render the attachment nodes for the box as spheres
39 for (FemNode n : attachment.getNodes()) {
40 RenderProps.setSphericalPoints (n, 0.007, Color.GREEN);
41 }
42 }

Lines 3-22 create a MechModel and populate it with an FEM beam and a rigid body box. Next, a basic Frame is created,
with a specified pose and an axis length of 0.3 (to allow it to be seen), and added to the MechModel (lines 25-28). It is
then attached to the FEM beam using an element-based attachment (line 30). Meanwhile, the box is attached to using
a nodal-based attachment, created from all the nodes associated with elements 22 and 31 (lines 33-36). Finally, all
attachment nodes are set to be rendered as green spheres (lines 39-41).

To run this example in ArtiSynth, select All demos > tutorial > FrameFemAttachment from the Models menu. Running
the model will cause it to settle into the state shown in Figure 36. Forces can interactively be applied to the attached
block and frame using pull manipulator, causing the FEM model to deform (see the section “Pull Manipulator” in the
ArtiSynth User Interface Guide).

7.6.2 Adding joints to FEM models

The ability to connect frames to FEM models, as described in Section 7.6, makes it possible to interconnect different
FEM models directly using joints, as described in Section 4.3. This is done internally by using FrameFem3dAttachments
to connect frames C and D of the joint (Figure 6) to their respective FEM models.

As indicated in Section 4.3.2, most joints have a constructor of the form

JointType (bodyA , bodyB , TDW);

that creates a joint connecting bodyA to bodyB, with the initial pose of the D frame given (in world coordinates) by
TDW. The same body and transform settings can be made on an existing joint using the method setBodies(bodyA,
bodyB, TDW). For these constructors and methods, it is possible to specify FEM models for bodyA and/or bodyB.
Internally, the joint then creates a FrameFem3dAttachment to connect frame C and/or D of the joint (See Figure 6) to
the corresponding FEM model.

However, unlike joints involving rigid bodies or frames, there are no associated TCA or TDB transforms (since there is no
fixed frame within an FEM to define such transforms). Methods or constructors which utilize TCA or TDB can therefore
not be used with FEM models.

7.6.3 Example: two FEM beams connected by a joint

A model connecting two FEM beams by a joint is defined in

../uiguide/uiguide.html

ArtiSynth Modeling Guide 93

Figure 37: JointedFemBeams loaded into ArtiSynth and run until stable.

artisynth.demos.tutorial.JointedFemBeams

It creates two FEM beams and connects them via a special slotted-revolute joint. The build method is shown below:

1 public void build (String[] args) {
2

3 MechModel mech = new MechModel ("mechMod");
4 addModel (mech);
5

6 double stiffness = 5000;
7 // create first fem beam and fix the leftmost nodes
8 FemModel3d fem1 = addFem (mech , 2.4, 0.6, 0.4, stiffness);
9 for (FemNode3d n : fem1.getNodes()) {

10 if (n.getPosition().x <= -1.2) {
11 n.setDynamic(false);
12 }
13 }
14 // create the second fem beam and shift it 1.5 to the right
15 FemModel3d fem2 = addFem (mech , 2.4, 0.4, 0.4, 0.1*stiffness);
16 fem2.transformGeometry (new RigidTransform3d (1.5, 0, 0));
17

18 // create a slotted revolute joint that connects the two fem beams
19 RigidTransform3d TDW = new RigidTransform3d(0.5, 0, 0, 0, 0, Math.PI/2);
20 SlottedRevoluteJoint joint = new SlottedRevoluteJoint (fem2 , fem1 , TDW);
21 mech.addBodyConnector (joint);
22

23 // set ranges and rendering properties for the joint
24 joint.setAxisLength (0.8);
25 joint.setMinX (-0.5);
26 joint.setMaxX (0.5);
27 joint.setSlotWidth (0.61);
28 RenderProps.setLineColor (joint , myJointColor);
29 RenderProps.setLineWidth (joint , 3);
30 RenderProps.setLineRadius (joint , 0.04);
31 }

Lines 3-16 create a MechModel and populates it with two FEM beams, fem1 and fem2, using an auxiliary method
addFem() defined in the model source file. The leftmost nodes of fem1 are set fixed. A SlottedRevoluteJoint is then
created to interconnect fem1 and fem2 at a location specified by TDW (lines 19-21). Lines 24-30 set some parameters for
the joint, along with various render properties.

ArtiSynth Modeling Guide 94

To run this example in ArtiSynth, select All demos > tutorial > JointedFemBeams from the Models menu. Running the
model will cause it drop and flex under gravity, as shown in 37. Forces can interactively be applied to the beams using
pull manipulator (see the section “Pull Manipulator” in the ArtiSynth User Interface Guide).

7.7 Incompressiblity

FEM incompressibility within ArtiSynth is enforced by trying to ensure that the volume of a FEM remains locally
constant. This, in turn, is accomplished by constraining nodal velocities so that the local volume change, or divergence,
is zero (or close to zero). There are generally two ways to do this:

• Hard incompressibility, which sets up explicit constraints on the nodal velocities;

• Soft incompressibility, which uses a restoring pressure based on a potential field to try to keep the volume constant.

Both of these methods operate independently, and both can be used either separately or together. Generally speaking,
hard incompressibility will result in incompressibility being more rigorously enforced, but at the cost of increased
computation time and (sometimes) less stability. Soft incompressibility allows the application to control the restoring
force used to enforce incompressibility, usually by adjusting the value of the bulk modulus material property. As the
bulk modulus is increased, soft incompressibility starts to act more like ‘hard’ incompressibility, with an infinite bulk
modulus corresponding to perfect incompressibilty. However, very large bulk modulus values will generally produce
stability problems.

7.7.1 Volume regions and locking

Both hard and soft incompressibility can be applied to different regions of local volume. From larger to smaller, these
regions are:

• Nodal - the local volume surrounding each node;

• Element - the volume of each element;

• Full - the volume at each integration point.

Element-based incompressibility is the standard method generally seen in the literature. However, it tends not to work
well for tetrahedral meshes, because constraining the volume of each tet in a tetrahedral mesh tends to over constrain the
system. This is because the number of tets in a large tetrahedral mesh is often O(5n), where n is the number of nodes,
and so putting a volume constraint on each element may result in O(5n) constraints, which exceeds the 3n degrees
of freedom (DOF) in the FEM. This overconstraining results in an artificially increased stiffness known as locking.
Because of locking, for tetrahedrally based meshes it may be better to use nodal-based incomressibility, which creates
a single volume constraint around each node, resulting in only n constraints, leaving 2n DOF to handle the remaining
deformation. However, nodal-based imcompressibility is computationally more costly than element-based and may not
be as stable.

Generally, the best solution for incompressible problems is to use element-based incompressibility with a mesh
consisting of hexahedra, or primarily hexahedra and a mix of other elements (the latter commonly being known as a hex
dominant mesh). For hex-based meshes, the number of elements is roughly equal to the number of nodes, and so adding
a volume constraint for each element imposes n constraints on the model, which (like nodal incompressibility) leaves 2n
DOF to handle the remaining deformation.

Full incompressibility tries to control the volume at each integration point within each element, which almost always
results in a large number of volumetric constraints and hence locking. It is therefore not commonly used and is provided
mostly for debugging and diagnostic purposes.

7.7.2 Hard incompressibility

Hard incompressibility is controlled by the incompressible property of the FEM, which can be set to one of the follow-
ing values of the enumerated type FemModel.IncompMethod:

../uiguide/uiguide.html

ArtiSynth Modeling Guide 95

OFF No hard incompressibility enforced.

ELEMENT Element-based hard incompressibility enforced (Section 7.7.1).

NODAL Nodal-based hard incompressibility enforced (Section 7.7.1).

AUTO Selects either ELEMENT or NODAL, with the former selected if the number of elements is less than or equal to the
number of nodes.

ON Same as AUTO.

Hard incompressibility uses explicit constraints on the nodal velocities to enforce the incompressibilty, which increases
computational cost. Also, if the number of constraints is too large, perturbed pivot errors may be encountered by the
solver. However, hard incompressibility can in principle handle situtations where complete incompressibility is required.
It is equivalent to the mixed u-P formulation used in commercial FEM codes (such as ANSYS), and the Lagrange
multipliers computed for the constraints are pressure impulses.

Hard incompressibility can be applied in addition to soft incompressibility, in which case it will provide additional
incompressibility enforcement on top of that provided by the latter. It can also be applied to linear materials, which are
not themselves able to emulate true incompressible behavior (Section 7.7.4).

7.7.3 Soft incompressibility

Soft incompressibility enforces incompressibility using a restoring pressure that is controlled by a volume-based energy
potential. It is only available for FEM materials that are subclasses of IncompressibleMaterial. The energy potential
U(J) is a function of the determinant J of the deformation gradient, and is scaled by the material’s bulk modulus κ . The
restoring pressure p is given by

p =
∂U
∂J

. (37)

Different potentials can be selected by setting the bulkPotential property of the incompressible material, whose value is
an instance of IncompressibleMaterial.BulkPotential. Currently there are two different potentials:

QUADRATIC The potential and associated pressure are given by

U(J) =
1
2

κ(J−1)2, p = κ(J−1). (38)

LOGARITHMIC The potential and associated pressure are given by

U(J) =
1
2

κ(lnJ)2, p = κ
lnJ
J

(39)

The default potential is QUADRATIC, which may provide slightly improved stability characteristics. However, we have
not noticed significant differences between the two potentials in practice.

How soft incompressibility is applied within a FEM model is controlled by the FEM’s softIncompMethod property,
which can be set to one of the following values of the enumerated type FemModel.IncompMethod:

ELEMENT Element-based soft incompressibility enforced (Section 7.7.1).

NODAL Nodal-based soft incompressibility enforced (Section 7.7.1).

AUTO Selects either ELEMENT or NODAL, with the former selected if the number of elements is less than or equal to the
number of nodes.

FULL Incompressibility enforced at each integration point (Section 7.7.1).

ArtiSynth Modeling Guide 96

7.7.4 Incompressibility and linear materials

Within a linear material, incompressibility is controlled by Poisson’s ratio ν , which for isotropic materials can assume a
value in the range [−1,0.5]. This specifies the amount of transvere contraction (or expansion) exhibited by the material
as it compressed or extended along a particular direction. A value of 0 allows the material to be compressed or extended
without any transverse contraction or expansion, while a value of 0.5 in theory indicates a perfectly incompressible
material. However, setting ν = 0.5 in practice causes a division by zero, so only values close to 0.5 (such as 0.49) can be
used.

Moreover, the incompressibility only applies to small displacements, so that even with ν = 0.49 it is still possible to
squash a linear FEM completely flat if enough force is applied. If true incompressible behavior is desired with a linear
material, then one must also use hard incompressibility (Section 7.7.2).

7.7.5 Using incompressibility in practice

As mentioned above, when modeling incompressible models, we have found that the best practice is to use, if possible,
either a hex or hex-dominant mesh, along with element-based incompressibility.

Hard incompressibility allows the handling of full incompressibility but at the expense of greater computational cost and
often less stability. When modeling biomechanical materials, it is often permissible to use only soft incompressibility,
partly since biomechanical materials are rarely completely incompressible. When implementing soft incompressibility,
it is common practice to set the bulk modulus to something like 100 times the other (deviatoric) stiffnesses of the
material.

We have found stability behavior to be complex, and while hard incompressibilty often results in less stable behavior,
this is not always the case: in some situations the stronger enforcement afforded by hard incompressibility actually
improves stabilty.

7.8 Muscle activated FEM models

Finite element muscle models are an extension to regular FEM models. As such, everything previously discussed for
regular FEM models also applies to FEM muscles. Muscles have additional properties that allow them to contract when
activated. There are two types of muscles supported:

Fibre-based: Point-to-point muscle fibres are embedded in the model.

Material-based: An auxiliary material is added to the constitutive law to embed muscle properties.

In this section, both types will be described.

7.8.1 FemMuscleModel

The main class for FEM-based muscles is FemMuscleModel, a subclass of FemModel3d. It differs from a basic FEM
model in that it has the new property

Property Description
muscleMaterial An object that adds an activation-dependent ‘muscle’ term to the constitutive law.

This is a delegate object of type MuscleMaterial that computes activation-dependent stress and stiffness in the muscle.
In addition to this property, FemMuscleModel adds two new lists of subcomponents:

bundles
Groupings of muscle sub-units (fibres or elements) that can be activated.

exciters
Components that control the activation of a set of bundles or other exciters.

ArtiSynth Modeling Guide 97

Bundles

Muscle bundles allow for a muscle to be partitioned into separate groupings of fibres/elements, where each bundle can
be activated independently. They are implemented in the class MuscleBundle. Bundles have three key properties:

Property Description
excitation Activation level of the muscle, a ∈ [0,1].
fibresActive Enable/disable “fibre-based” muscle components.
muscleMaterial An object that adds an activation-dependent ‘muscle’ term to the constitutive law.

The excitation property controls the level of muscle activation, with zero being no muscle action, and one being fully
activated. The fibresActive property is a boolean variable that controls whether or not to treat any contained fibres as
point-to-point-like muscles (“fibre-based”). If false, the fibres are ignored. The third property, muscleMaterial, allows
for a MuscleMaterial to be specified per bundle. By default, its value is inherited from FemMuscleModel.

Once a muscle bundle is created, muscle sub-units must be assigned to it. These are either point-to-point fibres, or
material-based muscle element descriptors. The two types will be covered in Sections 7.8.2 and 7.8.3, respectively.

Exciters

Muscle exciters enable you to simultaneously activate a group of “excitation components”. This includes: point-to-point
muscles, muscle bundles, muscle fibres, material-based muscle elements, and other muscle exciters. Components that
can be excited all implement the ExcitationComponent interface. To add or remove a component to the exciter, use

addTarget (ExcitationComponent ex); // adds a component to the exciter
addTarget (ExcitationComponent ex, // adds a component with a gain factor

double gain);
removeTarget (ExcitationComponent ex); // removes a component

If a gain factor is specified, the activation is scaled by the gain for that component.

7.8.2 Fibre-based muscles

In fibre-based muscles, a set of point-to-point muscle fibres are added between FEM nodes or markers. Each fibre is
assigned an AxialMuscleMaterial, just like for regular point-to-point muscles (Section 5.5.1). Note that these muscle
materials typically have a “rest length” property, that will likely need to be adjusted for each fibre. Once the set of
fibres are added to a MuscleBundle, they need to be enabled. This is done by setting the fibresActive property of the
bundle to true.

Fibres are added to a MuscleBundle using one of the functions:

addFibre(Muscle muscle); // adds a point -to-point fibre
Muscle addFibre(Point p0, Point p1, // creates and adds a fibre

AxialMuscleMaterial mat);

The latter returns the newly created Muscle fibre. The following code snippet demonstrates how to create a fibre-based
MuscleBundle and add it to a FEM muscle.

1 // Create a muscle bundle
2 MuscleBundle bundle = new MuscleBundle("fibres");
3 Point3d[] fibrePoints = ... //create a sequential list of points
4

5 // Add fibres
6 Point pPrev = fem.addMarker(fibrePoints [0]); // create a FEM marker
7 for (int i=1; i<=fibrePoints.length; i++) {
8 Point pNext = fem.addMarker(fibrePoint[i]);
9

10 // Create fibre material
11 double l0 = pNext.distance(pPrev); // rest length
12 AxialMuscleMaterial fibreMat =
13 new BlemkerAxialMuscle(
14 1.4*l0, l0, 3000, 0, 0);

ArtiSynth Modeling Guide 98

15

16 // Add a fibre between pPrev and pNext
17 bundle.addFibre(pPrev , pNext , fibreMat); // add fibre to bundle
18 pPrev = pNext;
19 }
20

21 // Enable use of fibres (default is disabled)
22 bundle.setFibresActive(true);
23 fem.addMuscleBundle(bundle); // add the bundle to fem

In these fibre-based muscles, force is only exerted between the anchor points of the fibres; it is a discrete approximation.
These models are typically more stable than material-based ones.

7.8.3 Material-based muscles

In material-based muscles, the constitutive law is augmented with additional terms to account for muscle-specific
properties. This is a continuous representation within the model.

The basic building block for a material-based muscle bundle is a MuscleElemDesc. This object contains a reference
to a FemElement3d, a MuscleMaterial, and either a single direction or set of directions that specify the direction
of contraction. If a single direction is specified, then it is assumed the entire element contracts in the same direction.
Otherwise, a direction can be specified for each integration point within the element. A null direction signals that there
is no muscle at the corresponding point. This allows for a sub-element resolution for muscle definitions. The positions
of integration points for a given element can be obtained with:

// loop through all integration points for a given element
for (IntegrationPoint3d ipnt : elem.getIntegrationPoints()) {

Point3d curPos = new Point3d();
Point3d restPos = new Point3d();
ipnt.computePosition (curPos , elem); // computes current position
ipnt.computeRestPosition (restPos , elem); // computes rest position

}

By default, the MuscleMaterial is inherited from the bundle’s material property. Supported muscle materials
include: GenericMuscle, BlemkerMuscle, and FullBlemkerMuscle. The Blemker-type materials are based on [2].
BlemkerMuscle only uses the muscle-specific terms (since a base material is provided the underlying FEM model),
whereas FullBlemkerMuscle adds all terms described in the aforementioned paper.

Elements can be added to a muscle bundle using one of the methods:

// Adds a muscle element
addElement (MuscleElementDesc elem);
// Creates and adds a muscle element
MuscleElemDesc addElement (FemElement3d elem , Vector3d dir);
// Sets a direction per integration point
MuscleElemDesc addElement (FemElement3d elem , Vector3d[] dirs);

The following snippet demonstrates how to create and add a material-based muscle bundle:

1 // Create muscle bundle
2 MuscleBundle bundle = new MuscleBundle("embedded");
3

4 // Muscle material
5 MuscleMaterial muscleMat = new BlemkerMuscle(
6 1.4, 1.0, 3000, 0, 0);
7 bundle.setMuscleMaterial(muscleMat);
8

9 // Muscle direction
10 Vector3d dir = Vector3d.X_UNIT;
11

12 // Add elements to bundle
13 for (FemElement3d elem : beam.getElements()) {
14 bundle.addElement(elem , dir);
15 }

ArtiSynth Modeling Guide 99

16

17 // Add bundle to model
18 beam.addMuscleBundle(bundle);

7.8.4 Example: comparison with two beam examples

Figure 38: FemMuscleBeams model loaded into ArtiSynth.

An example comparing a fibre-based and a material-based muscle is shown in Figure 38. The code can be found in
artisynth.demos.tutorial.FemMuscleBeam. There are two FemMuscleModel beams in the model: one fibre-based,
and one material-based. Each has three muscle bundles: one at the top (red), one in the middle (green), and one at the
bottom (blue). In the figure, both muscles are fully activated. Note the deformed shape of the beams. In the fibre-based
one, since forces only act between point on the fibres, the muscle seems to bulge. In the material-based muscle, the
entire continuous volume contracts, leading to a uniform deformation.

Material-based muscles are more realistic. However, this often comes at the cost of stability. The added terms to
the constitutive law are highly non-linear, which may cause numerical issues as elements become highly contracted
or highly deformed. Fibre-based muscles are, in general, more stable. However, they can lead to bulging and other
deformation artifacts due to their discrete nature.

7.9 Collisions

As described in Section 5.6, collisions can be enabled for any class that implements the Collidable interface. Both
FemModel3d and FemMeshComp implement Collidable. FemModel3d will use its surface mesh as the collision surface.
A FemMeshComp will use its underlying mesh structure. At present, only meshes of type PolygonalMesh are supported.

Since FemMeshComp is also a Collidable, this means we can enable collisions with any embedded mesh inside a FEM.
Any forces resulting from the collision are then automatically transfered back to the underlying nodes of the model
using Equation (35).

7.9.1 Example: FEM collisions

An example of FEM collisions is shown in Figure 39. The full source code can be found in the ArtiSynth repository
under artisynth.demos.tutorial.FemCollisions. The collision-enabling code is as follows:

// Set up collisions
mech.setCollisionBehavior(ellipsoid , beam , true); // beam -ellipsoid
mech.setCollisionBehavior(ellipsoid , table , true); // ellipsoid -table
mech.setCollisionBehavior(table , beam , true); // beam -table

ArtiSynth Modeling Guide 100

Figure 39: FemCollisions model loaded into ArtiSynth.

FemMeshComp embeddedSphere = block.getMeshComp("embedded"); // get embedded ←↩
FemMeshComp

mech.setCollisionBehavior(embeddedSphere , table , true); // sphere -table
mech.setCollisionBehavior(ellipsoid , embeddedSphere , true); // sphere -ellipsoid

Notice in the figure that the surface of the green block passes through the table and ellipsoid; only the embedded sphere
has collisions enabled.

7.10 Rendering and Visualizations

In addition to the standard RenderProps that control how the nodes and surfaces appear, finite element models and their
sub-components have a few additional properties that affect rendering. Some of these are listed in Table 7.

Table 7: FEM-specific rendering properties
Property Description
elementWidgetSize size of element to render ∈ [0,1]
directionRenderLen relative length to draw fibre direction indicator ∈ [0,1]
directionRenderType where to draw directions: ELEMENT, INTEGRATION_POINT
surfaceRendering how to render surface: None, Shaded, Stress, Strain
stressPlotRange range of values for stress/strain plot
stressPlotRanging how to determine stress/strain plot range: Auto, Fixed
colorMap delegate object controlling the map of stress/strain values to

color

The property elementWidgetSize applies only to FemModel3d and FemElement3d. It specifies the scale to draw each
element volume. For instance, the blue beam in Figure 39 uses a widget size of 0.8, resulting in a mosaic-like pattern.

The next two properties in Table 7 apply to the muscle classes FemMuscleModel, MuscleBundle, and Muscle-
ElemDesc. When directionRenderLen > 0, lines are drawn inside elements to indicate fibre directions. If
directionRenderType = ELEMENT, then one line is drawn per element indicating the average contraction direc-
tion. If directionRenderType = INTEGRATION_POINT, a separate direction line is drawn per point.

The last four properties apply to FemModel3d and FemMeshComp. They control how the surface is colored. This can
be used to enable stress/strain visualizations. The property surfaceRendering sets what to draw:

None no surface
Shaded the face color specified by the mesh’s RenderProps
Stress the von Mises stress
Strain the von Mises strain

ArtiSynth Modeling Guide 101

The stressPlotRange controls the range of values to use when plotting stress/strain. Values outside this range are
truncated. The colorMap is a delegate object that converts those stress and strain values to colors. Various types of maps
exist, including GreyscaleColorMap, HueColorMap, RainbowColorMap, and JetColorMap. These all implement the
ColorMap interface.

To display values corresponding to colors, a ColorBar needs to be added to the RootModel. Color bars are general
Renderable objects that are only used for visualizations. They are added to the display using the

addRenderable (Renderable r);

method in RootModel. Color bars also have a ColorMap associated with it. The following functions are useful for
controlling its visualization:

setNumberFormat (String fmtStr); // C-like numeric format specification
populateLabels (double min, double max, int tick); // initialize labels
updateLabels (double min, double max); // update existing labels

setColorMap (ColorMap map); // set color map

// Control position/size of the bar
setNormalizedLocation (double x, double y, double width , double height);
setLocationOverride (double x, double y, double width , double height)

The normalized location specifies sizes relative to the screen size (1 = screen width/height). The location override, if
values are non-zero, will override the normalized location, specifying values in absolute pixels. Negative values for
position correspond to distances from the left/top. For instance,

setNormalizedLocation(0, 0.1, 0, 0.8); // set relative positions
setLocationOverride(-40, 0, 20, 0); // override with pixel lengths

will create a bar that is 10% up from the bottom of the screen, 40 pixels from the right edge, with a height occupying
80% of the screen, and width 20 pixels.

Note that the color bar is not associated with any mesh or finite element model. Any synchronization of colors and
labels must be done manually by the developer. It is recommended to do this in the RootModel’s prerender(...)
method, so that colors are updated every time the model’s rendering configuration changes.

7.10.1 Example: stress and strain plotting

Figure 40: FemBeamColored model loaded into ArtiSynth.

The following model extends FemBeam to render stress, with an added color bar. The loaded model is shown in Figure
40.

ArtiSynth Modeling Guide 102

1 package artisynth.demos.tutorial;
2

3 import java.io.IOException;
4

5 import maspack.render.RenderList;
6 import maspack.util.DoubleInterval;
7 import artisynth.core.femmodels.FemModel.Ranging;
8 import artisynth.core.femmodels.FemModel.SurfaceRender;
9 import artisynth.core.renderables.ColorBar;

10

11 public class FemBeamColored extends FemBeam {
12

13 @Override
14 public void build(String[] args) throws IOException {
15 super.build(args);
16

17 // Show stress on the surface
18 fem.setSurfaceRendering(SurfaceRender.Stress);
19 fem.setStressPlotRanging(Ranging.Auto);
20

21 // Create a colorbar
22 ColorBar cbar = new ColorBar();
23 cbar.setName("colorBar");
24 cbar.setNumberFormat("%.2f"); // 2 decimal places
25 cbar.populateLabels(0.0, 1.0, 10); // Start with range [0,1], 10 ticks
26 cbar.setLocationOverride(-100, 0, 20, 0);
27 addRenderable(cbar);
28

29 }
30

31 @Override
32 public void prerender(RenderList list) {
33 super.prerender(list);
34

35 // Synchronize color bar/values in case they are changed
36 ColorBar cbar = (ColorBar)(renderables().get("colorBar"));
37 cbar.setColorMap(fem.getColorMap());
38 DoubleInterval range = fem.getStressPlotRange();
39 cbar.updateLabels(range.getLowerBound(), range.getUpperBound());
40 }
41

42 }

8 DICOM Images

Some models are be derived from image data, and it may be useful to show the model and image in the same space. For
this purpose, a DICOM image widget has been designed, capable of displaying 3D DICOM volumes as a set of three
perpendicular planes. An example widget and its property panel is shown in Figure 41.

The main classes related to the reading and displaying of DICOM images are:

DicomElement
Describes a single attribute in a DICOM file.

DicomHeader
Contains all header attributes (all but the image data) extracted from a DICOM file.

DicomPixelBuffer
Contains the decoded image pixels for a single image frame.

DicomSlice
Contains both the header and image information for a single 2D DICOM slice.

DicomImage
Container for DICOM slices, creating a 3D volume (or 3D + time)

ArtiSynth Modeling Guide 103

Figure 41: DICOM image of the heart, downloaded from http://www.osirix-viewer.com.

DicomReader
Parses DICOM files and folders, appending information to a DicomImage.

DicomViewer
Displays the DicomImage in the viewer.

If the purpose is simply to display a DICOM volume in the ArtiSynth viewer, then only the last three classes will be of
interest. Readers who simply want to display a DICOM image in their model can skip to Section 8.3.

8.1 The DICOM file format

For a complete description of the DICOM format, see the specification page at http://medical.nema.org/
standard.html. A brief description is provided here. Another excellent resource is the blog by Roni Zaharia:
http://dicomiseasy.blogspot.ca/.

Each DICOM file contains a number of concatenated attributes (a.k.a. elements), one of which defines the embedded
binary image pixel data. The other attributes act as meta-data, which can contain identity information of the subject,
equipment settings when the image was acquired, spatial and temporal properties of the acquisition, voxel spacings,
etc. . . . The image data typically represents one or more 2D images, concatenated, representing slices (or ‘frames’) of a
3D volume whose locations are described by the meta-data. This image data can be a set of raw pixel values, or can be
encoded using almost any image-encoding scheme (e.g. JPEG, TIFF, PNG). For medical applications, the image data
is typically either raw or compressed using a lossless encoding technique. Complete DICOM acquisitions are typically
separated into multiple files, each defining one or few frames. The frames can then be assembled into 3D image ‘stacks’
based on the meta-information, and converted into a form appropriate for display.

Each DICOM attribute is composed of:

• a standardized unique integer tag in the format (XXXX,XXXX) that defines the group and element of the attribute
• a value representation (VR) that describes the data type and format of the attribute’s value (see Table 8)
• a value length that defines the length in bytes of the attribute’s value to follow
• a value field that contains the attribute’s value

This layout is depicted in Figure 42. A list of important attributes are provided in Table 9.

Tag VR Value Length Value Field
Figure 42: DICOM attribute structure

http://www.osirix-viewer.com
http://medical.nema.org/standard.html
http://medical.nema.org/standard.html
http://dicomiseasy.blogspot.ca/

ArtiSynth Modeling Guide 104

Table 8: A selection of Value Representations
VR Description
CS Code String
DS Decimal String
DT Date Time
IS Integer String
OB Other Byte String
OF Other Float String
OW Other Word String
SH Short String
UI Unique Identifier
US Unsigned Short
OX One of OB, OW, OF

8.2 The DICOM classes

Each DicomElement represents a single attribute contained in a DICOM file. The DicomHeader contains the collection
of DicomElements defined in a file, apart from the pixel data. The image pixels are decoded and stored in a Dicom-
PixelBuffer. Each DicomSlice contains a DicomHeader, as well as the decoded DicomPixelBuffer for a single slice
(or ‘frame’). All slices are assembled into a single DicomImage, which can be used to extract 3D voxels and spatial
locations from the set of slices. These five classes are described in further detail in the following sections.

8.2.1 DicomElement

The DicomElement class is a simple container for DICOM attribute information. It has three main properties:

• an integer tag
• a value representation (VR)
• a value

These properties can be obtained using the corresponding get function: getTag(), getVR(), getValue(). The tag refers
to the concatenated group/element tag. For example, the transfer syntax UID which corresponds to group 0x0002 and
element 0x0010 has a numeric tag of 0x00020010. The VR is represented by an enumerated type, DicomElement.VR.
The ‘value’ is the raw value extracted from the DICOM file. In most cases, this will be a String. For raw numeric
values (i.e. stored in the DICOM file in binary form) such as the unsigned short (US), the ‘value’ property is exactly the
numeric value.

For VRs such as the integer string (IS) or decimal string (DS), the string will still need to be parsed in order to extract
the appropriate sequence of numeric values. There are static utility functions for handling this within DicomElement. For
a ‘best-guess’ of the desired parsed value based on the VR, one can use the method getParsedValue(). Often, however,
the desired value is also context-dependent, so the user should know a priori what type of value(s) to expect. Parsing can
also be done automatically by querying for values directly through the DicomHeader object.

8.2.2 DicomHeader

When a DICOM file is parsed, all meta-data (attributes apart from the actual pixel data) is assembled into a Dicom-
Header object. This essentially acts as a map that can be queried for attributes using one of the following methods:

DicomElement getElement(int tag); // includes VR and data
String getStringValue(int tag); // all non-numeric VRs
String[] getMultiStringValue(int tag); // UT, SH
int getIntValue(int tag, int defaultValue); // IS, DS, SL, UL, SS, US
int[] getMultiIntValue(int tag); // IS, DS, SL, UL, SS, US
double getDecimalValue(int tag, double defaultValue); // DS, FL, FD
double[] getMultiDecimalValue(int tag); // DS, FL, FD
VectorNd getVectorValue(int tag); // DS, IS, SL, UL, SS, US, FL, FD
DicomDateTime getDateTime(int tag); // DT, DA, TM

ArtiSynth Modeling Guide 105

Table 9: A selection of useful DICOM attributes
Attribute name VR Tag
Transfer syntax UID UI 0x0002, 0x0010

Slice thickness DS 0x0018, 0x0050
Spacing between slices DS 0x0018, 0x0088

Study ID SH 0x0020, 0x0010
Series number IS 0x0020, 0x0011
Aquisition number IS 0x0020, 0x0012
Image number IS 0x0020, 0x0013
Image position patient DS 0x0020, 0x0032
Image orientation patient DS 0x0020, 0x0037
Temporal position identifier IS 0x0020, 0x0100
Number of temporal positions IS 0x0020, 0x0105
Slice location DS 0x0020, 0x1041

Samples per pixel US 0x0028, 0x0002
Photometric interpretation CS 0x0028, 0x0004
Planar configuration (color) US 0x0028, 0x0006
Number of frames IS 0x0028, 0x0008
Rows US 0x0028, 0x0010
Columns US 0x0028, 0x0011
Pixel spacing DS 0x0028, 0x0030
Bits allocated US 0x0028, 0x0100
Bits stored US 0x0028, 0x0101
High bit US 0x0028, 0x0102
Pixel representation US 0x0028, 0x0103

Pixel data OX 0x7FE0, 0x0010

The first method returns the full element as described in the previous section. The remaining methods are used for
convenience when the desired value type is known for the given tag. These methods automatically parse or convert the
DicomElement’s value to the desired form.

If the tag does not exist in the header, then the getIntValue(...) and getDecimalValue(...) will return the supplied
defaultValue. All other methods will return null.

8.2.3 DicomPixelBuffer

The DicomPixelBuffer contains the decoded image information of an image slice. There are three possible pixel types
currently supported:

• byte grayscale values (PixelType.BYTE)
• short grayscale values (PixelType.SHORT)
• byte RGB values, with layout RGBRGB...RGB (PixelType.RGB)

The pixel buffer stores all pixels in one of these types. The pixels can be queried for directly using getPixel(idx) to get
a single pixel, or getBuffer() to get the entire pixel buffer. Alternatively, a DicomPixelConverter object can be passed
in to convert between pixel types via one of the following methods:

public int getPixelsByte(int x, int dx, int nx, byte[] pixels , int offset , ←↩
DicomPixelConverter interp);

public int getPixelsShort(int x, int dx, int nx, short[] pixels , int offset , ←↩
DicomPixelConverter interp);

public int getPixelsRGB(int x, int dx, int nx, byte[] pixels , int offset , ←↩
DicomPixelConverter interp);

public int getPixels(int x, int dx, int nx, DicomPixelBuffer pixels , int offset , ←↩
DicomPixelConverter interp);

These methods populate an output array or buffer with converted pixel values, which can later be passed to a renderer.
For further details on these methods, refer to the Javadoc documentation.

ArtiSynth Modeling Guide 106

8.2.4 DicomSlice

A single DICOM file contains both header information, and one or more image ‘frames’ (slices). In ArtiSynth, we
separate each frame and attach them to the corresponding header information in a DicomSlice. Thus, each slice
contains a single DicomHeader and DicomPixelBuffer. These can be obtained using the methods: getHeader() and
getPixelBuffer().

For convenience, the DicomSlice also has all the same methods for extracting and converting between pixel types as the
DicomPixelBuffer.

8.2.5 DicomImage

An complete DICOM acquisition typically consists of multiple slices forming a 3D image stack, and potentially
contains multiple 3D stacks to form a dynamic 3D+time image. The collection of DicomSlices are thus assembled into a
DicomImage, which keeps track of the spatial and temporal positions.

The DicomImage is the main object to query for pixels in 3D(+time). To access pixels, it has the following methods:

public int getPixelsByte (int x, int y, int z, int dx, int dy, int dz, int nx, int ny ←↩
, int nz, int time , byte[] pixels , DicomPixelConverter interp);

public int getPixelsShort(int x, int y, int z, int dx, int dy, int dz, int nx, int ny ←↩
, int nz, int time , short[] pixels , DicomPixelConverter interp);

public int getPixelsRGB (int x, int y, int z, int dx, int dy, int dz, int nx, int ny ←↩
, int nz, int time , byte[] pixels , DicomPixelConverter interp);

public int getPixels(int x, int y, int z, int dx, int dy, int dz, int nx, int ny, int ←↩
nz, int time , DicomPixelBuffer pixels , DicomPixelConverter interp);

The inputs {x, y, z} refer to voxel indices, and time refers to the time instance index, starting at zero. The four voxel
dimensions of the image can be queried with: getNumCols() getNumRows(), getNumSlices(), and getNumTimes().

The DicomImage also contains spatial transform information for converting between voxel indices and patient-centered
spatial locations. The affine transform can be acquired with the method getPixelTransform(). This allows the image
to be placed in the appropriate 3D location, to correspond with any derived data such as segmentations. The spatial
transformation is automatically extracted from the DICOM header information embedded in the files.

8.3 Loading a DicomImage

DICOM files and folders are read using the DicomReader class. The reader populates a supplied DicomImage with slices,
forming the full 3D(+time) image. The basic pattern is as follows:

String DICOM_directory = ... // define directory of interest
DicomReader reader = new DicomReader(); // create a new reader

// read all files in a directory , returning a newly constructed image
DicomImage image = reader.read(null , DICOM_directory);

The first argument in the read(...) command is an existing image in which to append slices. In this case, we pass in
null to signal that a new image is to be created.

In some cases, we might wish to exclude certain files, such as meta-data files that happen to be in the DICOM folder.
By default, the reader attempts to read all files in a given directory, and will print out an error message for those it fails
to detect as being in a valid DICOM format. To limit the files to be considered, we allow the specification of a Java
Pattern, which will test each filename against a regular expression. Only files with names that match the pattern will be
included. For example, in the following, we limit the reader to files ending with the “dcm” extension.

String DICOM_directory = ... // define directory of interest
DicomReader reader = new DicomReader(); // create a new reader
Pattern dcmPattern = Pattern.compile(".*\\.dcm") ; // files ending with .dcm

// read all files in a directory , returning a newly constructed image
DicomImage image = reader.read(null , DICOM_directory , dcmPattern , /*subdirs*/ false);

ArtiSynth Modeling Guide 107

The pattern is applied to the absolute filename, with either windows and mac/linux file separators (both are checked
against the regular expression). The method also has an option to recursively search for files in subdirectories. If the full
list of files is known, then one can use the method:

public DicomImage read(DicomImage im, List <File > files);

which will load all specified files.

8.3.1 Time-dependent images

In most cases, time-dependent images will be properly assembled using the previously mentioned methods in the
DicomReader. Each slice should have a temporal position identifier that allows for the separate image stacks to be
separated. However, we have found in practice that at times, the temporal position identifier is omitted. Instead, each
stack might be stored in a separate DICOM folder. For this reason, additional read methods have been added that allow
manual specification of the time index:

public DicomImage read(DicomImage im, List <File > files , int temporalPosition);
public DicomImage read(DicomImage im, String directory , Pattern filePattern , boolean ←↩

checkSubdirectories , int temporalPosition);

If the supplied temporalPosition is non-negative, then the temporal position of all included files will be manually set to
that value. If negative, then the method will attempt to read the temporal position from the DICOM header information.
If no such information is available, then the reader will guess the temporal position to be one past the last temporal
position in the original image stack (or 0 if im == null). For example, if the original image has temporal positions {0, 1,
2}, then all appended slices will have a temporal position of three.

8.3.2 Image formats

The DicomReader attempts to automatically decode any pixel information embedded in the DICOM files. Unfortunately,
there are virtually an unlimited number of image formats allowed in DICOM, so there is no way to include native
support to decode all of them. By default, the reader can handle raw pixels, and any image format supported by Java’s
ImageIO framework, which includes JPEG, PNG, BMP, WBMP, and GIF. Many medical images, however, rely on loss-
less or near-lossless encoding, such as lossless JPEG, JPEG 2000, or TIFF. For these formats, we provide an interface
that interacts with the third-party command-line utilies provided by ImageMagick (http://www.imagemagick.org).
To enable this interface, the ImageMagick utilities identify and convert must be available and exist somewhere on
the system’s PATH environment variable.

ImageMagick Installation

To enable ImageMagick decoding, required for image formats not natively supported by Java (e.g. JPEG 2000,
TIFF), download and install the ImageMagick command-line utilities from: http://www.imagemagick.org/
script/binary-releases.php

The install path must also be added to your system’s PATH environment variable so that ArtiSynth can locate the
identify and convert utilities.

8.4 The DicomViewer

Once a DicomImage is loaded, it can be displayed in a model by using the DicomViewer component. The viewer has
several key properties:

http://www.imagemagick.org
http://www.imagemagick.org/script/binary-releases.php
http://www.imagemagick.org/script/binary-releases.php

ArtiSynth Modeling Guide 108

Property Description
name the name of the viewer component
x, y, z the normalized slice positions, in the range [0,1], at which to display image planes
timeIndex the temporal position (image stack) to display
transform an affine transformation to apply to the image (on top of the voxel-to-spatial trans-

form extracted from the DICOM file)
drawYZ draw the YZ plane, corresponding to position x
drawXZ draw the XZ plane, corresponding to position y
drawXY draw the XY plane, corresponding to position z
drawBox draw the 3D image’s bounding box
pixelConverter the interpolator responsible for converting pixels decoded in the DICOM slices into

values appropriate for display. The converter has additional properties:
window name of a preset window for linear interpolation of intensities
center center intensity
width width of window

Each property has a corresponding getXxx(...) and setXxx(...) method that can adjust the settings in code. They
can also be modified directly in the ArtiSynth GUI. The last property, the pixelConverter allows for shifting and
scaling intensity values for display. By default a set of intensity ‘windows’ are loaded directly from the DICOM file.
Each window has a name, and defines a center and width used for linearly scale the intensity range. In addition to the
windows extracted from the DICOM, two new windows are added: FULL_DYNAMIC, corresponding to the entire intensity
range of the image; and CUSTOM, which allows for custom specification of the window center and width properties.

To add a DicomViewer to the model, create the viewer by supplying a component name and reference to a DicomImage,
then add it as a Renderable to the RootModel:

DicomViewer viewer = new DicomViewer("my image", dicomImage);
addRenderable(viewer);

The image will automatically be displayed in the patient-centered coordinates loaded from the DicomImage. In addition
to this basic construction, there are convenience constructors to avoid the need for a DicomReader for simple DICOM
files:

// loads all matching DICOM files to create a new image
public DicomViewer(String name , String imagePath , Pattern filePattern , boolean ←↩

checkSubdirs);
// loads a list of DICOM files to create a new image
public DicomViewer(String name , List <File > files);

These constructors generate a new DicomImage internal to the viewer. The image can be retreived from the viewer using
the getImage() method.

8.5 DICOM example

Examples of DICOM use can be found in the artisynth.core.demos.dicom package. These demos automatically
download sample DICOM data from http://www.osirix-viewer.com/datasets/. The following listing provides
one such example, loading an MR image of the wrist. Note that the image data in this example is encoded with the JPEG
2000 format, so ImageMagick is required to decode the pixels (see Section 8.3.2).

1 package artisynth.demos.dicom;
2

3 import java.awt.Color;
4 import java.io.File;
5 import java.io.IOException;
6 import java.util.regex.Pattern;
7

8 import artisynth.core.renderables.DicomViewer;
9 import artisynth.core.util.ArtisynthPath;

10 import artisynth.core.workspace.DriverInterface;
11 import artisynth.core.workspace.RootModel;
12 import maspack.dicom.DicomImageDecoderImageMagick;
13 import maspack.fileutil.FileGrabber;

http://www.osirix-viewer.com/datasets/

ArtiSynth Modeling Guide 109

14

15 /**
16 * Dicom image of the wrist , using ImageMagick to decode
17 *
18 */
19 public class DicomTestImageMagick extends RootModel {
20

21 String dicom_url = "http://www.osirix -viewer.com/datasets/DATA/WRIX.zip";
22 String dicom_folder = "WRIX/WRIX/WRIST RIGHT/T1 TSE COR RT. - 4";
23

24 public void build(String[] args) throws IOException {
25

26 // grab remote zip file with DICOM data
27 String localDir = ArtisynthPath.getSrcRelativePath(this , "data/WRIX");
28 FileGrabber fileGrabber = new FileGrabber(localDir , "zip:" + dicom_url + "!/");
29 fileGrabber.setConsoleProgressPrinting(true);
30 fileGrabber.setOptions(FileGrabber.DOWNLOAD_ZIP); // download zip file first
31

32 // download dicom image
33 File dicomPath = fileGrabber.get(dicom_folder);
34

35 // restrict to files ending in .dcm
36 Pattern dcmPattern = Pattern.compile(".*\\.dcm");
37

38 // add DicomViewer
39 DicomViewer dcp = new DicomViewer("Wrist", dicomPath , dcmPattern);
40 addRenderable(dcp);
41

42 }
43 }

Lines 27–33 are responsible for downloading and extracting the sample DICOM zip file. In the end, dicomPath contains
a reference to the desired DICOM directory on the local system. On line 36, we create a regular expression pattern
that will only match files ending in .dcm. On line 39, we create the viewer, which will automatically parse the desired
DICOM files and create a DicomImage internally. We then add the viewer to the model for display purposes. This model
is displayed in Figure 43.

Figure 43: DICOM model of the wrist, downloaded from http://www.osirix-viewer.com.

A Mathematical Review

This appendix reviews some of the mathematical concepts used in this manual.

http://www.osirix-viewer.com

ArtiSynth Modeling Guide 110

A

x

y

z x’

y’

z’

B

Figure 44: Two coordinate frames A and B rotated with respect to each other.

A.1 Rotation transforms

Rotation matrices are used to describe the orientation of 3D coordinate frames in space, and to transform vectors
between these coordinate frames.

Consider two 3D coordinate frames A and B that are rotated with respect to each other (Figure 44). The orientation
of B with respect to A can be described by a 3× 3 rotation matrix RBA, whose columns are the unit vectors giving the
directions of the rotated axes x′, y′, and z′ of B with respect to A.

RBA is an orthogonal matrix, meaning that its columns are both perpendicular and mutually orthogonal, so that

RT
BA RBA = I (40)

where I is the 3×3 identity matrix. The inverse of RBA is hence equal to its transpose:

R−1
BA = RT

BA. (41)

Because RBA is orthogonal, |detRBA|= 1, and because it is a rotation, detRBA = 1 (the other case, where detRBA =−1,
is not a rotation but a reflection). The 6 orthogonality constraints associated with a rotation matrix mean that in spite of
having 9 numbers, the matrix only has 3 degrees of freedom.

Now, assume we have a 3D vector v, and consider its coordinates with respect to both frames A and B. Where necessary,
we use a preceding superscript to indicate the coordinate frame with respect to which a quantity is described, so that Av
and Bv and denote v with respect to frames A and B, respectively. Given the definition of RAB given above, it is fairly
straightforward to show that

Av = RBA
Bv (42)

and, given (41), that
Bv = RT

BA
Av. (43)

Hence in addition to describing the orientation of B with respect to A, RBA is also a transformation matrix that maps
vectors in B to vectors in A.

It is straightforward to show that
R−1

BA = RT
BA = RAB. (44)

A simple rotation by an angle θ about one of the basic coordinate axes is known as a basic rotation. The three basic
rotations about x, y, and z are:

Rx(θ) =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 ,

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 ,

ArtiSynth Modeling Guide 111

A

B

C

CB

BA
R

R

CA
R

Figure 45: Schematic illustration of three coordinate frames A, B, and C and the rotational transforms relating them.

Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Next, we consider transform composition. Suppose we have three coordinate frames, A, B, and C, whose orientation are
related to each other by RBA, RCB, and RCA (Figure 49). If we know RBA and RCA, then we can determine RCB from

RCB = R−1
BA RCA. (45)

This can be understood in terms of vector transforms. RCB transforms a vector from C to B, which is equivalent to first
transforming from C to A,

Av = RCA
Cv, (46)

and then transforming from A to B:
Bv = R−1

BA
Av = R−1

BA RCA
Cv = RCB

Cv. (47)

Note also from (44) that RCB can be expressed as

RCB = RAB RCA. (48)

In addition to specifying rotation matrix components explicitly, there are numerous other ways to describe a rotation.
Three of the most common are:

Roll-pitch-yaw angles
There are 6 variations of roll-pitch-yaw angles. The one used in ArtiSynth corresponds to older robotics texts
(e.g., Paul, Spong) and consists of a roll rotation r about the z axis, followed by a pitch rotation p about the new
y axis, followed by a yaw rotation y about the new x axis. The net rotation can be expressed by the following
product of basic rotations: Rz(r)Ry(p)Rx(y).

Axis-angle
An axis angle rotation parameterizes a rotation as a rotation by an angle θ about a specific axis u. Any rotation
can be represented in such a way as a consequence of Euler’s rotation theorem.

Euler angles
There are 6 variations of Euler angles. The one used in ArtiSynth consists of a rotation φ about the z axis,
followed by a rotation θ about the new y axis, followed by a rotation ψ about the new z axis. The net rotation can
be expressed by the following product of basic rotations: Rz(φ)Ry(θ)Rz(ψ).

ArtiSynth Modeling Guide 112

A

B

x

y

z

x’

y’

z’

p
BA

BA
R

Figure 46: A position vector pBA and rotation matrix RBA describing the position and orientation of frame B with respect
to frame A.

A

B

p
BA

q
A

q
B

Figure 47: Point vectors Aq and Bq describing the position of a point q with respect to frames A and B.

A.2 Rigid transforms

Rigid transforms are used to specify both the transformation of points and vectors between coordinate frames, as well as
the relative position and orientation between coordinate frames.

Consider two 3D coordinate frames in space, A and B (Figure 46). The translational position of B with respect to A can
be described by a vector pBA from the origin of A to the origin of B (described with respect to frame A). Meanwhile,
the orientation of B with respect to A can be described by the 3× 3 rotation matrix RBA (Section A.1). The combined
position and orientation of B with respect to A is known as the pose of B with respect to A.

Now, assume we have a 3D point q, and consider its coordinates with respect to both frames A and B (Figure 47). Given
the pose descriptions given above, it is fairly straightforward to show that

Aq = RBA
Bq+pBA, (49)

and, given (41), that
Bq = RT

BA (
Aq−pBA). (50)

If we extend our points into a 4D homogeneous coordinate space with the fourth coordinate w equal to 1, i.e.,

q∗ ≡
(

q
1

)
, (51)

then (49) and (50) can be simplified to

Aq∗ = TBA
Bq∗ and Bq∗ = T−1

BA
Aq∗

ArtiSynth Modeling Guide 113

A

B

T
BA

x

y

z

x’

y’

z’

Figure 48: The transform matrix TBA from B to A.

where

TBA =

(
RBA pBA

0 1

)
(52)

and

T−1
BA =

(
RT

BA −RT
BApBA

0 1

)
. (53)

TBA is the 4×4 rigid transform matrix that transforms points from B to A and also describes the pose of B with respect
to A (Figure 48).

It is straightforward to show that RT
BA and −RT

BApBA describe the orientation and position of A with respect to B, and so
therefore

T−1
BA = TAB. (54)

Note that if we are transforming a vector v instead of a point between B and A, then we are only concerned about
relative orientation and the vector transforms (42) and (43) should be used instead. However, we can express these using
TBA if we embed vectors in a homogeneous coordinate space with the fourth coordinate w equal to 0, i.e.,

v∗ ≡
(

v
0

)
, (55)

so that
Bv∗ = TBA

Av∗ and Av∗ = T−1
BA

Bv∗.

Finally, we consider transform composition. Suppose we have three coordinate frames, A, B, and C, each related to the
other by transforms TBA, TCB, and TCA (Figure 49). Using the same reasoning used to derive (45) and (48), it is easy to
show that

TCB = T−1
BA TCA = TAB TCA. (56)

A.3 Affine transforms

An affine transform is a generalization of a rigid transform, in which the rotational component R is replaced by a general
3× 3 matrix A. This means that an affine transform implements a generalized basis transformation combined with an
offset of the origin (Figure 50). As with R for rigid transforms, the columns of A still describe the transformed basis
vectors x′, y′, and z′, but these are generally no longer orthonormal.

Expressed in terms of homogeneous coordinates, the affine transform XAB takes the form

XBA =

(
ABA pBA

0 1

)
(57)

with

X−1
BA =

(
A−1

BA −A−1
BA pBA

0 1

)
. (58)

ArtiSynth Modeling Guide 114

A

B

T

C

T

T

BA

CB

CA

Figure 49: Three coordinate frames A, B, and C and the transforms relating each one to the other.

A

B

x

y

z

x’

z’

p
BA

BA
A

y’

Figure 50: A position vector pBA and a general matrix ABA describing the affine position and basis transform of frame B
with respect to frame A.

As with rigid transforms, when an affine transform is applied to a vector instead of a point, only the matrix A is applied
and the translation component p is ignored.

Affine transforms are typically used to effect transformations that require stretching and shearing of a coordinate frame.
By the polar decomposition theorem, A can be factored into a regular rotation R plus a symmetric shearing/scaling
matrix P:

A = RP (59)

Affine transforms can also be used to perform reflections, in which A is orthogonal (so that AT A = I) but with
detA =−1.

A.4 Rotational velocity

Given two 3D coordinate frames A and B, the rotational, or angular, velocity of B with respect to A is given by a 3D
vector ωBA (Figure 51). ωBA is related to the derivative of RBA by

ṘBA = [AωBA]RBA = RBA[
B

ωBA] (60)

where AωBA and BωBA indicate ωBA with respect to frames A and B and [ω] denotes the 3×3 cross product matrix

[ω]≡

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (61)

ArtiSynth Modeling Guide 115

A

B

BA
R

ω

Figure 51: Frame B rotating with respect to frame A.

If we consider instead the velocity of A with respect to B, it is straightforward to show that

ωAB =−ωBA. (62)

A.5 Spatial velocities and forces

Given two 3D coordinate frames A and B, the spatial velocity, or twist, v̂BA of B with respect to A is given by the 6D
composition of the translational velocity vBA of the origin of B with respect to A and the angular velocity ωBA:

v̂BA ≡
(

vBA
ωBA

)
. (63)

Similarly, the spatial force, or wrench, f̂ acting on a frame B is given by the 6D composition of the translational force fB
acting on the frame’s origin and the moment τ , or torque, acting through the frame’s origin:

f̂B ≡
(

fB
τB

)
. (64)

A

B

p

C

BA

Figure 52: Two frames A and B rigidly connected within a rigid body and moving with respect to a third frame C.

ArtiSynth Modeling Guide 116

If we have two frames A and B rigidly connected within a rigid body (Figure 52), and we know the spatial velocity
v̂BC of B with respect to some third frame C, we may wish to know the spatial velocity v̂AC of A with respect to C. The
angular velocity components are the same, but the translational velocity components are coupled by the angular velocity
and the offset pBA between A and B, so that

vAC = vBC +pBA×ωBC.

v̂AC is hence related to v̂BC via (
vAC
ωAC

)
=

(
I [pBA]
0 I

) (
vBC
ωBC

)
.

where [pBA] is defined by (61).

The above equation assumes that all quantities are expressed with respect to the same coordinate frame. If we instead
consider v̂AC and v̂BC to be represented in frames A and B, respectively, then we can show that

Av̂AC = XBA
Bv̂BC, (65)

where

XBA ≡
(

RBA [pBA]RBA
0 RBA

)
. (66)

The transform XBA is easily formed from the components of the rigid transform TBA relating B to A.

The spatial forces f̂A and f̂B acting on frames A and B within a rigid body are related in a similar way, only with spatial
forces, it is the moment that is coupled through the moment arm created by pBA, so that

τA = τB +pBA× fB.

If we again assume that f̂A and f̂B are expressed in frames A and B, we can show that

Af̂A = X∗BA
B f̂B, (67)

where

X∗BA ≡
(

RBA 0
[pBA]RBA RBA

)
. (68)

A.6 Spatial inertia

Assume we have a rigid body with mass m and a coordinate frame located at the body’s center of mass. If v and ω give
the translational and rotational velocity of the coordinate frame, then the body’s linear and angular momentum p and L
are given by

p = mv and L = Jω, (69)

where J is the 3× 3 rotational inertia with respect to the center of mass. These relationships can be combined into a
single equation

p̂ = Mv̂, (70)

where p̂ and M are the spatial momentum and spatial inertia:

p̂≡
(

p
L

)
, M≡

(
mI 0
0 J

)
. (71)

The spatial momentum satisfies Newton’s second law, so that

f̂ =
dp̂
dt

= M
dv̂
dt

+Ṁv̂, (72)

which can be used to find the acceleration of a body in response to a spatial force.

When the body coordinate frame is not located at the center of mass, then the spatial inertia assumes the more compli-
cated form (

mI −m[c]
m[c] J−m[c][c]

)
, (73)

where c is the center of mass and [c] is defined by (61).

Like the rotational inertia, the spatial inertia is always symmetric positive definite if m > 0.

ArtiSynth Modeling Guide 117

References

[1] Mihai Anitescu and Florian A. Potra. A time-stepping method for stiff multibody dynamics with contact and
friction. International Journal for Numerical Methods in Engineering, 55(7):753–784, 2002.

[2] Silvia S Blemker and Scott L Delp. Three-dimensional representation of complex muscle architectures and
geometries. Annals of biomedical engineering, 33(5):661–673, 2005.

[3] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press,
2000.

[4] Claude Lacoursière. Ghosts and machines: regularized variational methods for interactive simulations of multibod-
ies with dry frictional contacts. PhD thesis, Computer Science Dept., Umea University, Sweden, 2007.

[5] John E Lloyd, Ian Stavness, and Sidney Fels. Artisynth: A fast interactive biomechanical modeling toolkit
combining multibody and finite element simulation. In Soft tissue biomechanical modeling for computer assisted
surgery, pages 355–394. Springer, 2012.

[6] Wai-Hin Ngan and John Lloyd. Efficient deformable body simulation using stiffness-warped nonlinear finite
elements. In Symposium on Interactive 3D Graphics and Games (i3D), Feb. 2008. poster.

[7] Florian A. Potra, Mihai Anitescu, Bogdan Gavrea, and Jeff Trinkle. A linearly implicit trapezoidal method for
integrating stiff multibody dynamics with contact, joints, and friction. International Journal for Numerical Methods
in Engineering, 66(7):1079–1124, 2006.

	Introduction
	How to read this guide

	ArtiSynth Overview
	System structure
	Model components
	The RootModel
	Component path names
	Model advancement
	MechModel

	Physics simulation
	Basic packages
	maspack
	artisynth.core
	artisynth.demos

	Properties
	Property handles and paths
	Composite and inheritable properties

	Creating an application model
	Implementing the build() method
	Making models visible to ArtiSynth
	Loading and running a model

	Supporting classes
	Vectors and matrices
	Rotations and transformations
	Points and Vectors
	Spatial vectors and inertias
	Meshes
	Mesh creation
	Reading and writing mesh files

	Mechanical Models I
	Springs and particles
	Axial springs and materials
	Example: A simple particle-spring model
	Dynamic, parametric, and attached components
	Custom axial materials
	Damping parameters

	Rigid bodies
	Frame markers
	Example: A simple rigid body-spring model
	Creating rigid bodies
	Pose and velocity
	Inertia and meshes
	Damping parameters

	Joints and connectors
	Joints and coordinate frames
	Creating Joints
	Example: A simple revolute joint
	Commonly used joints

	Frame springs
	Frame spring coordinate frames
	Frame materials
	Creating frame springs
	Example: Two bodies connected by a frame spring

	Attachments
	Point attachments
	Example: model with particle attachments
	Frame attachments
	Example: model with frame attachments

	Mechanical Models II
	Simulation control properties
	Units
	Scaling units

	Transforming geometry
	Render properties
	Render property taxonomy
	Setting render properties

	Point-to-point muscles
	Muscle materials
	Example: Muscle attached to a rigid body

	Collision Handling
	Enabling collisions in code
	Example: Collision with a plane
	Self-collision and collidable hierarchies
	Collidability
	Implementation and limitations
	Contact rendering

	General component arrangements
	Container components
	Example: a net formed from balls and springs
	Adding containers to other models

	Simulation Control
	Control Panels
	General principles
	Example: Creating a simple control panel

	Custom properties
	Adding properties to a component
	Example: a visibility property

	Controllers and monitors
	Implementation
	Example: A controller to move a point

	Probes
	Numeric probe structure
	Creating probes in code
	Example: probes connected to SimpleMuscle
	Data file format
	Adding probe data in-line

	Finite Element Models
	Overview
	FemModel3d
	Component Structure
	Nodes
	Elements
	Meshes

	Materials
	Boundary conditions

	FEM model creation
	Factory methods
	Loading external FEM meshes
	Generating from surfaces
	Building elements in code
	Example: a simple beam model

	FEM Geometry
	Surface meshes
	Embedding geometry within an FEM
	Example: a beam with an embedded sphere

	Node attachments
	Connecting nodes to rigid bodies or particles
	Example: connecting a beam to a block
	Connecting nodes directly to elements
	Example: connecting two FEMs together
	Nodal-based attachments
	Example: element vs. nodal-based attachments

	FEM markers
	Example: attaching a FEM beam to a muscle

	Frame attachments
	Example: attaching frames to a FEM beam
	Adding joints to FEM models
	Example: two FEM beams connected by a joint

	Incompressiblity
	Volume regions and locking
	Hard incompressibility
	Soft incompressibility
	Incompressibility and linear materials
	Using incompressibility in practice

	Muscle activated FEM models
	FemMuscleModel
	Bundles
	Exciters

	Fibre-based muscles
	Material-based muscles
	Example: comparison with two beam examples

	Collisions
	Example: FEM collisions

	Rendering and Visualizations
	Example: stress and strain plotting

	DICOM Images
	The DICOM file format
	The DICOM classes
	DicomElement
	DicomHeader
	DicomPixelBuffer
	DicomSlice
	DicomImage

	Loading a DicomImage
	Time-dependent images
	Image formats

	The DicomViewer
	DICOM example

	Mathematical Review
	Rotation transforms
	Rigid transforms
	Affine transforms
	Rotational velocity
	Spatial velocities and forces
	Spatial inertia

