
ArtiSynth Installation Guide for Linux

John Lloyd and Sebastian Kazenbroot-Guppy

October, 2015

ArtiSynth Installation Guide for Linux 2

Contents

1 Introduction 4

2 Prerequisites 4

3 Downloading a Prepacked Release 4

3.1 Downloading and unpacking the zip file . 4

4 Checking out from Subversion 5

4.1 Checking out using Eclipse . 5

4.2 Checking out using the command line . 5

4.3 Downloading the libraries . 5

5 Building ArtiSynth 5

5.1 Building with Eclipse . 5

5.2 Building from the command line . 6

6 Running ArtiSynth 6

6.1 Running from the command line . 6

6.2 Running using Eclipse . 6

6.3 Loading and Running Models . 6

7 Installing External Models and Packages 6

7.1 Downloading . 7

7.2 Building . 7

7.3 Running . 7

7.3.1 Adding external classes using the Eclipse Classpath . 7

7.3.2 Adding external classes using EXTCLASSPATH . 7

7.3.3 Adding external classes using CLASSPATH . 7

8 Updating ArtiSynth 8

8.1 Library updates . 8

9 The Eclipse IDE 8

9.1 Obtaining Eclipse . 8

9.2 Installing a Subversion plug-in . 8

9.3 Importing an ArtiSynth project into Eclipse . 9

9.4 Importing an ArtiSynth project directly from Subversion . 9

9.5 Configuring environment variables . 10

9.5.1 Setting environment variables . 11

9.5.2 Setting command line arguments . 11

9.6 Adding projects to the build path . 11

9.7 Adding projects to the ArtiSynth launch configuration . 12

9.8 Preventing excessive resource copying . 12

ArtiSynth Installation Guide for Linux 3

10 Additional Information 12

10.1 Environment variables . 12

10.1.1 Example environment set up for bash . 13

10.1.2 Example environment setup for csh or tcsh . 13

10.2 ArtiSynth Libraries . 14

10.3 The EXTCLASSPATH File . 14

ArtiSynth Installation Guide for Linux 4

1 Introduction

This document describes how to install and run ArtiSynth on 64-bit Linux machines. There are two ways to obtain

ArtiSynth: downloading a prepackaged release, or checking out the latest development version via Subversion. Down-

loading a prepackaged release is the easiest solution to simply try out some of the basic demo programs. Checking out

the development version is recommended for developers who want to keep their codebase current.

The typical install sequence looks like this:

Download Download either a release (Section 3) or check out the development version (Section 4).

Build Compile the system (Section 5). This step is not needed for prepackaged releases.

Run Start ArtiSynth and run the demonstration models (Section 6).

Generally, users will also want to install and run external models and packages that have been created either by others or

by themselves. This is discussed in (Section 7).

2 Prerequisites

To install ArtiSynth on Linux , you will need:

• A 64 bit version of Linux

• Java JDK 1.7

• Linux systems require GNU libc version 2.17 or higher

• A three button mouse is recommended for GUI interaction

Note that we have stopped supporting 32 bit systems, both because they are becoming obsolete, and because ArtiSynth

applications often require more memory than they can provide.

For Java, the full Java development kit (JDK) is required, which comes with the Java compiler javac. The run time

environment (JRE) will not be sufficient. However, there is no need for extra bundles such at JavaFX, NetBeans, or EE.

At the time of this writing, JDKs can be obtained free from Oracle at http://www.oracle.com/technetwork/java/javase/downloads/index.htm

We currently recommend either JDK 7 or 6. Note that JDKs are sometimes refered to by multiple names; for example,

JDK 6 is sometimes refered to as JDK 1.6.

In this document, the location of the ArtiSynth installation directory will be denoted by $ARTISYNTH_HOME. That means

that if ArtiSynth is installed in

/home/roger/artisynth_core

then $ARTISYNTH_HOME/lib denotes the directory

/home/roger/artisynth_core/lib

3 Downloading a Prepacked Release

3.1 Downloading and unpacking the zip file

To obtain one of the packaged distributions, go to www.artisynth.org/downloads and select the distribution you want.

Download it, and unzip it in an appropriate location on your computer.

Once ArtiSynth is downloaded and unpacked, it should be possible to run it immediately by executing the artisynth

command located in $ARTISYNTH_HOME/bin (see Section 6.1).

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.artisynth.org/downloads

ArtiSynth Installation Guide for Linux 5

4 Checking out from Subversion

The latest development version is available from Subversion. Once checked out, users can continue to update the

codebase to keep it current (Section 8). Developers that we work with closely can also obtain, by mutual arrangement,

write access to our Subversion repository, allowing them to also commit changes.

The ArtiSynth Subversion URL is

https://svn.artisynth.org/svn/artisynth_core/trunk

Note:

If you omit the trailing /trunk from the Subversion URL, then the checkout will contain the entire Subversion

directory structure, including the subdirectories trunk, branches, and tags, which is generally not needed by

most users. Also, if you do check out the entire structure, the resulting trunk directory should be specified as

ARTISYNTH_HOME.

There are several ways to check out ArtiSynth using its Subversion URL:

4.1 Checking out using Eclipse

If you are planning to develop ArtiSynth models in Java, and if you are planning to do this with Eclipse (Section 9), then

it might be easiest to do the Subversion checkout directly in Eclipse. Follow the instructions in Section 9.4, using the

ArtiSynth Subversion URL (above) as the Subversion_url.

4.2 Checking out using the command line

If your Linux distribution has Subversion installed, then you can check out ArtiSynth using the following command:

> svn co https://svn.artisynth.org/svn/artisynth_core /trunk artisynth_core

This will check out ArtiSynth and place it in the specified directory (in this case artisynth_core).

4.3 Downloading the libraries

Because the jar files and native libraries used by ArtiSynth are large, they are not stored in the Subversion repository.

Instead, they must be downloaded separately. This can be done using the command updateArtisynthLibs, located in

$ARTISYNTH_HOME/bin. You can execute it from the command line like this:

> cd $ARTISYNTH_HOME

> bin/updateArtisynthLibs

5 Building ArtiSynth

If ArtiSynth has been obtained directly from Subversion, it will be necessary to build (compile) it. This is not necessary

for prepackaged releases, which are pre-built, although one may want to rebuild a release anyway for development

purposes.

5.1 Building with Eclipse

If your Subversion checkout has been done externally to Eclipse (i.e., not according to Section 4.1), then you need to

first import ArtiSynth into Eclipse. Follow the instructions in Section 9.3.

Once ArtiSynth has been imported, you should be able to build it. If necessary, first open a Java perspective by choosing

Window > Open Perspective > Java. The project artisynth_core (or whatever you might have named it) should appear

in the Package Explorer window. To build the system, select the project in the Package Explorer window, and then

choose Project > Build Project. Note that it may be necessary to deselect Build Automatically in order to enable Build

Project.

ArtiSynth Installation Guide for Linux 6

Figure 1: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, play/-

pause, and single-step buttons.

5.2 Building from the command line

ArtiSynth can also be built by running a make command in the top level directory . Before doing this, you need to first

set the environment variables ARTISYNTH_HOME and CLASSPATH as described in Sections 10.1. ArtiSynth can then be

built by executing

> cd $ARTISYNTH_HOME

> make

6 Running ArtiSynth

6.1 Running from the command line

The most direct way to start ArtiSynth is to run the commad $ARTISYNTH_HOME/bin/artisynth:

> cd $ARTISYNTH_HOME

> bin/artisynth

6.2 Running using Eclipse

Once ArtiSynth has been imported into Eclipse (and built if necessary), it should contain a launch configuration called

ArtiSynth that will allow ArtiSynth to be run.

Generally, it is first necessary set environment variables (and maybe some Java arguments) in the launch configuration to

allow ArtiSynth to find runtime configuration files and libraries. Instructions for setting these variables are contained in

Section 9.5. If the same environment variables have already been set externally in Linux (Section 10.1), then they do not

need to be set in the launch configuration.

Once the environment variables are set, it should be possible to run ArtiSynth by choosing Run > Run.

6.3 Loading and Running Models

Once ArtiSynth starts up, you can use it to load and run models. General instructions on how to load and run models are

given in the section “Loading and Simulating Models” of the ArtiSynth User Interface Guide.

By default, ArtiSynth comes with a number of demonstration models, which can be loaded and run as follows:

From the menu bar, Select Models > Demos. This will display a submenu of demonstration models. Choosing one

will cause that model to be loaded and displayed in the viewer. Simulation of the model can then be started, paused,

single-stepped, or reset using the play controls (Figure 1) located at the upper right of the ArtiSynth window frame.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.

7 Installing External Models and Packages

Typically, an ArtiSynth developer will want to use external models and packages that exist outside of artisynth_core.

Some of these may be obtained from external sources. For example, artisynth_models is a collection of packages,

currently hosted at www.artisynth.org/models, that provides a variety of publicly available anatomical models.

Installing external models and packages requires a sequence of operations similar to that for installing ArtiSynth itself:

http://www.artisynth.org/doc/artisynth_core_3.3/html/uiguide/uiguide.html
http://www.artisynth.org/doc/artisynth_core_3.3/html/uiguide/uiguide.html

ArtiSynth Installation Guide for Linux 7

1. Download

2. Build (if necessary)

3. Run

7.1 Downloading

Some model and package collections, such as artisynth_models mentioned above, may be available either as

prepackaged distributions or as Subversion checkouts. Prepackaged distributions should be downloaded and unpacked

into a desired location, while Subversion checkouts may be obtained as described in Section 4, using the appropriate

Subversion URL in place of the ArtiSynth Subversion URL. Some collections require authorization for checkout. In

those cases, it will be necessary to also provide Subversion with an account name and password (which you will have

obtained from us by prior arrangement).

Some collections maintained by ArtiSynth may contain Eclipse project settings (in an eclipseSettings.zip file in

their root directory), allowing them to be imported into Eclipse, either directly from Subversion (Section 9.4), or after

being obtained separately (Section 9.3).

7.2 Building

Collections that are obtained from Subversion will need to be built (compiled).

Those imported into Eclipse can be built as described in Section 5.1. However, in order to compile properly, the

artisynth_core project (and any other projects they depend on) were have to be added to their build path. Details on

doing this are given in Section 9.6.

Alternatively, if the collection has a Makefile in its root directory , then it can be compiled from the command line by

running make in the root directory . Before doing this, the top-level directory for the collection’s class files must to be

added to the CLASSPATH environment variable (Section 10.1). In collections maintained by ArtiSynth, this will be the

directory classes, located directly under the collection root directory (e.g., artisynth_models/classes).

7.3 Running

External models are executed by running ArtiSynth itself (Section 6). However, in order to execute these models,

ArtiSynth must be able to locate their associated classes. This can be arranged in three different ways:

7.3.1 Adding external classes using the Eclipse Classpath

If you are running from Eclipse, then you can make the classes of external projects visible to ArtiSynth by adding the

projects to the Classpath of your ArtiSynth launch configuration, as described in Section 9.7.

7.3.2 Adding external classes using EXTCLASSPATH

Alternatively, you can make the classes of external projects visible to ArtiSynth by adding the path names of all their

top-level class directories (or jar files, if relevant) to the file $ARTISYNTH_HOME/EXTCLASSPATH (described in Section

10.3).

For example, suppose the collection artisynth_models has been placed in /projects/artisynth_models. The

top-level class directory for this collection is located in artisynth_models/classes, and so the following entry should

be placed in the EXTCLASSPATH file:

/projects/artisynth_models/classes

7.3.3 Adding external classes using CLASSPATH

Finally, if you are running from the command line using the artisynth command, then you can make external classes

visible by adding them to your CLASSPATH environment variable (see Section 10.1).

ArtiSynth Installation Guide for Linux 8

8 Updating ArtiSynth

One reason to use a checkout of the latest ArtiSynth development version is to be able to migrate recent changes into

your code base. When a significant update occurs, a posting is made to the ArtiSynth update log, currently located at

www.artisynth.org/doc/html/updates/updates.html. Users may also be notified via the artisynth-updates email list.

Users working from Eclipse with a Subversion plug-in installed (Section 9.4) may update simply by selecting the project

in the Package Explorer and selecting Team > Update from the context menu.

Updating may also be done from the command line using the svn command in the ArtiSynth installion directory :

cd $ARTISYNTH_HOME

svn update

8.1 Library updates

Occasionally, a software update will be accompanied by a change in the libraries located in $ARTISYNTH_HOME/libs.

When this happens, it will be indicated on the ArtiSynth update log and appropriate instructions will be given. Some-

times, it will be necessary to explicitly update the libraries after doing the main update. This can be done by executing

updateArtisynthLibs as described in Section 4.3.

9 The Eclipse IDE

Eclipse is an integrated development environment (IDE) commonly used for Java code development, and many

ArtiSynth developers use it for both programming models and for running the system. This section describes how to

load ArtiSynth projects into Eclipse, and how to configure it for running ArtiSynth. A general introduction to Eclipse is

beyond the scope of this document, but there are many Eclipse resources available online.

9.1 Obtaining Eclipse

Eclipse can be obtained from www.eclipse.org/downloads. A good version to obtain (at the time of this writing) is

Eclipse IDE for Java Developers.

9.2 Installing a Subversion plug-in

In order to work with Subversion from within Eclipse, either to check out ArtiSynth from the repository, or to update or

commit changes, it is necessary to use a Subversion plug-in. First, check to see if your version of Eclipse contains an

Subversion plug-in:

Open an import panel using File > Import..., and then look for SVN in the set of available import sources. If you don’t

see SVN listed, it will be necessary to install a plug-in.

We recommend the Eclipse-supported Subversive plug-in, but if this proves difficult for any reason, there are other

options, such as Subclipse, currently obtainable from subclipse.tigris.org.

Instructions for installing Subversive can be obtained at www.eclipse.org/subversive/installation-instructions.php.

One way to install Subversive is through the Eclipse Marketplace. If you have an older version of Eclipse that doesn’t

have Marketplace, you may be able to obtain it from www.eclipse.org/mpc. To access the Marketplace, click Help >

Eclispe Marketplace. Once the available applications have been displayed, type Subversive into the Find box in the

top-left corner of the Marketplace window. Navigate to the package labeled Subversive - SVN Team Provider and click

Install. On the Confirm Selected Features screen, ensure all boxes are checked and click the button labeled Confirm >.

Restart Eclipse when prompted.

One more step is now necessary. Re-open Eclipse, and you should be prompted to choose an SVN connector in the start

menu. SVN connectors interface Subversive to the SVN server, and are OS and server-specific. A recommended SVN

Connector will be pre-selected for downloading; this is most likely the one you need.

If Eclipse did not prompt you to choose a connector when it restarted, you can install SVN connectors separately (thanks

to bmaupin at Stackoverflow for this information):

http://www.artisynth.org/doc/artisynth_core_3.3/html/updates/updates.html
http://www.eclipse.org/downloads
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.eclipse.org/subversive/installation-instructions.php
http://www.eclipse.org/mpc/

ArtiSynth Installation Guide for Linux 9

1. Go to www.polarion.com/products/svn/subversive/download.php

2. Under the latest Release, copy the Subversive SVN Connectors URL. The current URL for Eclipse 4.3 Kepler is

http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site.

3. In Eclipse, go to Help > Install New Software... and click Add...

4. Copy the URL for the Subversive SVN Connectors into the Location box and click OK

5. Check Subversive SVN Connectors, click Next, and then follow the instructions to complete installation.

If in doubt about the connector you need, you can install multiple ones, and then adjust the one Subversive actually uses

by going to Windows > Preferences, opening Team > SVN, and then opening the SVN Connector tab.

9.3 Importing an ArtiSynth project into Eclipse

An ArtiSynth project can be either ArtiSynth itself, or an associated project containing specific modeling applications.

Let $PROJECT_ROOT denote the project root directory . For ArtiSynth itself, this will be $ARTISYNTH_HOME.

1. From outside Eclipse, install the Eclipse settings by unzipping $PROJECT_ROOT/eclipseSettings.zip into

$PROJECT_ROOT. This will create the files .project and .classpath, along with the directory .settings,

in $PROJECT_ROOT. For ArtiSynth itself, it will also create the file ArtiSynth.launch containing the launch

configuration.

2. From within Eclipse, choose File > Import

3. In the Import window, select General > Existing Projects into Workspace and click Next.

4. In the field Select root directory, enter (or browse to) $PROJECT_ROOT and then click Finish.

If Eclipse complains that "No projects are found to import", that most likely means that eclipseSettings.zip was not

properly unzipped into $PROJECT_ROOT.

9.4 Importing an ArtiSynth project directly from Subversion

If Eclipse has a Subversion plug-in installed (Section 9.2), you may import an ArtiSynth project by checking it out

directly from the repository located by the project’s Subversion_URL. For the core ArtiSynth distribution, this is

https://svn.artisynth.org/svn/artisynth_core/trunk

Other projects will have different URLs.

The following instructions assume the Subversive plug-in.

1. Choose File > Import from the main menu, select SVN > Project from SVN and click Next.

2. You now need to specify a repository location, as specified by a Subversion_URL. If you’ve previously done an

SVN checkout, a menu will appear allowing you to select a previously used URL. If one of these is sufficient,

select it and click Next to go to Step 4. Otherwise, select Create a new repository location and click Next to enter a

repository dialog. If no previous locations are known this dialog will appear automatically.

3. If you are specifying a new location in the repository dialog:

• Under the General tab, enter the Subversion_URL in the URL box. If you are just checking out the trunk of the

repository (i.e., if your Subversion URL ends in /trunk), then you should omit the final /trunk since this is

selectable in Step 4.

• If you are checking out a repository that is not available for anonymous access, or if you need write access to

the repository, enter your ArtiSynth User ID and Password (which you will have obtained from us separately) in

the Authentication section of the dialog. You will probably want to check Save authentication as well.

• Click Next.

http://www.polarion.com/products/svn/subversive/download.php
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site/

ArtiSynth Installation Guide for Linux 10

4. In the Select Resource dialog, use the URL selector box to select the full URL to be used for the checkout. If you

are just checking out the trunk of the repository, then choose Subversion_URL/trunk which should be available

as a selection.

5. Click Finish

6. In the Check Out As dialog, select Check out as a project with name specified, adjust the project name if desired,

and click Next.

7. Specify the location for the check out. If you leave Use default workspace location selected, this will be

workspace/project_name, where workspace is the Eclipse workspace directory and project_name is the

project name selected in the previous step. Otherwise, you can specify an explicit checkout location (which does

not have to be located in the Eclipse workspace). For ArtiSynth core checkouts, the project name is typically

artisynth_core and the the checkout location will become the ArtiSynth install directory $ARTISYNTH_HOME.

8. Click Finish.

9. If necessary, open a Java perspective by choosing Window > Open Perspective > Java. The project should appear

in the Package Explorer window.

10. From outside Eclipse, install the Eclipse settings by unzipping $PROJECT_ROOT/eclipseSettings.zip into

$PROJECT_ROOT. This will overwrite the file .project, and create the file .classpath, along with the folder

.settings, in $PROJECT_ROOT. For ArtiSynth itself, it will also create the file ArtiSynth.launch containing the

launch configuration.

Note: if unzip queries about overwriting .project, answer [y]es.

11. From outside Eclipse, download the required jar files and native libraries as described in Section 4.3.

12. Finally, load the new settings into the project by selecting the project in the Package Explore window and

selecting Refresh from the context menu.

9.5 Configuring environment variables

To run ArtiSynth from Eclipse, it is generally necessary to set certain environment variables directly in your Eclipse

launch configuration so that ArtiSynth can locate configuration files and native library support. Directions on setting the

environment variables are given in Section 9.5.1. The required settings are:

• Set ARTISYNTH_HOME to the path of the ArtiSynth installation directory .

• Set LD_LIBRARY_PATH to $ARTISYNTH_HOME/lib/Linux64

• Optionally, set OMP_NUM_THREADS (see Section 10.1).

• Optionally, set ARTISYNTH_PATH (see Section 10.1).

If any of the above variables have already been set externally in Linux (Section 10.1), then they do not need to be set in

the launch configuration.

In addition to setting environment variables, if you are running Java 1.7 (but not Java 1.8), then you should increase the

memory space allocated for classes. Do this by adding the following JVM argument to your launch configuration:

-XX:MaxPermSize =100M

Instructions for doing this are given in Section 9.5.2.

Important: At present, eclipse does not expand environment variables. In all the variable settings described below,

references to $ARTISYNTH_HOME should be expanded (manually) to the path of the ArtiSynth install directory .

ArtiSynth Installation Guide for Linux 11

Note: At present, eclipse does not expand environment variables. In all the variable settings described below,

references to $ARTISYNTH_HOME should be expanded (manually) to the path of the ArtiSynth install directory .

9.5.1 Setting environment variables

To set environment variables within Eclipse:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

4. In the left panel, under Java Application, select ArtiSynth.

5. In the right panel, select the Environment tab.

6. To create a new environment variable, click the New button and enter the name and value in the dialog box.

7. When finished, make sure that Append environment to native environment is selected, and click Apply.

9.5.2 Setting command line arguments

To set command line arguments for your Eclipse application:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

4. In the left panel, under Java Application, select ArtiSynth.

5. In the right panel, select the Arguments tab.

6. Program arguments (which are passed directly to ArtiSynth) should be specified in the Program arguments

box. JVM arguments, which control the Java virtual machine running ArtiSynth, should be specified in the VM

arguments box.

7. When finished, click Close.

9.6 Adding projects to the build path

A project imported into Eclipse may depend on the packages and libraries found in other projects to compile prop-

erly. For example, ArtiSynth applications which are external to artisynth_core will nonetheless depend on

artisynth_core. To ensure proper compilation, project dependencies should be added to each dependent project’s

build path.

1. Select the dependent project in the Package Explorer form.

2. Right click and choose Build Path > Configure Build Path...

3. In the right panel, select the Projects tab.

4. Click the Add button, select the project dependencies, and click OK

5. Click OK in the Java Build Path panel

ArtiSynth Installation Guide for Linux 12

9.7 Adding projects to the ArtiSynth launch configuration

The classes of external projects can be made visible to ArtiSynth by adding the projects to the Classpath of the Ar-

tiSynth launch configuration.

1. From the main menu, choose Run > Run Configurations... to open a Run Configurations dialog.

2. In the left panel, under Java Application, select your ArtiSynth launch configuration (the default one is called

ArtiSynth). This may already be selected when you open the panel.

3. In the right panel, select the Classpath tab.

4. In the Classpath: window, select User Entries, and then click the Add Projects button.

5. In the Project Selection dialog, select the external projects that you wish to add. Generally, the boxes Add

exported entries ... and Add required projects ... can be unchecked. Click OK.

6. Close the Run Configurations dialog.

9.8 Preventing excessive resource copying

By default, ArtiSynth classes are built in a directory tree ($PROJECT_ROOT/classes) that is separate from the source

tree ($PROJECT_ROOT/src), where $PROJECT_ROOT denotes the project root directory and is $ARTISYNTH_HOME for

ArtiSynth itself. That means that Eclipse will try to copy all non-Java files and directories from the source tree into the

build tree. For ArtiSynth, this is excessive, and results in many files being copied that don’t need to be, since ArtiSynth

looks for resources in the source tree anyway.

It is possible to inhibit most of this copying:

1. Choose Window > Preferences (or Eclipse > Preferences).

2. Select Java > Compiler > Building.

3. Open Output folder, and in the box entitled Filter resources, enter the string:

Makefile ,*.l*,*.?,*.??,*.???,*.????,???,????,?????

That should filter out the copying of most non-java files.

Or, to prevent copying any resource, simply enter:

*

10 Additional Information

10.1 Environment variables

This is a glossary of all the environment variables that are associated with building or running ArtiSynth. Often, the sys-

tem can detect and set appropriate values for these automatically. In other cases, as noted in the above documentation, it

may be necessary or desirable for the user to set them explicity.

ARTISYNTH_HOME

The path name of the ArtiSynth installation directory .

ARTISYNTH_PATH

A list of directories , separated by colons ":", which ArtiSynth uses to search for configuration files such as

.artisyntInit or .demoModels. A typical setting for ARTISYNTH_PATH consists of the current directory

(indicated by "."), the user’s home directory , and the ArtiSynth installation directory . If ARTISYNTH_PATH is

not defined explicitly in the user’s environment, ArtiSynth assumes an implicit path consisting of the directory

sequence just described.

ArtiSynth Installation Guide for Linux 13

CLASSPATH

A list of directories and/or jar files, separated by colons ":", which Java uses to locate its class files. This variable

should be set to include $ARTISYNTH_HOME/classes and $ARTISYNTH_HOME/lib/* (the latter uses the wildcard

* to specify all the jar files in $ARTISYNTH_HOME/lib).

PATH

A list of directories , separated by colons ":", which the operating system uses to locate executable programs and

applications. This should be set to include $ARTISYNTH_HOME/bin

LD_LIBRARY_PATH

A list of directories , separated by colons ":", which the operating system searches in order to find shared libraries.

Should be set to include $ARTISYNTH_HOME/lib/Linux64 .

OMP_NUM_THREADS

Specifies the maximum number of processor cores that are available for multicore execution. Setting this variable

to the maximum number of cores on your machine can significantly increase performance.

Note that settings for most of the above can be derived from the value of ARTISYNTH_HOME.

10.1.1 Example environment set up for bash

If you are using bash as your shell, then the environment can be configured by placing a block of commands similar to

the following in one of your bash initialization files (typically ~/.bashrc), located in your home directory :

set ARTISYNTH_HOME to the appropriate location ...

export ARTISYNTH_HOME =$HOME/artisynth_2_X

export ARTISYNTH_PATH =.: $HOME:$ARTISYNTH_HOME

export LD_LIBRARY_PATH =$ARTISYNTH_HOME /lib/Linux64:$LD_LIBRARY_PATH

export CLASSPATH=$ARTISYNTH_HOME /classes:$ARTISYNTH_HOME /lib/’*’: $CLASSPATH

export PATH=$ARTISYNTH_HOME /bin:$PATH

Set to the number of cores on your machine:

export OMP_NUM_THREADS =2

Be sure to set ARTISYNTH_HOME to the proper location of your ArtiSynth installation directory .

These environment variables will be passed on to any program which you run from the shell (such as artisynth or

eclipse).

Alternatively, you can source the script setup.bash, located in the installation directory :

> source setup.bash

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME

set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

10.1.2 Example environment setup for csh or tcsh

If you are using csh or tcsh as your shell, then the environment can be configured by placing a block of commands

similar to the following in your .cshrc file, located in your home directory :

set ARTISYNTH_HOME to the appropriate location ...

setenv ARTISYNTH_HOME $HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":" $HOME":"$ARTISYNTH_HOME

setenv LD_LIBRARY_PATH $ARTISYNTH_HOME /lib/Linux64":"$LD_LIBRARY_PATH

setenv CLASSPATH "$ARTISYNTH_HOME /classes:$ARTISYNTH_HOME /lib/*:$CLASSPATH "

setenv PATH $ARTISYNTH_HOME /bin":"$PATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

ArtiSynth Installation Guide for Linux 14

These environment variables will be passed on to any program which you run from the shell (such as artisynth or

eclipse).

Alternatively, you can source the script setup.csh, located in the installation directory :

> source setup.csh

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME

set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

10.2 ArtiSynth Libraries

ArtiSynth uses a set of libraries located under $ARTISYNTH_HOME/lib. These include a number of jar files, plus native

libraries located in architecture-specific sub-directories (Linux64 for 64-bit Linux systems).

As described in Section 4.3, these libraries need to be downloaded automatically if the system is obtained from the

Subversion repository. The required libraries are listed in the file $ARTISYNTH_HOME/lib/LIBRARIES. This file is

checked into the repository, so that the system can always determine what libraries are needed for a particular checkout

version.

Occasionally the libraries are changed or upgraded. If you run ArtiSynth with the -updateLibs command line option,

the program will ensure that not only are all the required libraries present, but that they also match the latest versions on

the ArtiSynth server.

10.3 The EXTCLASSPATH File

In order to run an external model or package in ArtiSynth, all class paths (i.e., class directories or jar files) associated

with those external classes must be made visible to ArtiSynth. One way to do this is to list these class paths as entries in

the text file EXTCLASSPATH, located in $ARTISYNTH_HOME.

To add class paths to EXTCLASSPATH, open it using a standard text editor (such as vim, gedit, or emacs), and add each

required path. For clarity, each path is typically added on a separate line. However, multiple paths can be added on the

same line if they are separated by the path separator character used for that OS.

The syntax rules for EXTCLASSPATH are:

1. Class path entries on the same line should be separated by a path separator character (a semi-colon ’;’ for

Windows and a colon ’:’ for MacOS and Linux).

2. The # character comments out all remaining characters to the end of line.

3. The $ character can be used to expand environment variables.

4. Any spaces present will be included in the path name.

An example EXTCLASSPATH might look like this:

/research/artisynth_models/classes

/research/models/special.jar

$HOME/projects/crazy/classes

	Introduction
	Prerequisites
	Downloading a Prepacked Release
	Downloading and unpacking the zip file

	Checking out from Subversion
	Checking out using Eclipse
	Checking out using the command line
	Downloading the libraries

	Building ArtiSynth
	Building with Eclipse
	Building from the command line

	Running ArtiSynth
	Running from the command line
	Running using Eclipse
	Loading and Running Models

	Installing External Models and Packages
	Downloading
	Building
	Running
	Adding external classes using the Eclipse Classpath
	Adding external classes using EXTCLASSPATH
	Adding external classes using CLASSPATH

	Updating ArtiSynth
	Library updates

	The Eclipse IDE
	Obtaining Eclipse
	Installing a Subversion plug-in
	Importing an ArtiSynth project into Eclipse
	Importing an ArtiSynth project directly from Subversion
	Configuring environment variables
	Setting environment variables
	Setting command line arguments

	Adding projects to the build path
	Adding projects to the ArtiSynth launch configuration
	Preventing excessive resource copying

	Additional Information
	Environment variables
	Example environment set up for bash
	Example environment setup for csh or tcsh

	ArtiSynth Libraries
	The EXTCLASSPATH File

