
Interfacing ArtiSynth to MATLAB and Jython

John Lloyd
March 7, 2015

Interfacing ArtiSynth to MATLAB and Jython 2

Contents

1 Introduction 3

2 Interfacing to MATLAB 3

2.1 Requirements and configuration . 3

2.2 Starting ArtiSynth . 3

2.3 Querying ArtiSynth structures and models . 4

2.4 Scripting commands . 7

2.5 Java memory limits . 7

2.6 Setting the classpath for models . 8

2.7 Connecting to an external MATLAB process . 8

3 Interfacing to Jython 10

3.1 Querying ArtiSynth structures and models . 10

3.2 Jython scripting . 11

3.3 Running scripts in batch mode . 12

4 Summary of scripting methods 12

Interfacing ArtiSynth to MATLAB and Jython 3

1 Introduction

ArtiSynth interfaces to both MATLAB and Jython, providing the ability to create scripts for running simulations, and to
interactively query and perform method calls on ArtiSynth objects.

Since current versions of MATLAB support the execution of Java programs, it is possible to run ArtiSynth from within
MATLAB. This allows simulations to be run under the control of MATLAB, either interactively or through MATLAB
scripts. Internal ArtiSynth structures and data can be examined and processed by MATLAB, either after a simulation
completes or while it is in progress. It is also possible to connect ArtiSynth to an external MATLAB process, which can
then be used for preparing simulation input or analyzing output.

ArtiSynth also provides an interactive Jython console, which allows access to internal structures and data. Jython scripts
can also be prepared to automatically run one or more simulations. These scripts can also be invoked in “batch” mode
by running ArtiSynth directly from the command line without starting the graphical interface.

2 Interfacing to MATLAB

2.1 Requirements and configuration

It is probably necessary to use MATLAB 2014 or greater, since only more recent versions of MATLAB use the JOGL 2
Java OpenGL interface which is compatible with ArtiSynth.

In addition, it will also be necessary to set some environment variables. In the following, assume that <ArtisynthRoot>
denotes the path to the root folder of the ArtiSynth installation.

1. If you have not done so already, set the environment variable ARTISYNTH_HOME to <ArtisynthRoot>. This can
be done externally to MATLAB (see the Section Environment variables in the ArtiSynth Installation Guide
for your system), or it can also be done within a MATLAB startup script using the setenv() command; see the
MATLAB documentation regarding startup scripts.

2. Make sure that the folder <ArtisynthRoot>/matlab is included in the search path for MATLAB functions;
consult MATLAB documentation on how to do this.

3. If you have not done so already, add the ArtiSynth native library folder to the environment variable that specifies
the dynamic library search path.

(a) On Windows (64 bit), make sure <ArtisynthRoot>\lib\Windows64 is included in the PATH environment
variable.

(b) On Linux (64 bit), make sure <ArtisynthRoot>/lib/Linux64 is included in the LD_LIBRARY_PATH
environment variable.

(c) On MacOS, make sure <ArtisynthRoot>/lib/MacOS64 is included in the DYLD_LIBRARY_PATH environ-
ment variable.

For more information on setting these variables, see the Section Environment variables in the ArtiSynth
Installation Guide appropriate to your system.

4. Depending on how much memory your ArtiSynth application requires, you may need to adjust the MATLAB Java
virtual memory limit (Section 2.5).

5. As necessary, add the classpath(s) for your Artisynth models to the MATLAB Java classpath, so that they will be
visible to Java from within MATLAB. See Section 2.6) for details.

2.2 Starting ArtiSynth

Once your environment is set up, you should be able to start MATLAB and then run ArtiSynth by executing the
MATLAB command

>> ah = artisynth()

Interfacing ArtiSynth to MATLAB and Jython 4

Figure 1: ArtiSynth being run from MATLAB.

This will start ArtiSynth (Figure 1) and return an ArtisynthHandle object, which can be used to access ArtiSynth
structures and data and also provides a number of methods, as described below.

If desired, the artisynth() command can also accept a variable length set of strings as arguments, corresponding to the
options available to the artisynth terminal command. For example,

>> ah = artisynth(’-model ’, ’SpringMeshDemo ’)

is equivalent to the terminal command

> artisynth -model SpringMeshDemo

and causes ArtiSynth to look for and load the model named SpringMeshDemo. However, most of what can be achieved
using command options can also be achieved by directly accessing ArtiSynth structures or calling handle methods.

To exit ArtiSynth, you can either select File > Quit in the ArtiSynth GUI, or use the quit() method supplied by the
handle, as in

>> ah.quit()

After quitting, you can use the artisynth() command to start another ArtiSynth session if desired.

At present, it is not possible to start multiple simultaneous ArtiSynth instances within MATLAB, although that may
change in the future.

2.3 Querying ArtiSynth structures and models

Through the ArtiSynth handle, it is possible to access most of the Java objects associated with ArtiSynth and its loaded
models. Public methods for these objects can be called directly from MATLAB. Java objects can be created by calling
their constructors directly, without the need for the keyword new. For example,

>> vec = maspack.matrix.Vector3d (1, 2, 3);

creates a new instance of maspack.matrix.Vector3d and initializes it to (1, 2, 3). As in Java, import statements can be
used to allow classes to be specified without using their full package names:

Interfacing ArtiSynth to MATLAB and Jython 5

>> import maspack.matrix.*
>>
>> vec = Vector3d (1, 2, 3);

For more details on working with Java objects inside MATLAB, see Call Java Libraries in the MATLAB documentation.

To easily access particular components of a model, the handle method getsel() provides access to to the ArtiSynth
selection list. That means you can select items in the ArtiSynth GUI (using either the viewer or navigation panel) and
then retrieve these into MATLAB using getsel(). If called with no arguments, getsel() returns the entire selection
list as a cell array. If called with an integer argument i, getsel(i) returns the i-th entry in the selection list (where the
index i is 1-based).

For example, if two particles are currently selected in ArtiSynth, then getsel() can be used as follows:

>> ah.getsel() % get entire selection list

ans =

[1x1 artisynth.core.mechmodels.Particle]
[1x1 artisynth.core.mechmodels.Particle]

>> ah.getsel(1) % get first item on the selection list

artisynth.core.mechmodels.Particle@49752dd4

Once a component has been selected, then one has access to all its public methods. The functions mmat(), amat(), and
avec() can be used to map between MATLAB arrays and ArtiSynth Matrix and Vector objects:

mmat(obj)

Creates a MATLAB array from an ArtiSynth Vector or Matrix object. If the Matrix is an instance of SparseMa-
trix, then mmat() returns a MATLAB sparse matrix. If obj is not a Vector or Matrix, then the method returns
the empty matrix.

amat(M)

Creates an ArtiSynth Matrix from a MATLAB array: either a MatrixNd if M is a full matrix, or a SparseMatrixNd
if M is sparse.

avec(M)

Creates an ArtiSynth VectorNd from a MATLAB array. At least one of the dimensions of M must be 1.

As a simple example, assume that part refers to an ArtiSynth Particle object. The following code fragment then obtains
the particle’s position as a MATLAB array, scales it by 3, and then uses this to reset the position:

>> import maspack.matrix.*
>>
>> pos = mmat(part.getPosition())

pos =

5
0

10

>> pos = 3*pos;
>> part.setPosition (Point3d (avec(pos)));

The particle’s position is returned by the method getPosition(), which returns a Point3d. Since this is an instance
of Vector, we use mmat() to turn this into a MATLAB array named pos. After scaling, we turn this back into an
ArtiSynth Vector using avec(pos) and reset the particle’s position using the setPosition() method. This method requires
a Point3d argument, whereas avec(pos) returns a more general VectorNd object. However, we can create the required
Point3d from the VectorNd using the Point3d(Vector) constructor.

Interfacing ArtiSynth to MATLAB and Jython 6

As a more complex example, assume that fem refers to an ArtiSynth FemModel3d. The following code fragment then
obtains the stiffness matrix for this model and uses MATLAB to find its largest Eigenvalues:

>> K = mmat (fem.getActiveStiffness());
>> eigs (K)

ans =

1.0e+04 *

-8.5443
-8.5443
-6.6442
-6.6442
-5.0636
-4.4762

The current stiffness matrix associated with the active nodes is returned by getActiveStiffness(). Since this is an
instance of SparseBlockMatrix, mmat() converts it to a MATLAB sparse matrix, for which we can then find the largest
Eigenvalues using eigs().

It is also possible to directly query and set the numeric data associated with ArtiSynth input and output probes. This
makes it possible to use MATLAB to plot or process output probe data, or compute and prepare input probe data.

Methods to access probe data are provided by the ArtisynthHandle:

getIprobeData (name); // get data for the specified input probe
setIprobeData (name , D) // set data for the specified input probe
getOprobeData (name) // get data for the specified output probe
setOprobeData (name , D) // set data for the specified output probe

The probe in question must be a numeric probe, i.e., an instance of NumericProbeBase. name is a string giving either the
name or number of the probe. The get() methods return the data as a MATLAB array, while the set() methods receive
the data as the MATLAB array D. The data array is m× n, where m is the number of knot points and n is the size of the
probe’s data vector.

The following example shows the process of obtaining and then changing the numeric data for input probe 0 of the
model SpringMeshDemo:

>> D = ah.getIprobeData (’0’)

D =

0 -10.0000 0 20.0000
1.0000 0 0 20.0000
1.9400 10.0000 0 6.8000
3.0000 0 0 10.0000
4.0000 -10.0000 0 20.0000
5.0000 0 0 20.0000
6.0000 10.0000 0 20.0000
7.0000 0 0 10.0000
8.0000 -10.0000 0 20.0000
9.0000 0 0 20.0000

10.0000 10.0000 0 20.0000
11.0000 0 0 10.0000

>> % Now change D by removing all but the first 5 knot points:
>> D = D(1:5,:);
>> ah.setIprobeData (’0’, D);

When setting probe data from MATLAB, the number of columns in the supplied data array must equal the current
size of the probe’s data vector.

Interfacing ArtiSynth to MATLAB and Jython 7

2.4 Scripting commands

The ArtisynthHandle object contains a number of methods that make it possible to load models and control simulation
directly from MATLAB, rather than using the ArtiSynth GUI. A full summary of these methods is given Section 4.

In particular, it is possible to load a model and then run or single step a simulation.

To load a model, one may use the method

loadModel (name , args...)

where name is either the fully-qualified classname of the model’s RootModel, or one of the shorter names that appears
under the ArtiSynth Models menu, and args... is an optional variable-length list of string arguments that are used to
form the args argument of the model’s build() method.

Once loaded, simulation may be controlled using methods such as play(), pause(), step(), or reset(). The
following example shows loading a model called RigidBodyDemo and then having it simulate for 2.5 seconds:

>> ah.loadModel (’RigidBodyDemo ’);
>> ah.play (2.5);

A particularly powerful feature is the ability to single step execution in a loop, allowing MATLAB to be used to control
or inspect the simulation while it is in progress:

>> % single step the simulation for 100 steps
>> for i=1:100
>> ... adjust inputs if desired ...
>> ah.step();
>> ... monitor outputs if desired ...
>> end

This allows MATLAB code to surround each simulation step, assuming a role analogous to the Controller or Mon-
itor objects that can be added to the RootModel. The adjustment of inputs or monitoring of outputs can be ac-
complished by setting or querying input or output variables of appropriate model components. One way to obtain
access to these components is through the find() method discussed above. As a simple example, consider the
SimpleMuscleWithController demo describe the ArtiSynth Modeling Guide. The same effect can be achieved by
loading SimpleMuscle and then adjusting target position of point p1 directly in MATLAB:

>> import maspack.matrix.Point3d
>> ah.loadModel (’SimpleMuscle ’);
>> p1 = ah.find(’models/0/particles/p1’);
>> for i=1:100
>> ang = ah.getTime()*pi/2;
>> targ = 0.5*[sin(ang), 0, 1-cos(ang)];
>> p1.setTargetPosition (Point3d (avec (targ)));
>> ah.step();
>> pause (0.01); % slow down simulation if desired
>> end

The call to pause() in the above code simply slows down the simulation so that it appears to run in real time.

2.5 Java memory limits

ArtiSynth applications often require a large amount of memory, requiring that the memory limit for the Java virtual
machine be set fairly high (perhaps to several gigabytes). By contrast, the default Java memory limit set by MATLAB is
often much lower, and so it may be necessary to increase this.

If the memory limit is too low, you may get an out-of-memory error, which generally produces a stack trace on the
MATLAB console along with an error message of the form

Exception in thread "AWT-EventQueue -0"
java.lang.OutOfMemoryError: Java heap space

Interfacing ArtiSynth to MATLAB and Jython 8

The standard way to increase the MATLAB Java memory limit is from the Preferences menu:

Preferences > MATLAB > General > Java Heap Memory

MATLAB will need to be restarted for any change of settings to take effect.

Unfortunately, at the time of this writing, MATLAB limits the maximum memory size that can be set this way to about
1/4 of the physical memory on the machine, and lower limits have been reported on some systems. If you need more
memory than the preferences settings are willing to give you, then you can try creating or editing the java.opts file
located in $MATLABROOT/bin/$ARCH, where $MATLABROOT is the MATLAB installation root directory and $ARCH is an
architecture-specific directory. Within the java.opts file, you can use the -Xmx option to increase the memory limit. As
an example, the following -Xmx settings specify memory limits of 128 Mbytes, 2 Gbytes and 4 Gbytes, respectively:

-Xmx128m
-Xmx2000m
-Xmx4g

More details are given in www.mathworks.com/support/solutions/en/data/1-18I2C.

2.6 Setting the classpath for models

Usually, ArtiSynth applications involve the use of models or packages defined outside of the ArtiSynth core. In order for
these to be visible to Java from inside MATLAB, it is necessary to add their classpaths to MATLAB’s Java classpath.
There are two ways to do this:

1. Add the classpaths to the file EXTCLASSPATH defined in the ArtiSynth root directory. Instructions for doing this are
given the section Adding external classes using EXTCLASSPATH of the ArtiSynth Installation Guide.

2. Add the classpaths within the MATLAB session using the javaaddpath() command. This should be done before
the first call to artisynth(), perhaps within a startup script.

When adding classpaths for external ArtiSynth models, be sure to add all dependencies. For example,
if your model resides under /home/artisynth_projects/classes, but also depends on classes in
/home/artisynth_models/classes, then both of these must be added to MATLAB’s Java classpath.

Calling javaaddpath() after the first call to artisynth() may result in some warnings about existing ArtiSynth
classes, such as

Warning: Objects of artisynth/core/driver/Main class exist - not clearing java
> In javaclasspath>doclear at 377

The added classes may also not be visible to ArtiSynth instances created by subsequent invocations of
artisynth().

2.7 Connecting to an external MATLAB process

In addition to being able to run ArtiSynth from within MATLAB, it is also possible to create a connection between
ArtiSynth and an externally running MATLAB program. Data can then be passed back and forth between ArtiSynth and
MATLAB. This can be particularly useful if it turns out to be unfeasible to run ArtiSynth directly under MATLAB.

Caveat: The MATLAB connection uses the matlabcontrol interface, by Joshua Kaplan. It relies on the undoc-
umented Java MATLAB Interface, and hence cannot be guaranteed to work with future versions of MATLAB.

An external MATLAB connection can be opened in any of the following ways:

1. Choosing File > Open MATLAB Connection in the GUI;

http://www.mathworks.com/support/solutions/en/data/1-18I2C
https://code.google.com/p/matlabcontrol
https://code.google.com/p/wiki/JMI

Interfacing ArtiSynth to MATLAB and Jython 9

2. Specifying the option -openMatlabConnection on the command line;

3. Calling the openMatlabConnection() method in the Main class.

When a MATLAB connection is requested, the system will first attempt to connect to a MATLAB process running
on the user’s machine. If no such process is found, then a new MATLAB process will be started. If a MATLAB
connection is opened when ArtiSynth is being run under MATLAB, then the connection will be made to the parent
MATLAB process.

Once a connection is open, it is possible to save/load probe data to/from MATLAB. This can be done by selecting the
probe and then choosing either Save to MATLAB or Load from MATLAB in the right-click context menu. This will cause
the probe data to be saved to (or loaded from) a MATLAB array. The name of the MATLAB array is determined by
NumericProbeBase.getMatlabName(), which returns either

1. The name of the probe, if not null, or

2. "iprobe<n>" (for input probes) or "oprobe<n>" (for output probes), where <n> is the probe number.

It is also possible to save/load probe data to/from MATLAB using the following functions in the Jython interface
(Section 3):

iprobeToMatlab (probeName , matlabName)
iprobeFromMatlab (probeName , matlabName)
iprobeToMatlab (probeName)
iprobeFromMatlab (probeName)

oprobeToMatlab (probeName , matlabName)
oprobeFromMatlab (probeName , matlabName)
oprobeToMatlab (probeName)
oprobeFromMatlab (probeName)

iprobeToMatlab() and iprobeFromMatlab() save/load data for the input probe specified by probeName to/from
the MATLAB variable with the name matlabName. probeName is a string giving either the probe’s name or number.
If matlabName is absent, then the value of NumericProbeBase.getMatlabName() (described above) is used. The
functions oprobeToMatlab() and oprobeFromMatlab() do the same thing for output probes.

The MATLAB connection is associated, internally, with a structure called MatlabInterface, which provides the internal
methods for sending data to and from MATLAB. At present, these methods include:

void objectToMatlab (obj, matlabName)

Sets the MATLAB array named matlabName to the values associated with the ArtiSynth object obj. The
ArtiSynth object must be either a Matrix, Vector, or double[][]. The assigned MATLAB array is dense, unless
the ArtiSynth object is an instance of SparseMatrix, in which the array is sparse.

double[][] arrayFromMatlab (matlabName)

Takes the MATLAB array named by matlabName and returns the corresponding double[][] object, with values
assigned in row-major order. If the named MATLAB array does not exist, or is not dense and 2-dimensional, then
null is returned.

Matrix matrixFromMatlab (matlabName)

Takes the MATLAB array named by matlabName and returns a corresponding Matrix object. If the named
MATLAB array does not exist, or is not 2-dimensional, then null is returned. Otherwise, either a MatrixNd or
SparseMatrixNd is returned, depending on whether the array is dense or sparse.

Matrix matrixFromMatlab (matlabName)

Takes the MATLAB array named by matlabName and returns a corresponding VectorNd object. If the named
MATLAB array does not exist, or is not 2-dimensional with a size of 1 in at least one dimension, then null is
returned.

The above methods are also available in the Jython interface (Section 3) via the functions

Interfacing ArtiSynth to MATLAB and Jython 10

Figure 2: ArtiSynth application showing the Jython console.

objectToMatlab (obj, matlabName)
arrayFromMatlab (matlabName)
matrixFromMatlab (matlabName)
vectorFromMatlab (matlabName)

3 Interfacing to Jython

Jython (www.jython.org) is a Python-based wrapper for Java that provides access to Java objects through a Java
interpreter. ArtiSynth provides a Jython interface that allows interactive querying of all the internal structures associated
with ArtiSynth and its models. Jython can also be used to run simulation scripts, either interactively (Section 3.2) or in
batch mode (Section 3.3).

The syntax, language semantics, and common packages for Jython are the same as for Python, so Python language
references can be used to learn how to to program in Jython.

The Jython console can be started by either

1. Choosing View > Show Jython Console in the GUI, or

2. Specifying the option -showJythonConsole on the command line.

The Jython console currently appears in a separate Window frame (Figure 2).

3.1 Querying ArtiSynth structures and models

Once the Jython console is open, it can be used to query ArtiSynth structures and model components. Every publicly
accessible method of every Java object can be called via the interface. The interaction syntax is similar to Java queries

http://www.jython.org

Interfacing ArtiSynth to MATLAB and Jython 11

under MATLAB. Java objects can be created by calling their constructors directly, without the need for the keyword
new. For example,

>> vec = maspack.matrix.Vector3d (1, 2, 3)

creates a new instance of maspack.matrix.Vector3d and initializes it to (1, 2, 3). However, unlike MATLAB,
packages must be explicitly imported in order for their classes to be visible. Hence the code fragment above would need
to be preceded at some point by

>> import maspack.matrix

The from statement can also be used to import every class of a package so that they can be referred to without using
their full package names:

>> from maspack.matrix import *
>>
>> vec = Vector3d (1, 2, 3);

For convenience, the ArtiSynth Jython console already fully imports (using from) a number of packages, including:

maspack.util
maspack.matrix
maspack.geometry
maspack.collision
maspack.render
maspack.solvers
artisynth.core.mechmodels
artisynth.core.femmodels
artisynth.core.materials
artisynth.core.modelbase
artisynth.core.driver
java.lang
java.io

To easily access particular components of a model, the predefined function getsel() provides access to the ArtiSynth
selection list. That means you can select items in the ArtiSynth GUI (using either the viewer or navigation panel) and
then access these in Jython using getsel(). If called with no arguments, getsel() returns the entire selection list. If
called with an integer argument i, getsel(i) returns the i-th entry in the selection list (where the index i is 0-based).

For example, if two particles are currently selected in ArtiSynth, then getsel() can be used as follows:

>>> getsel() # get the entire selection list
[artisynth.core.mechmodels.Particle@709da188 , artisynth.core.mechmodels. ←↩

Particle@750eba3f]
>>>
>>> getsel(0) # get the first item on the list
artisynth.core.mechmodels.Particle@709da188

Once a component has been selected, then one has access to all its public methods. This can be quite useful for setting
or querying items are that are not normally available via the ArtiSynth GUI. For example, if we want to find the number
of nodes in a FemModel3d, then we can select the FEM and then in the console do

>>> fem = getsel(0)
>>>
>>> fem.numNodes()
16
>>>

3.2 Jython scripting

As with MATLAB, Jython can be used to script simulations. The scripting functions are the same as those described
in Sections 2.4 and 4, except that they are predefined for the ArtiSynth Jython interpreter and do not need to be called
through a handle.

To load a model, one may use the function

Interfacing ArtiSynth to MATLAB and Jython 12

loadModel (name , args...)

where name is either the fully-qualified classname of the model’s RootModel, or one of the shorter names that appears
under the ArtiSynth Models menu, and args... is a variable list of optional string arguments that are used to form the
args argument of the model’s build() method.

Once loaded, simulation may be controlled using methods such as play(), pause(), step(), or reset(). The
following example shows loading a model called RigidBodyDemo and then having it simulate for 2.5 seconds:

>>> loadModel (’RigidBodyDemo ’)
>>> play (2.5)

It is often easiest to write Jython scripting commands in a Python-style .py file and then "source" them into the Jython
console. In Python, one can use exec() or execfile() to do this. However, in ArtiSynth it is often better to use the
ArtiSynth supplied script() function, as in

>>> script (’contactTest.py’)

This is particularly true for longer scripts, since script() interacts better with the GUI and allows the script commands
to be displayed in the console as they are being executed.

For convenience, ArtiSynth also searches for scripts in the folders of its search path (currently defined by the
ARTISYNTH_PATH environment variable) and places any that it finds under a special Scripts menu that then ap-
pears in the main ArtiSynth menu bar. To be identified by ArtiSynth as a script file, the file must a be .py file that begins
with the special first line

ArtisynthScript: "scriptName"

where scriptName is the desired name for the script.

The ARTISYNTH_PATH environment variable provides a list of directories, separated by semi-colons ’;’ (on Win-
dows) or colons ’:’ (MacOS, Linux) that ArtiSynth uses to search for certain files. For ArtiSynth to locate script
files, ARTISYNTH_PATH must be set and must include the directories in which the script files reside. Directions for
setting ARTISYNTH_PATH are given in the "Environment variables" section of the Installation Guide.

3.3 Running scripts in batch mode

It is possible to run ArtiSynth and execute a Jython script in "batch" mode, without starting the GUI or explicitly
opening the Jython console. This can be useful when running ArtiSynth remotely, or in parallel on a cluster of machines.

To run a Jython script in batch mode, simply run ArtiSynth from the command line with the following options:

artisynth -noGui -script experiment.py

Since there is no GUI, Jython will be initiated using a terminal console instead of the usual GUI-based text window.
When the script finishes, the console will remain available for interactive operation.

One may also simply start with a Jython console, with no initial script:

artisynth -noGui -showJythonConsole

4 Summary of scripting methods

The following is a summary of the scripting methods available either in MATLAB through the ArtisynthHandle
object, or in Jython as built-in console functions:

getMain()

Returns the ArtiSynth Main object.

Interfacing ArtiSynth to MATLAB and Jython 13

loadModel (name, args...)

Loads the named model along with optional arguments. name is either the fully-qualified classname of the model’s
RootModel, or one of the shorter names that appears under the ArtiSynth Models menu, and args... is an
optional variable-length list of string arguments that are used to form the args argument of the model’s build()
method.

loadModelFile (filename)

Loads a model from an ArtiSynth file. filename is a string giving the file’s path.

play()

Starts the simulation running.

play(t)

Starts and runs the simulation for t seconds.

pause()

Pauses the simulation.

step()

Single steps the simulation.

reset()

Resets the simulation to time 0.

delay(t)

Delays execution for t seconds. In MATLAB, the same effect can be achieved using the MATLAB command
pause(t).

waitForStop()

Blocks until the simulation has completed.

isPlaying()

Returns true if simulation is still running.

getTime()

Returns current ArtiSynth simulation time in seconds.

reload()

Reloads the current model.

addWayPoint(t)

Adds a simulation waypoint at time t, where t is a floating point value giving the time in seconds.

addBreakPoint(t)

Adds a breakpoint at time t.

removeWayPoint(t)

Removes any waypoint or breakpoint at time t.

clearWayPoints()

Removes all waypoints and breakpoints.

root()

Returns the current RootModel.

find (path)

Finds a component defined by path with respect to the current RootModel.

getsel()

Returns the current ArtiSynth selection list.

Interfacing ArtiSynth to MATLAB and Jython 14

getsel(i)

Returns the i-th selection list item (1-based for MATLAB; 0-based for Jython).

quit()

Quits ArtiSynth.

	Introduction
	Interfacing to MATLAB
	Requirements and configuration
	Starting ArtiSynth
	Querying ArtiSynth structures and models
	Scripting commands
	Java memory limits
	Setting the classpath for models
	Connecting to an external MATLAB process

	Interfacing to Jython
	Querying ArtiSynth structures and models
	Jython scripting
	Running scripts in batch mode

	Summary of scripting methods

