ArtiSynth Installation Guide for MacOS

John Lloyd, Sebastian Kazenbroot-Guppy, and Antonio Sanchez
Last updated: March, 2018

ArtiSynth Installation Guide for MacOS 2
Contents

1 Introduction 4

2 Prerequisites 4

3 Downloading a Prepacked Release 5

3.1 Downloading and unpackingthe zipfile 5

4 Cloning from Github 5

4.1 Cloning the rePOSIOTY v v v o e e e e e e e e e e e e e e e e e e e 5

4.1.1 Cloningusing thecommandline L 5

4.1.2 Cloningusing Eclipse 5

4.2 Downloading the libraries e e e e 6

5 Building ArtiSynth 6

5.1 Building with Eclipse e e e e e 6

5.2 Building fromthe commandlineo L 6

6 Running ArtiSynth 6

6.1 Running from the commandline L oo 6

6.2 Running from the file browser L L 7

6.3 Command line arguments e e e e e e e e e e e 7

6.4 Runningusing Eclipse L e e e 7

6.5 Loadingand RunningModels L o 7

7 Installing External Models and Packages 7

7.1 Downloading e 8

72 Building 8

7.2.1 Building with Eclipse e 8

7.2.2 Building from the commandlineo oo 8

7.3 Running 8

7.3.1 Adding external classes using the Eclipse Classpath 8

7.3.2 Adding external classes using EXTCLASSPATH 8

7.3.3 Adding external classes using CLASSPATH, . 9

8 Updating ArtiSynth 9

8.1 Libraryupdates e 9

ArtiSynth Installation Guide for MacOS 3
9 The Eclipse IDE 9
9.1 Obtaining Eclipse e e e e e 9
9.2 TImporting ArtiSynth projects into Eclipse L 9
9.2.1 Importing external projectso 10

9.2.2 Importing from a Git reposIitory 10

9.2.3 Importing from a Subversion repository oL 11

9.2.4 Installing projectfiles. 12

9.3 Configuring environment variables 000 13
9.3.1 Setting environment variables L. L 13

9.4 Command line and JVM arguments i e e e e e e e e 14
9.4.1 Setting command line and JVM arguments 0oL 14

9.5 Addingprojectstothe buildpath 14
9.6 Adding projects to the ArtiSynth launch configuration L oL, 15
9.7 Installing a Subversion plug-in L 15
9.8 Preventing eXcessive reSOUrCe COPYING o o o o v v v v vt ittt e e e e e 16

10 Additional Information 17
10.1 Environment variables L L e e 17
10.1.1 Example environmentsetup forbash Lo 17

10.1.2 Example environment setup for cshortcsh oo 18

10.2 ArtiSynth Libraries e 18
10.3 The EXTCLASSPATH File o e e, 18
10.4 Quick Git SUMMATY o o e e e e e e e e e e 19
10.5 Quick Subversion Summary e e e e 20

ArtiSynth Installation Guide for MacOS 4

Introduction

This document describes how to install and run ArtiSynth on MacOS machines. There are two ways to obtain ArtiSynth:
downloading a prepackaged release, or cloning the latest development version from Github. Downloading a prepackaged
release is the easiest solution to simply try out some of the basic demo programs. Cloning the development version is
recommended for developers who want to keep their codebase current.

The typical install sequence looks like this:
Download
Download either a release (Section 3) or checkout (i.e., clone) out the development version (Section 4).

Build

Compile the system (Section 5). This step is not needed for prepackaged releases.
Run

Start ArtiSynth and run the demonstration models (Section 6).

Generally, users will also want to install and run external models and packages that have been created either by others or
by themselves. This is discussed in (Section 7).

Prerequisites

To install ArtiSynth on MacOS, you will need:

* A 64 bit version of MacOS

e Java 8

e Linux systems require GNU libc version 2.17 or higher

* A three button mouse is recommended for GUI interaction

Note that we have stopped officially supporting 32 bit systems, both because they are becoming obsolete, and because
ArtiSynth applications often require more memory than they can provide.

For Java, the full Java development kit (JDK) is required, which comes with the Java compiler javac. The run time
environment (JRE) will not be sufficient. However, there is no need for extra bundles such at JavaFX, NetBeans, or EE.

At the time of this writing, JDKs can be obtained free from Oracle at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

We recommend obtaining a JDK for Java 8, for which the latest update is Java SE 8ul62.

By default, ArtiSynth is compiled to be compliant with Java 8. While it should also be possible to run ArtiSynth
under Java 9, there have been reports of compatibility problems and warnings involving the Java OpenGL (JOGL)
interface. Therefore we recommend using Java 8 until these issues are resolved. Java 8 is also compatible with
current releases of MATLAB, which is useful if one wishes to run ArtiSynth from MATLAB.

Java versions 5 and earlier had an additional “1.” prepended to their number, so that Java 5 was called 1.5. This
numbering scheme still persists informally, so that Java 8 is occasionally referred to as 1.8, etc.

In this document, the location of the ArtiSynth installation directory will be denoted by <ARTISYNTH_HOME>. for
example if ArtiSynth is installed in

/home/roger/artisynth_core
then <ARTISYNTH_HOME> denotes this directory and <ARTISYNTH_HOME>/1ib denotes the sub-directory

/home/roger/artisynth_core/lib

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ArtiSynth Installation Guide for MacOS 5

Downloading a Prepacked Release

Downloading and unpacking the zip file

To obtain one of the packaged distributions, go to www.artisynth.org/downloads and select the distribution you want.
Download it, and unzip it in an appropriate location on your computer.

Once ArtiSynth is downloaded and unpacked, it should be possible to run it immediately by executing the artisynth
command located in <ARTISYNTH_HOME>/bin (see Section 6.1).

Cloning from Github

Github is a web-based repository service based on the source control management system Git. A very brief summary of
Git is given in Section 10.4.

The latest ArtiSynth development version is available from Github at the URL
https://github.com/artisynth/artisynth_core.git

Users can checkout (i.e., clone) this version and then continue to update their codebase to keep it current (Section 8).
In some casess, developers we work closely with can also obtain, by mutual arrangement, write access to our Github
repository, allowing them to also commit changes.

Users who have a Github account combined with SSH keys may instead wish to clone using the SSH URL
git@github.com:artisynth/artisynth_core.git

For users with repository write access, this will allow them to perform subsequent push operations without having
to enter a username and password.

Cloning the repository

There are several ways to clone ArtiSynth from Github.

Cloning using the command line

Assuming your MacOS distribution has Git installed, then you can clone ArtiSynth from Github using the following
command:

> git clone https://github.com/artisynth/artisynth_core.git [<dir>]

The argument <dir> is optional and gives the name of the directory into which the repository and working copy should
be extracted; if omitted, the directory will be named artisynth_core.

Cloning using Eclipse

If you are planning to develop ArtiSynth models in Java, and if you are planning to do this with the Eclipse IDE (Section
9), then it might be easier to do the Git clone directly in Eclipse. Follow the instructions in Section 9.2.2, using the URL
https://github.com/artisynth/artisynth_core.git described above.

http://www.artisynth.org/downloads

ArtiSynth Installation Guide for MacOS 6

Downloading the libraries

Because the jar files and native libraries used by ArtiSynth are large, they are not stored in the Github repository.
Instead, they must be downloaded separately. This can be done using the command updateArtisynthLibs, located in
<ARTISYNTH_HOME>/bin. You can execute it from the command line like this:

> cd <ARTISYNTH_HOME>
> bin/updateArtisynthLibs

Building ArtiSynth

If ArtiSynth has been cloned from Github, it will be necessary to build (compile) it.

If ArtiSynth was obtained as a prepackaged release, then it is precompiled and does not need to be built in order to run
the built-in demos. However, it will generally be useful to build ArtiSynth anyway, particularly since any user-defined
models created in Java will themselves need to be compiled.

Java compilation and code development is typically done using an integrated development environment (IDE), although
it is possible (particularly on Linux and MacOS) to use external text editors and command line tools. This document
describes how to build and run ArtiSynth using either the Eclipse IDE, or shell-based command line tools. For more
information on Eclipse, see Section 9.

Building with Eclipse

If your Github clone has been done externally to Eclipse (i.e., not according to Section 4.1.2), then you need to first
import ArtiSynth into Eclipse. Follow the instructions in Section 9.2.1.

Once ArtiSynth has been imported, you should be able to build it. If necessary, first open a Java perspective by choosing
Window > Open Perspective > Java. The project artisynth_core (or whatever you might have named it) should appear
in the Package Explorer window. To build the system, select the project in the Package Explorer window, and then
choose Project > Build Project. Note that it may be necessary to deselect Build Automatically in order to enable Build
Project.

Building from the command line

ArtiSynth can also be built by running a make command in the top level directory. Before doing this, you need to first set
the environment variables ARTISYNTH_HOME and CLASSPATH as described in Sections 10.1. ArtiSynth can then be built
by executing

> cd <ARTISYNTH_HOME>
> make

Running ArtiSynth

Running from the command line
The most direct way to start ArtiSynth is to run the command <ARTISYNTH_HOME>/bin/artisynth:

> cd <ARTISYNTH_HOME>
> bin/artisynth

It is recommended to place <ARTISYNTH_HOME>/bin in your PATH environment variable (Section 10.1), so that the
command simplifies to

> artisynth

regardless of the current directory.

ArtiSynth Installation Guide for MacOS 7

step: |0.01000 0.06000 II‘

Figure 1: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, play/-
pause, and single-step buttons.

Running from the file browser
You can also run ArtiSynth from a file browser by double clicking on
<ARTISYNTH_HOME>/bin/artisynth.command

Note that artisynth.command is just a copy of artisynth; the .command suffix makes it recognizable to the MacOS
GUI as a command.

Command line arguments

The artisynth command accepts command line arguments, a full list of which can be seen by running artisynth with
the ~help option:

> artisynth -help

Descriptions of these options appear in various places within the ArtiSynth documentation. For example, one commonly
used option is -model <modelClassName>, which instructs ArtiSynth to preload a model associated with a given class
name:

> artisynth -model artisynth.demos.mech.SpringMeshDemo

Running using Eclipse
Once ArtiSynth has been imported into Eclipse (and built if necessary), it should contain a launch configuration called
ArtiSynth that will allow ArtiSynth to be run by choosing Run > Run.

In some cases, one may wish to adjust environment variables, command line arguments, or Java JVM arguments to
affect how ArtiSynth behaves. Instructions for doing so are contained in Sections 9.3 and 9.4.

Loading and Running Models

Once ArtiSynth starts up, you can use it to load and run models. General instructions on how to load and run models are
given in the section “Loading and Simulating Models” of the ArtiSynth User Interface Guide.

By default, ArtiSynth comes with a number of demonstration models, which can be loaded and run as follows:

From the menu bar, Select Models > Demos. This will display a submenu of demonstration models. Choosing one
will cause that model to be loaded and displayed in the viewer. Simulation of the model can then be started, paused,
single-stepped, or reset using the play controls (Figure 1) located at the upper right of the ArtiSynth window frame.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.

Installing External Models and Packages

Typically, an ArtiSynth developer will want to use external models and packages that exist outside of artisynth_core.
Some of these may be obtained from external sources. For example, artisynth_models is a collection of packages that
provides a variety of publicly available anatomical models, currently focussed primarily on the head and neck region.
For instructions on obtaining artisynth_models, visit www.artisynth.org/models.

Installing external models and packages requires a sequence of operations similar to that for installing ArtiSynth itself:

http://www.artisynth.org/doc/artisynth_core_3.4/html/uiguide/uiguide.html
http://www.artisynth.org/doc/artisynth_core_3.4/html/uiguide/uiguide.html
https://www.artisynth.org/models

ArtiSynth Installation Guide for MacOS 8

1. Download
2. Build (if necessary)
3. Run

Downloading

Some model and package collections, such as artisynth_models mentioned above, may be available either as
prepackaged distributions, or through Git or Subversion repositories. Prepackaged distributions should be downloaded
and unpacked into a desired location, while Git or Subversion checkouts may may be obtained as described in Sections
10.4 or 10.5.

Some collections maintained by ArtiSynth may contain Eclipse project settings (in an eclipseSettings.zip file in
their root directory), allowing them to be imported into Eclipse, either directly from Git (Section 9.2.2) or Subversion (
Section 9.2.3), or after being obtained separately (Section 9.2.1).

Building

Collections that are obtained from Git or Subversion will need to be built (compiled).

Building with Eclipse

Many collections (such as artisynth_models) can be imported into Eclipse as a project and then built as described in
Section 5.1.

Important: for collection projects to compile properly in Eclipse, the artisynth_core project (and any other
projects they depend on) were have to be added to their build path. Details on doing this are given in Section 9.5.

Building from the command line

If the collection has a Makefile in its root directory, then it can be compiled from the command line by running make
in the root directory. Before doing this, the top-level directory for the collection’s class files must to be added to the
CLASSPATH environment variable (Section 10.1). In collections maintained by ArtiSynth, this will be the directory
classes, located directly under the collection root directory (e.g., artisynth_models/classes).

Running

External models are executed by running ArtiSynth itself (Section 6). However, in order to execute these models,
ArtiSynth must be able to locate their associated classes. This can be arranged in three different ways:

Adding external classes using the Eclipse Classpath

If you are running from Eclipse, then you can make the classes of external projects visible to ArtiSynth by adding the
projects to the Classpath of your ArtiSynth launch configuration, as described in Section 9.6.

Adding external classes using EXTCLASSPATH

Alternatively, you can make the classes of external projects visible to ArtiSynth by adding the path names of all their
top-level class directories (or jar files, if relevant) to the file <ARTISYNTH_HOME>/EXTCLASSPATH (described in Section
10.3).

For example, suppose the collection artisynth models has been placed in /projects/artisynth_models. The
top-level class directory for this collection is located in artisynth_models/classes, and so the following entry should
be placed in the EXTCLASSPATH file:

/projects/artisynth_models/classes

ArtiSynth Installation Guide for MacOS 9

Adding external classes using CLASSPATH

Finally, if you are running from the command line using the artisynth command, then you can make external classes
visible by adding them to your CLASSPATH environment variable (see Section 10.1).

Updating ArtiSynth

One reason to use a clone of the latest ArtiSynth development version is to be able to migrate recent changes into
your code base. When a significant update occurs, a posting is made to the ArtiSynth update log, currently located at
www.artisynth.org/doc/html/updates/updates.html. Users may also be notified via the artisynth-updates email list.

Users working from Eclipse may update simply by selecting the project in the Package Explorer and selecting Team >
Pull from the context menu.

Updating may also be done from the command line by issuing the
> git pull

command from within the ArtiSynth installation directory.

Library updates

Occasionally, a software update will be accompanied by a change in the libraries located in <ARTISYNTH_HOME>/11ibs.
When this happens, it will be indicated on the ArtiSynth update log and appropriate instructions will be given. Some-
times, it will be necessary to explicitly update the libraries after doing the main update. This can be done by executing
updateArtisynthLibs as described in Section 4.2.

The Eclipse IDE

Eclipse is an integrated development environment (IDE) commonly used for Java code development, and many
ArtiSynth developers use it for both developing models in Java and for running the system. This section describes how
to load ArtiSynth projects into Eclipse, and how to configure it for running ArtiSynth. A general introduction to Eclipse
is beyond the scope of this document, but there are many Eclipse resources available online.

Obtaining Eclipse

Eclipse can be obtained from www.eclipse.org/downloads. A good version to obtain (at the time of this writing) is
Eclipse IDE for Java Developers.

The Eclipse instructions described below are based on the “Neon” distribution, but should be largely similar for
later versions.

Importing ArtiSynth projects into Eclipse

ArtiSynth projects include the core distribution (artisynth_core), the open source models collection artisynth_models
(which contains human anatomy models), as well as other model and code collections maintained by the ArtiSynth team
and other users.

There are several ways to import ArtiSynth projects into Eclipse. If the project has already been downloaded or checked
out from a repository, then it can be imported as an external project (Section 9.2.1). Otherwise, Eclipse itself can be used
to check out a project from either Git (Section 9.2.2) or Subversion (Section 9.2.3).

http://www.artisynth.org/doc/artisynth_core_3.4/html/updates/updates.html
http://www.eclipse.org/downloads

ArtiSynth Installation Guide for MacOS 10

Importing external projects

ArtiSynth project repositories (including artisynth_core and artisynth_models) do not directly expose the Eclipse
project files (.project, .classpath, etc.) within the distribution. Instead, these files are bundled within a top-level
file eclipseSettings.zip, which must be unzipped directly into the top-level directory, as described in Section 9.2.4.
This is to prevent local modifications to the project files from being propagated back to the main repositories.

Let <PROJECT_DIR> denote the top-level project directory. For the core distribution artisynth_core, this will also be
<ARTISYNTH_HOME>.

1. From outside Eclipse, extract the Eclispe project files by unzipping <PROJECT_DIR>/eclipseSettings.zip into
<PROJECT_DIR>. MacOS users are strongly encouraged to read Section 9.2.4 for details on how to do this.

Attention MacOS users:

The default zip utility on MacOS will create a new sub-folder called eclipseSettings and will extract
the files there. You do not want this!! Some of the files are then labeled as “hidden” by MacOS, which

will prevent you from moving them to the correct place manually. Either extract the file directly to the
<ARTISYNTH_HOME> directory with a more standard application like 7-Zip (7zX for OSX), or use the unzip
utility from the command-line. For the latter, open a terminal window, change to the ArtiSynth install
directory, and enter the command

unzip eclipseSettings.zip

2. For artisynth_core, then from outside Eclipse, download the required jar files and native libraries as de-
scribed in Section 4.2.

3. From within Eclipse, choose File > Import
4. An Import dialog will appear. Select General > Existing Projects into Workspace and click Next.

5. An Import Projects dialog will appear. In the field Select root directory, enter (or browse to) the parent directory
of <PROJECT_DIR>. The project itself should now appear in the Projects box (Figure 2). (If other projects are
contained in the parent directory, these will appear as well.) Make sure that the desired project is selected and then
click Finish.

If Eclipse complains that "No projects are found to import", or does not otherwise show the project as available
for import, then most likely the <PROJECT_DIR> directory does not contain a .project file. This can happen if
eclipseSettings.zip was not properly unzipped into <PROJECT_DIR>.

Importing from a Git repository

Recent versions of Eclipse contain integrated support for Git, and so importing a project directly from a Git repository is
relatively easy.

Because ArtiSynth GIT repositories do not directly expose Eclipse project files, the standard import method of
File > Import... > Git > Projects from Git

will not work completely. Instead, one must first clone the Git repository, and then import the project directory as
described in Section 9.2.1.

To clone a Git repository from within Eclipse;

1. Choose Window > Show View > Other ... > Git > Git Repositories from the main menu to open a Git Repositories
view window.

2. Within the Git Repositories window, choose the button (or pull down menu item) that says Clone a repository.

ArtiSynth Installation Guide for MacOS 11

Import Projects E_ii‘
Select a directory to search for existing Eclipse projects |
© Select root directory: | fhome/lloyd/artisynth v Browse...
Select archive file: v
Projects:
artisynth_core (/home/lloyd/artisynth/artisynth_core) Select All
Deselect All
Refresh
Options
Search for nested projects
Copy projects into workspace
"1 Hide projects that already exist in the workspace
Working sets
"] Add project to working sets New..
@ <Back ext > Cancel Finish

Figure 2: Eclipse Import Projects dialog.

3. A Source Git Repository dialog will appear (Figure 3, left). Enter the URL for the repository. For ArtiSynth itself,
this is https://github.com/artisynth/artisynth_core.git). The URI field is coupled to some of the
others: you can either fill in the URI field directly, or enter the individual URI components in the Host, Repository
path, and Protocol fields. Also, if the repository has read access restrictions, it will generally be necessary to
specify a user name and password in the Authentication fields. After entering the required information, click Next.

4. A Branch Selection dialog may appear. If it does, select only the master branch, and then click Next.

5. A Local Destination dialog will appear (Figure 3, right). In the Directory field, enter the path of the local directory,
which will contain both the cloned repository and the working copy. For ArtiSynth itself, this will also be the
ArtiSynth home directory (<ARTISYNTH_HOME>). After entering the directory information, click Finish.

Finally, import the local directory into Eclipse as a project by following the steps in Section 9.2.1, using the local
directory parent as the “root directory”.

Importing from a Subversion repository

If Eclipse has a Subversion plug-in installed (Section 9.7), you may import an ArtiSynth project by checking it out
directly from the repository located by the project’s Subversion_URL. For the core ArtiSynth distribution, this is

https://svn.artisynth.org/svn/artisynth_core/trunk

Other projects will have different URLs.

The following instructions assume the Subversive plug-in.

1. Choose File > Import from the main menu, select SVN > Project from SVN and click Next.

2. You now need to specify a repository location, as specified by a Subversion_URL. If you’ve previously done an
SVN checkout, a menu will appear allowing you to select a previously used URL. If one of these is sufficient,
select it and click Next to go to Step 4. Otherwise, select Create a new repository location and click Next to enter a
repository dialog. If no previous locations are known this dialog will appear automatically.

3. If you are specifying a new location in the repository dialog:

* Under the General tab, enter the Subversion_URL in the URL box. If you are just checking out the trunk of the

repository (i.e., if your Subversion URL ends in /trunk), then you should omit the final /t runk since this is
selectable in Step 4.

ArtiSynth Installation Guide for MacOS 12

10.

11.
12.

Source Git Repository [GIT] Local Destination GIT]
Enter the location of the source repository. o Configure the local storage location for artisynth_core. o
Location Destination
URI: https://github.com/artisynth/artisynth_core Local File... Directory: /home/lloyd/artisynth/artisynth_core Browse
Host: | github.com Initial branch: | master ¥
Repository path: | /artisynth/artisynth_core Clone submodules
Connection Configuration
Protocol: | hitps ¥ Remote name: | origin
Port: | | Projects

Import all existing Eclipse projects after clone finishes
Authentication
Working sets

User: -
Add project to working sets New...

Password:

‘?:' Bacl Next > Cancel Finish l?)‘ < Back fext Cancel Finish

Figure 3: Eclipse dialogs for importing a Git repository.

* If you are checking out a repository that is not available for anonymous access, or if you need write access to
the repository, enter your ArtiSynth User ID and Password (which you will have obtained from us separately) in
the Authentication section of the dialog. You will probably want to check Save authentication as well.

¢ Click Next.

In the Select Resource dialog, use the URL selector box to select the full URL to be used for the checkout. If you
are just checking out the trunk of the repository, then choose Subversion_URL/trunk which should be available
as a selection.

Click Finish

In the Check Out As dialog, select Check out as a project with name specified, adjust the project name if desired,
and click Next.

Specify the location for the check out. If you leave Use default workspace location selected, this will be
workspace/project_name, where workspace is the Eclipse workspace directory and project_name is the
project name selected in the previous step. Otherwise, you can specify an explicit checkout location (which does
not have to be located in the Eclipse workspace). For ArtiSynth core checkouts, the project name is typically
artisynth_core and the the checkout location will become the ArtiSynth install directory <ARTISYNTH_HOME>.

Click Finish.

If necessary, open a Java perspective by choosing Window > Open Perspective > Java. The project should appear
in the Package Explorer window.

From outside Eclipse, install the Eclipse project files by unzipping <PROJECT_DIR>/eclipseSettings.zip into
<PROJECT_DIR>. MacOS users are strongly encouraged to read Section 9.2.4 for details on how to do this.

From outside Eclipse, download the required jar files and native libraries as described in Section 4.2.

Finally, load the new settings into the project by selecting the project in the Package Explore window and
selecting Refresh from the context menu.

Installing project files

Distributions of artisynth_core and artisynth_models, as well as some other project repositories, contain their
eclipse project files bundled in the zip file eclipseSettings.zip. The reason for not placing project files directly
under repository control is to prevent local changes to them from being propagated back into the repository.

ArtiSynth Installation Guide for MacOS 13

Let <PROJECT_DIR> denote the top-level project directory. Project files can be extracted using the command line. Open
a command shell, switch to the <PROJECT_DIR> directory, and run unzip:

> cd <PROJECT_ROOT>
> unzip eclipseSettings.zip

This will create the files .project and .classpath, along with the directory .settings, in <PROJECT_DIR>. In the
case of artisynth_core, it will also create the file ArtiSynth.launch containing the default launch configuration.

Note: if unzip queries about overwriting .project, answer [y]es.

Attention MacOS users:

While it is possible to unzip files from the file browser by clicking on eclipseSettings.zip and then extracting
directly, the default zip utility on MacOS will create a new sub-folder called eclipseSettings and will extract
the files there. You do not want this!! Some of the files are then labeled as “hidden” by MacOS, which will prevent
you from moving them to the correct place manually. Either extract the files using the command line as described
above, or use a more standard application like 7-Zip (7zX for OSX).

Configuring environment variables

When running ArtiSynth from Eclipse, it may be useful to set certain environment variables that affect its operation.
Directions on setting the environment variables are given in Section 9.3.1, and descriptions of the variables themselves
may be found in Section 10.1.

Some variables that are commonly set within Eclipse include:

e ARTISYNTH_HOME: This should be set to <ARTISYNTH_HOME>. The ArtiSynth launch configuration in artisynth_core
achieves this by settingARTISYNTH_HOME to the built-in Eclipse variable ${project_loc}. However, for launch con-
figurations defined outside of artisynth_core, it may be necessary to set this variable explicitly.

e OMP_NUM_THREADS: Specifies the maximum number of processor cores available for multicore execution.
e ARTISYNTH_PATH: A list of folders, separated by semi-colons ";", which ArtiSynth uses to search for configuration
files. See Section 10.1.

If any of the above variables have already been set externally in MacOS (Section 10.1), such that they are visible to
Eclipse at start-up, then they do not need to be set in the launch configuration.

Setting environment variables

To set environment variables within Eclipse:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.
2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

. In the left panel, under Java Application, select ArtiSynth.

. In the right panel, select the Environment tab.

N A

. To create a new environment variable, click the New button and enter the name and value in the dialog box. See
Figure 4.

7. When finished, make sure that Append environment to native environment is selected, and click Apply.

ArtiSynth Installation Guide for MacOS 14

Create, manage, and run configurations @

Run a Java application

|| Name: | ArtiSynth

| '@ Main | b= Arguments | B\ JRE Ty CLasspathéE__ Source E.E Environmen.t

G Gradle Project

B Java Applet Environment variables to set:
w31 Java Application Variable Value New...
|® ARTISYNTH_HOME ${project_loc) CRIRE

[T CollisionHandlerTable| | | g OMP_NUM_THREADS |1
Ju JUnit ' Ediit
m2 Maven Build

Juj Task Context Test
(] Append environment to native environment

Replace native environment with specified environment

Revert Apply

Filter matched 8 of 8 items|
@' Close Run

Figure 4: Setting environment variables within Eclipse.

Command line and JVM arguments

As described in Section 6.3, the artisynth command accepts command line arguments. To invoke these when running
from Eclipse, it is necessary to set the desired arguments in the launch configuration, as described below.

Sometimes it may also be necessary to set JVM arguments, which control the Java virtual machine running ArtiSynth.
An example of such an argument is -Xmx, which can be used to increase the maximum amount of memory available to
the application. For example, -Xmx6g sets the maximum amount of memory to 6 gigabytes.

Setting command line and JVM arguments

To set command line arguments for your Eclipse application:
1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.
. Select the ArtiSynth project in the Package Explorer form.
. Choose Run > Run Configurations... to open the Run Configurations window.

2
3
4. In the left panel, under Java Application, select ArtiSynth.
5. In the right panel, select the Arguments tab.

6

. Program arguments (which are passed directly to ArtiSynth) should be specified in the Program arguments box.
JVM arguments should be specified in the VM arguments box. See Figure 5.

7. When finished, click Close.

Adding projects to the build path

A project imported into Eclipse may depend on the packages and libraries found in other projects to compile prop-
erly. For example, ArtiSynth applications which are external to artisynth_core will nonetheless depend on

artisynth_core. To ensure proper compilation, project dependencies should be added to each dependent project’s
build path.

ArtiSynth Installation Guide for MacOS 15

Create, manage, and run configurations @
Run a Java application
= X = L Name: | ArtiSynth
| type flter text s ” y ~ = = =
type filter text @ Main |- Arguments Bk JRE| “4 Classpath %7 Source | B Environment | £l Common |
G Gradle Project Program arguments:
i Java Applet -model artisynth.demos.mech.5pringMeshDemo

vl Java Application

Variables...

[T CollisionHandlerTableTes

Ju JUnit

VM arguments:

-Xmx6g
mz Maven Build

Jiy Task Context Test \.‘iarlables

Working directory:

Revert Appl:
Filter matched 8 of B items eve Pply

(j) Close | Run

Figure 5: Setting command line and JVM arguments for a run configuration.

1. Select the dependent project in the Package Explorer form.

2. Right click and choose Build Path > Configure Build Path...

3. In the right panel, select the Projects tab.

4. Click the Add button, select the project dependencies, and click OK
5. Click OK in the Java Build Path panel

Adding projects to the ArtiSynth launch configuration

The classes of external projects can be made visible to ArtiSynth by adding the projects to the Classpath of the Ar-
tiSynth launch configuration.
1. From the main menu, choose Run > Run Configurations... to open a Run Configurations dialog.

2. In the left panel, under Java Application, select your ArtiSynth launch configuration (the default one is called
ArtiSynth). This may already be selected when you open the panel.

3. In the right panel, select the Classpath tab.
4. In the Classpath: window, select User Entries, and then click the Add Projects button.

5. In the Project Selection dialog, select the external projects that you wish to add. Generally, the boxes Add
exported entries ... and Add required projects ... can be unchecked. Click OK.

6. Close the Run Configurations dialog.

Installing a Subversion plug-in

In order to work with Subversion from within Eclipse, either to check out ArtiSynth from the repository, or to update or
commit changes, it is necessary to use a Subversion plug-in. First, check to see if your version of Eclipse contains an
Subversion plug-in:

Open an import panel using File > Import..., and then look for SVN in the set of available import sources. If you don’t
see SVN listed, it will be necessary to install a plug-in.

ArtiSynth Installation Guide for MacOS 16

We recommend the Eclipse-supported Subversive plug-in, but if this proves difficult for any reason, there are other
options, such as Subclipse, currently obtainable from subclipse.tigris.org.

Instructions for installing Subversive can be obtained at www.eclipse.org/subversive/installation-instructions.php.

One way to install Subversive is through the Eclipse Marketplace. If you have an older version of Eclipse that doesn’t
have Marketplace, you may be able to obtain it from www.eclipse.org/mpc. To access the Marketplace, click Help >
Eclipse Marketplace. Once the available applications have been displayed, type Subversive into the Find box in the
top-left corner of the Marketplace window. Navigate to the package labeled Subversive - SVN Team Provider and click
Install. On the Confirm Selected Features screen, ensure all boxes are checked and click the button labeled Confirm >.
Restart Eclipse when prompted.

One more step is now necessary. Re-open Eclipse, and you should be prompted to choose an SVN connector in the start
menu. SVN connectors interface Subversive to the SVN server, and are OS and server-specific. A recommended SVN
Connector will be pre-selected for downloading; this is most likely the one you need.

If Eclipse did not prompt you to choose a connector when it restarted, you can install SVN connectors separately (thanks
to bmaupin at Stackoverflow for this information):
1. Go to www.polarion.com/products/svn/subversive/download.php

2. Under the latest Release, copy the Subversive SVN Connectors URL. The current URL for Eclipse 4.3 Kepler is
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site.

3. In Eclipse, go to Help > Install New Software... and click Add...
4. Copy the URL for the Subversive SVN Connectors into the Location box and click OK
5. Check Subversive SVN Connectors, click Next, and then follow the instructions to complete installation.

If in doubt about the connector you need, you can install multiple ones, and then adjust the one Subversive actually uses
by going to Windows > Preferences, opening Team > SVN, and then opening the SVN Connector tab.

Preventing excessive resource copying

By default, ArtiSynth classes are built in a directory tree (<PROJECT_DIR>/classes) that is separate from the source
tree (<PROJECT_DIR>/src), where <PROJECT_DIR> denotes the project root directory and is <ARTISYNTH_HOME> for
ArtiSynth itself. That means that Eclipse will try to copy all non-Java files and directories from the source tree into the
build tree. For ArtiSynth, this is excessive, and results in many files being copied that don’t need to be, since ArtiSynth
looks for resources in the source tree anyway.

It is possible to inhibit most of this copying:

1. Choose Window > Preferences (or Eclipse > Preferences).
2. Select Java > Compiler > Building.
3. Open Output folder, and in the box entitled Filter resources, enter the string:
Makefile ,*.1%,% 2, % 22, % 2272, % ,2222,222,2222,2222°?
That should filter out the copying of most non-java files.

Or, to prevent copying any resource, simply enter:

*

http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.eclipse.org/subversive/installation-instructions.php
http://www.eclipse.org/mpc/
http://www.polarion.com/products/svn/subversive/download.php
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site/

ArtiSynth Installation Guide for MacOS 17

Additional Information

Environment variables

This is a glossary of all the environment variables that are associated with building or running ArtiSynth. Often, the sys-
tem can detect and set appropriate values for these automatically. In other cases, as noted in the above documentation, it
may be necessary or desirable for the user to set them explicitly.

ARTISYNTH_HOME
The path name of the ArtiSynth installation directory.

ARTISYNTH_PATH

A list of directories, separated by colons ":", which ArtiSynth uses to search for configuration files such as
.artisyntInit or .demoModels. A typical setting for ARTISYNTH_PATH consists of the current directory
(indicated by "."), the user’s home directory, and the ArtiSynth installation directory. If ARTISYNTH_PATH is
not defined explicitly in the user’s environment, ArtiSynth assumes an implicit path consisting of the directory
sequence just described.

CLASSPATH

A list of directories and/or jar files, separated by colons ":", which Java uses to locate its class files. This variable
should be set to include <ARTISYNTH_HOME>/classes and <ARTISYNTH_HOME>/1ib/* (the latter uses the
wildcard * to specify all the jar files in <ARTISYNTH_HOME>/11iDb).

PATH
A list of directories, separated by colons ":", which the operating system uses to locate executable programs and
applications. This should be set to include <ARTISYNTH_HOME>/bin

OMP_NUM_THREADS

Specifies the maximum number of processor cores that are available for multicore execution. Setting this variable
to the maximum number of cores on your machine can significantly increase performance.

Note that settings for most of the above can be derived from the value of ARTISYNTH_HOME.

Example environment set up for bash

If you are using bash as your shell, then the environment can be configured by placing a block of commands similar to
the following in one of your bash initialization files (typically ~/.bashrc), located in your home directory:

set ARTISYNTH_HOME to the appropriate location

setenv ARTISYNTH_HOME S$HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":"SHOME":"$SARTISYNTH_HOME

setenv DYLD_LIBRARY_PATH S$SARTISYNTH_HOME /lib/MacOS64":"$DYLD_LIBRARY_PATH
setenv CLASSPATH "S$ARTISYNTH_HOME /classes:$SARTISYNTH_HOME /1lib/*:S$CLASSPATH"
setenv PATH SARTISYNTH_HOME /bin":"S$PATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

Be sure to set ARTISYNTH_HOME to the proper location of your ArtiSynth installation directory.

These environment variables will be passed on to any program which you run from the shell (such as artisynth or
eclipse). However, they will not be passed on to programs (such as eclipse) which you launch from the dock.

Alternatively, you can source the script setup.bash, located in the installation directory:
> source setup.bash

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME
set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

ArtiSynth Installation Guide for MacOS 18

Example environment setup for csh or tcsh

If you are using csh or tcsh as your shell, then the environment can be configured by placing a block of commands
similar to the following in your .cshrc file, located in your home directory:

set ARTISYNTH_HOME to the appropriate location

setenv ARTISYNTH_HOME S$HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":"SHOME":"S$SARTISYNTH_HOME

setenv DYLD_LIBRARY_PATH S$SARTISYNTH_HOME /lib/MacOS64":"$DYLD_LIBRARY_PATH
setenv CLASSPATH "S$ARTISYNTH_HOME /classes:S$SARTISYNTH_HOME /lib/*:S$CLASSPATH"
setenv PATH SARTISYNTH_HOME /bin":"SPATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

These environment variables will be passed on to any program which you run from the shell (such as artisynth or
eclipse). However, they will not be passed on to programs (such as eclipse) which you launch from the dock.

Alternatively, you can source the script setup.csh, located in the installation directory:
> source setup.csh

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME
set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

ArtiSynth Libraries

ArtiSynth uses a set of libraries located under <ARTISYNTH_HOME>/1ib. These include a number of jar files, plus
native libraries located in architecture-specific sub-directories (Mac0S64 for MacOS systems).

As described in Section 4.2, these libraries need to be downloaded automatically if the system is obtained from the
Github repository. The required libraries are listed in the file <ARTISYNTH_HOME>/11ib/LIBRARIES. This file is checked
into the repository, so that the system can always determine what libraries are needed for a particular checkout version.

Occasionally the libraries are changed or upgraded. If you run ArtiSynth with the ~updateLibs command line option,
the program will ensure that not only are all the required libraries present, but that they also match the latest versions on
the ArtiSynth server.

The EXTCLASSPATH File

In order to run an external model or package in ArtiSynth, all class paths (i.e., class directories or jar files) associated
with those external classes must be made visible to ArtiSynth. One way to do this is to list these class paths as entries in
the text file EXTCLASSPATH, located in <ARTISYNTH_HOME>.

To add class paths to EXTCLASSPATH, open it using a standard text editor (such as vim, gedit, or emacs), and add each
required path. For clarity, each path is typically added on a separate line. However, multiple paths can be added on the
same line if they are separated by the path separator character used for that OS.

The syntax rules for EXTCLASSPATH are:

1. Class path entries on the same line should be separated by a path separator character (a semi-colon ’;’ for
Windows and a colon ’:” for MacOS and Linux).

2. The # character comments out all remaining characters to the end of line.
3. The $ character can be used to expand environment variables.

4. Any spaces present will be included in the path name.
An example EXTCLASSPATH might look like this:
/research/artisynth_models/classes

/research/models/special. jar
SHOME/projects/crazy/classes

ArtiSynth Installation Guide for MacOS 19

Quick Git Summary

Git is a distributed source control management (SCM) system that is widely used in the software industry. A full
discussion of Git is beyond the scope of this document, but a large literature is available online. Generally, when you
clone a Git repository, you create a local copy of that repository on your machine, along with a checked out working
directory containing the most recent version of the code (which is referred to as the HEAD).

Unlike client/server SCMs, Git is distributed, with users maintaining their own private copies of a repository. This
allows a great deal of flexibility in usage, but also adds an extra “layer” to the workflow: when you “checkout” from a
repository or “commit” to it, you do so with respect to your own local copy of that repository, not the original (origin)
repository from which you performed the original clone. The process of merging in changes from the origin to the local
repository is known as “pulling”, while committing changes from the local repository back to the origin is known as
“pushing”.

There is also another layer of interaction when you commit changes to the local repository: you first add them to a

staging area (also known as the “index”), and then commit them using the commit command.

A very simple workflow for a typical ArtiSynth user is summarized below. The actions are described in command-line
form, but the same commands can generally be issued through Eclipse or other interfaces. First, clone the most recent
version of the ArtiSynth repository on Github:

git clone https://github.com/artisynth/artisynth_core.git [<dir>]

This will create a local copy of the Github repository, along with a checked out “working copy”, in the directory
specified by <dir>, orin artisynth_core if <dir> is omitted. The repository itself will be located in a sub-directory
called .git.

Other Git repositories can be cloned in a similar manner. If the repository has read access restrictions, then when per-
forming a checkout it may also be necessary to specify a user name for which the repository has granted read access.
This is typically done by embedding the user name in the URL, as in (for example) https://userfhost.xz/path/to/repo.git.

Later, to fetch the latest updates from the Github repository and merge them into your working copy, then from within
the working copy directory you can do

git pull

If you make changes to some files in your working copy and wish to commit these to your local repository, you first add
(or remove them) from the staging area using commands such as:

git add <fileName> # add a new (or modified) file
git add * # add all files
git rm <fileName> # remove a file

and then commit them to your local repository using
git commit -m "commit message"
Note that you can also add modified files and commit them using the single command
git commit -m -a "commit message"
To see the current status of the files in your working copy and the staging area, use the command
git status
and to see the commit history for particular files or directories, use
git log [<filename> ...]

Finally, to push your changes back to the Github repository (assuming you have permission do so), you would do so
using the command

ArtiSynth Installation Guide for MacOS 20

git push origin master

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been
discussed, including the creation and merging of branches, but there are many useful online resources that describe these
in detail. Some current references include

https://git-scm.com/docs
http://rogerdudler.github.io/git-guide

Quick Subversion Summary

Subversion is a client/server source control management (SCM) system that is widely used in the software industry. A
full discussion of Subversion is beyond the scope of this document, but a large literature is available online.

Subversion allows you to check out a codebase from a (often remote) repository into a local working copy, update recent
changes from the repository into the working copy, and (if one has the appropriate permissions) commit local changes
back into to repository.

A Subversion client application is used to access both Subversion repositories and local working copies. The remainder
of this discussion will assume use of the command-line client svn, although other clients are available, including
TortoiseSVN for Windows and the Subversion plug-ins for Eclipse (Section 9.7).

Some ArtiSynth models collections and code extensions are distributed through Subversion, including the artisynth_projects
package used by some collaborators. A very simple workflow involving one of these is summarized below.

First, check out the most recent version from the repository, using the repository’s URL. For example, the URL for
artisynth_projects is https://svn.artisynth.org/svn/artisynth_projects, and the associated checkout
command is

svn checkout https://svn.artisynth.org/svn/artisynth_projects/trunk [<dir>]

This will create a local working copy of the “trunk” branch of artisynth_projects in the directory specified by
<dir>, orin artisynth_projects if <dir> is omitted. Local repository information is stored in a sub-directory called
.svn.

If the SVN repository has read access restrictions (which artisynth_projects actually does), then when performing
a checkout it may also be necessary to specify a user name or email address for which the repository has granted read
access. This may be done with the —~username option. The user will also typically be prompted for an access password.

Note:

If you omit the trailing /t runk from the Subversion URL, then the checkout will contain the entire Subversion
directory structure, including the subdirectories t runk, branches, and tags, which is generally not needed by
most users.

Later, to fetch the latest updates from the repository and merge them into your working copy, from within the local
directory, would you simply do

svn update

If you make changes to some files in your working copy and wish to commit these back to the repository (assuming you
have the necessary permissions), then you can issue the command

svn commit -m "commit message"
To add or remove files from the repository, one may use the commands

svn add <fileName> ... # add files
svn delete <fileName> ... # delete files

ArtiSynth Installation Guide for MacOS 21

prior to performing the commit.

To see the current status of the files in your working copy, use the command
svn status

and to see the commit history for particular files or directories, use
svn log [<filename> ...]

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been
discussed, including the creation and merging of branches, but there are many useful online resources that describe these
in detail. The most comprehensive is probably the Subversion “Redbook™.

http://svnbook.red-bean.com

	Introduction
	Prerequisites
	Downloading a Prepacked Release
	Downloading and unpacking the zip file

	Cloning from Github
	Cloning the repository
	Cloning using the command line
	Cloning using Eclipse

	Downloading the libraries

	Building ArtiSynth
	Building with Eclipse
	Building from the command line

	Running ArtiSynth
	Running from the command line
	Running from the file browser
	Command line arguments
	Running using Eclipse
	Loading and Running Models

	Installing External Models and Packages
	Downloading
	Building
	Building with Eclipse
	Building from the command line

	Running
	Adding external classes using the Eclipse Classpath
	Adding external classes using EXTCLASSPATH
	Adding external classes using CLASSPATH

	Updating ArtiSynth
	Library updates

	The Eclipse IDE
	Obtaining Eclipse
	Importing ArtiSynth projects into Eclipse
	Importing external projects
	Importing from a Git repository
	Importing from a Subversion repository
	Installing project files

	Configuring environment variables
	Setting environment variables

	Command line and JVM arguments
	Setting command line and JVM arguments

	Adding projects to the build path
	Adding projects to the ArtiSynth launch configuration
	Installing a Subversion plug-in
	Preventing excessive resource copying

	Additional Information
	Environment variables
	Example environment set up for bash
	Example environment setup for csh or tcsh

	ArtiSynth Libraries
	The EXTCLASSPATH File
	Quick Git Summary
	Quick Subversion Summary

