
ArtiSynth Installation Guide for MacOS

John Lloyd, Sebastian Kazenbroot-Guppy, and Antonio Sánchez

Last updated: March, 2018

ArtiSynth Installation Guide for MacOS 2

Contents

1 Introduction 4

2 Prerequisites 4

3 Downloading a Prepacked Release 5

3.1 Downloading and unpacking the zip file . 5

4 Cloning from Github 5

4.1 Cloning the repository . 5

4.1.1 Cloning using the command line . 5

4.1.2 Cloning using Eclipse . 5

4.2 Downloading the libraries . 6

5 Building ArtiSynth 6

5.1 Building with Eclipse . 6

5.2 Building from the command line . 6

6 Running ArtiSynth 6

6.1 Running from the command line . 6

6.2 Running from the file browser . 7

6.3 Command line arguments . 7

6.4 Running using Eclipse . 7

6.5 Loading and Running Models . 7

7 Installing External Models and Packages 7

7.1 Downloading . 8

7.2 Building . 8

7.2.1 Building with Eclipse . 8

7.2.2 Building from the command line . 8

7.3 Running . 8

7.3.1 Adding external classes using the Eclipse Classpath . 8

7.3.2 Adding external classes using EXTCLASSPATH . 9

7.3.3 Adding external classes using CLASSPATH . 9

8 Updating ArtiSynth 9

8.1 Library updates . 9

ArtiSynth Installation Guide for MacOS 3

9 The Eclipse IDE 9

9.1 Obtaining Eclipse . 9

9.2 Importing ArtiSynth projects into Eclipse . 10

9.2.1 Importing external projects . 10

9.2.2 Importing from a Git repository . 10

9.2.3 Importing from a Subversion repository . 11

9.2.4 Installing project files . 13

9.3 Configuring environment variables . 13

9.3.1 Setting environment variables . 13

9.4 Command line and JVM arguments . 14

9.4.1 Setting command line and JVM arguments . 14

9.5 Adding projects to the build path . 14

9.6 Adding projects to the ArtiSynth launch configuration . 15

9.7 Installing a Subversion plug-in . 15

9.8 Preventing excessive resource copying . 16

10 Additional Information 16

10.1 Environment variables . 16

10.1.1 Example environment set up for bash . 17

10.1.2 Example environment setup for csh or tcsh . 17

10.2 ArtiSynth Libraries . 17

10.3 The EXTCLASSPATH File . 18

10.4 Quick Git Summary . 18

10.5 Quick Subversion Summary . 19

ArtiSynth Installation Guide for MacOS 4

1 Introduction

This document describes how to install and run ArtiSynth on MacOS machines. There are two ways to obtain ArtiSynth:

downloading a prepackaged release, or cloning the latest development version from Github. Downloading a prepackaged

release is the easiest solution to simply try out some of the basic demo programs. Cloning the development version is

recommended for developers who want to keep their codebase current.

The typical install sequence looks like this:

Download

Download either a release (Section 3) or checkout (i.e., clone) out the development version (Section 4).

Build

Compile the system (Section 5). This step is not needed for prepackaged releases.

Run

Start ArtiSynth and run the demonstration models (Section 6).

Generally, users will also want to install and run external models and packages that have been created either by others or

by themselves. This is discussed in (Section 7).

2 Prerequisites

To install ArtiSynth on MacOS, you will need:

• A 64 bit version of MacOS

• Java 8

• Linux systems require GNU libc version 2.17 or higher

• A three button mouse is recommended for GUI interaction

Note that we have stopped officially supporting 32 bit systems, both because they are becoming obsolete, and because

ArtiSynth applications often require more memory than they can provide.

For Java, the full Java development kit (JDK) is required, which comes with the Java compiler javac. The run time

environment (JRE) will not be sufficient. However, there is no need for extra bundles such at JavaFX, NetBeans, or EE.

At the time of this writing, JDKs can be obtained free from Oracle at

http://www.oracle.com/technetwork/java/javase/downloads/index.html.

We recommend obtaining a JDK for Java 8, for which the latest update is Java SE 8u162.

By default, ArtiSynth is compiled to be compliant with Java 8. While it should also be possible to run ArtiSynth

under Java 9, there have been reports of compatibility problems and warnings involving the Java OpenGL (JOGL)

interface. Therefore we recommend using Java 8 until these issues are resolved. Java 8 is also compatible with

current releases of MATLAB, which is useful if one wishes to run ArtiSynth from MATLAB.

Java versions 5 and earlier had an additional “1.” prepended to their number, so that Java 5 was called 1.5. This

numbering scheme still persists informally, so that Java 8 is occasionally referred to as 1.8, etc.

In this document, the location of the ArtiSynth installation directory will be denoted by <ARTISYNTH_HOME>. for

example if ArtiSynth is installed in

/home/roger/artisynth_core

then <ARTISYNTH_HOME> denotes this directory and <ARTISYNTH_HOME>/lib denotes the sub-directory

/home/roger/artisynth_core/lib

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ArtiSynth Installation Guide for MacOS 5

3 Downloading a Prepacked Release

3.1 Downloading and unpacking the zip file

To obtain one of the packaged distributions, go to www.artisynth.org/downloads and select the distribution you want.

Download it, and unzip it in an appropriate location on your computer.

Once ArtiSynth is downloaded and unpacked, it should be possible to run it immediately by executing the artisynth

command located in <ARTISYNTH_HOME>/bin (see Section 6.1).

4 Cloning from Github

Github is a web-based repository service based on the source control management system Git. A very brief summary of

Git is given in Section 10.4.

The latest ArtiSynth development version is available from Github at the URL

https://github.com/artisynth/artisynth_core.git

Users can checkout (i.e., clone) this version and then continue to update their codebase to keep it current (Section 8).

In some casess, developers we work closely with can also obtain, by mutual arrangement, write access to our Github

repository, allowing them to also commit changes.

Users who have a Github account combined with SSH keys may instead wish to clone using the SSH URL

git@github.com:artisynth/artisynth_core.git

For users with repository write access, this will allow them to perform subsequent push operations without having

to enter a username and password.

4.1 Cloning the repository

There are several ways to clone ArtiSynth from Github.

4.1.1 Cloning using the command line

Assuming your MacOS distribution has Git installed, then you can clone ArtiSynth from Github using the following

command:

> git clone https://github.com/artisynth/artisynth_core .git [<dir >]

The argument <dir> is optional and gives the name of the directory into which the repository and working copy should

be extracted; if omitted, the directory will be named artisynth_core.

4.1.2 Cloning using Eclipse

If you are planning to develop ArtiSynth models in Java, and if you are planning to do this with the Eclipse IDE (Section

9), then it might be easier to do the Git clone directly in Eclipse. Follow the instructions in Section 9.2.2, using the URL

https://github.com/artisynth/artisynth_core.git described above.

http://www.artisynth.org/downloads

ArtiSynth Installation Guide for MacOS 6

4.2 Downloading the libraries

Because the jar files and native libraries used by ArtiSynth are large, they are not stored in the Github repository.

Instead, they must be downloaded separately. This can be done using the command updateArtisynthLibs, located in

<ARTISYNTH_HOME>/bin. You can execute it from the command line like this:

> cd <ARTISYNTH_HOME>

> bin/updateArtisynthLibs

5 Building ArtiSynth

If ArtiSynth has been cloned from Github, it will be necessary to build (compile) it.

If ArtiSynth was obtained as a prepackaged release, then it is precompiled and does not need to be built in order to run

the built-in demos. However, it will generally be useful to build ArtiSynth anyway, particularly since any user-defined

models created in Java will themselves need to be compiled.

Java compilation and code development is typically done using an integrated development environment (IDE), although

it is possible (particularly on Linux and MacOS) to use external text editors and command line tools. This document

describes how to build and run ArtiSynth using either the Eclipse IDE, or shell-based command line tools. For more

information on Eclipse, see Section 9.

5.1 Building with Eclipse

If your Github clone has been done externally to Eclipse (i.e., not according to Section 4.1.2), then you need to first

import ArtiSynth into Eclipse. Follow the instructions in Section 9.2.1.

Once ArtiSynth has been imported, you should be able to build it. If necessary, first open a Java perspective by choosing

Window > Open Perspective > Java. The project artisynth_core (or whatever you might have named it) should appear

in the Package Explorer window. To build the system, select the project in the Package Explorer window, and then

choose Project > Build Project. Note that it may be necessary to deselect Build Automatically in order to enable Build

Project.

5.2 Building from the command line

ArtiSynth can also be built by running a make command in the top level directory. Before doing this, you need to first set

the environment variables ARTISYNTH_HOME and CLASSPATH as described in Sections 10.1. ArtiSynth can then be built

by executing

> cd <ARTISYNTH_HOME>

> make

6 Running ArtiSynth

6.1 Running from the command line

The most direct way to start ArtiSynth is to run the command <ARTISYNTH_HOME>/bin/artisynth:

> cd <ARTISYNTH_HOME>

> bin/artisynth

It is recommended to place <ARTISYNTH_HOME>/bin in your PATH environment variable (Section 10.1), so that the

command simplifies to

> artisynth

regardless of the current directory.

ArtiSynth Installation Guide for MacOS 7

Figure 1: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, play/-

pause, and single-step buttons.

6.2 Running from the file browser

You can also run ArtiSynth from a file browser by double clicking on

<ARTISYNTH_HOME>/bin/artisynth.command

Note that artisynth.command is just a copy of artisynth; the .command suffix makes it recognizable to the MacOS

GUI as a command.

6.3 Command line arguments

The artisynth command accepts command line arguments, a full list of which can be seen by running artisynth with

the -help option:

> artisynth -help

Descriptions of these options appear in various places within the ArtiSynth documentation. For example, one commonly

used option is -model <modelClassName>, which instructs ArtiSynth to preload a model associated with a given class

name:

> artisynth -model artisynth.demos.mech.SpringMeshDemo

6.4 Running using Eclipse

Once ArtiSynth has been imported into Eclipse (and built if necessary), it should contain a launch configuration called

ArtiSynth that will allow ArtiSynth to be run by choosing Run > Run.

In some cases, one may wish to adjust environment variables, command line arguments, or Java JVM arguments to

affect how ArtiSynth behaves. Instructions for doing so are contained in Sections 9.3 and 9.4.

6.5 Loading and Running Models

Once ArtiSynth starts up, you can use it to load and run models. General instructions on how to load and run models are

given in the section “Loading and Simulating Models” of the ArtiSynth User Interface Guide.

By default, ArtiSynth comes with a number of demonstration models, which can be loaded and run as follows:

From the menu bar, Select Models > Demos. This will display a submenu of demonstration models. Choosing one

will cause that model to be loaded and displayed in the viewer. Simulation of the model can then be started, paused,

single-stepped, or reset using the play controls (Figure 1) located at the upper right of the ArtiSynth window frame.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.

7 Installing External Models and Packages

Typically, an ArtiSynth developer will want to use external models and packages that exist outside of artisynth_core.

Some of these may be obtained from external sources. For example, artisynth_models is a collection of packages that

provides a variety of publicly available anatomical models, currently focussed primarily on the head and neck region.

For instructions on obtaining artisynth_models, visit www.artisynth.org/models.

Installing external models and packages requires a sequence of operations similar to that for installing ArtiSynth itself:

https://www.artisynth.org/doc/artisynth_core_3.5/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.5/pdf/uiguide.pdf
https://www.artisynth.org/models

ArtiSynth Installation Guide for MacOS 8

1. Download

2. Build (if necessary)

3. Run

7.1 Downloading

Some model and package collections, such as artisynth_models mentioned above, may be available either as

prepackaged distributions, or through Git or Subversion repositories. Prepackaged distributions should be downloaded

and unpacked into a desired location, while Git or Subversion checkouts may may be obtained as described in Sections

10.4 or 10.5.

Some collections maintained by ArtiSynth may contain Eclipse project settings (in an eclipseSettings.zip file in

their root directory), allowing them to be imported into Eclipse, either directly from Git (Section 9.2.2) or Subversion (

Section 9.2.3), or after being obtained separately (Section 9.2.1).

7.2 Building

Collections that are obtained from Git or Subversion will need to be built (compiled).

7.2.1 Building with Eclipse

Many collections (such as artisynth_models) can be imported into Eclipse as a project and then built as described in

Section 5.1.

Important: for collection projects to compile properly in Eclipse, the artisynth_core project (and any other

projects they depend on) will have to be added to their build path. The default Eclipse settings supplied with

some projects (in the file eclipseSettings.zip) may already contain the required build path dependencies. For

example, the settings for artisynth_models contain the required reference to artisynth_core. In other cases, it

may be necessry to add projects to the build path explicitly, as described in 9.5.

7.2.2 Building from the command line

If the collection has a Makefile in its root directory, then it can be compiled from the command line by running make

in the root directory. Before doing this, the top-level directory for the collection’s class files must to be added to the

CLASSPATH environment variable (Section 10.1). In collections maintained by ArtiSynth, this will be the directory

classes, located directly under the collection root directory (e.g., artisynth_models/classes).

7.3 Running

External models are executed by running ArtiSynth itself (Section 6). However, in order to execute these models,

ArtiSynth must be able to locate their associated classes. This can be arranged in three different ways:

7.3.1 Adding external classes using the Eclipse Classpath

If you are running from Eclipse, then you can make the classes of external projects visible to ArtiSynth by adding the

projects to the Classpath of your ArtiSynth launch configuration, as described in Section 9.6.

ArtiSynth Installation Guide for MacOS 9

7.3.2 Adding external classes using EXTCLASSPATH

Alternatively, you can make the classes of external projects visible to ArtiSynth by adding the path names of all their

top-level class directories (or jar files, if relevant) to the file <ARTISYNTH_HOME>/EXTCLASSPATH (described in Section

10.3).

For example, suppose the collection artisynth_models has been placed in /projects/artisynth_models. The

top-level class directory for this collection is located in artisynth_models/classes, and so the following entry should

be placed in the EXTCLASSPATH file:

/projects/artisynth_models/classes

7.3.3 Adding external classes using CLASSPATH

Finally, if you are running from the command line using the artisynth command, then you can make external classes

visible by adding them to your CLASSPATH environment variable (see Section 10.1).

8 Updating ArtiSynth

One reason to use a clone of the latest ArtiSynth development version is to be able to migrate recent changes into

your code base. When a significant update occurs, a posting is made to the ArtiSynth update log, currently located at

www.artisynth.org/doc/html/updates/updates.html. Users may also be notified via the artisynth-updates email list.

Users working from Eclipse may update simply by selecting the project in the Package Explorer and selecting Team >

Pull from the context menu.

Updating may also be done from the command line by issuing the

> git pull

command from within the ArtiSynth installation directory.

8.1 Library updates

Occasionally, a software update will be accompanied by a change in the libraries located in <ARTISYNTH_HOME>/libs.

When this happens, it will be indicated on the ArtiSynth update log and appropriate instructions will be given. Some-

times, it will be necessary to explicitly update the libraries after doing the main update. This can be done by executing

updateArtisynthLibs as described in Section 4.2.

9 The Eclipse IDE

Eclipse is an integrated development environment (IDE) commonly used for Java code development, and many

ArtiSynth developers use it for both developing models in Java and for running the system. This section describes how

to load ArtiSynth projects into Eclipse, and how to configure it for running ArtiSynth. A general introduction to Eclipse

is beyond the scope of this document, but there are many Eclipse resources available online.

9.1 Obtaining Eclipse

Eclipse can be obtained from www.eclipse.org/downloads. A good version to obtain (at the time of this writing) is

Eclipse IDE for Java Developers.

The Eclipse instructions described below are based on the “Neon” distribution, but should be largely similar for

later versions.

https://www.artisynth.org/doc/artisynth_core_3.5/pdf/updates.pdf
http://www.eclipse.org/downloads

ArtiSynth Installation Guide for MacOS 10

9.2 Importing ArtiSynth projects into Eclipse

ArtiSynth projects include the core distribution (artisynth_core), the open source models collection artisynth_models

(which contains human anatomy models), as well as other model and code collections maintained by the ArtiSynth team

and other users.

There are several ways to import ArtiSynth projects into Eclipse. If the project has already been downloaded or checked

out from a repository, then it can be imported as an external project (Section 9.2.1). Otherwise, Eclipse itself can be used

to check out a project from either Git (Section 9.2.2) or Subversion (Section 9.2.3).

9.2.1 Importing external projects

ArtiSynth project repositories (including artisynth_core and artisynth_models) do not directly expose the Eclipse

project files (.project, .classpath, etc.) within the distribution. Instead, these files are bundled within a top-level

file eclipseSettings.zip, which must be unzipped directly into the top-level directory, as described in Section 9.2.4.

This is to prevent local modifications to the project files from being propagated back to the main repositories.

Let <PROJECT_DIR> denote the top-level project directory. For the core distribution artisynth_core, this will also be

<ARTISYNTH_HOME>.

1. From outside Eclipse, extract the Eclispe project files by unzipping <PROJECT_DIR>/eclipseSettings.zip into

<PROJECT_DIR>. MacOS users are strongly encouraged to read Section 9.2.4 for details on how to do this.

Attention MacOS users:

The default zip utility on MacOS will create a new sub-folder called eclipseSettings and will extract

the files there. You do not want this!! Some of the files are then labeled as “hidden” by MacOS, which

will prevent you from moving them to the correct place manually. Either extract the file directly to the

<ARTISYNTH_HOME> directory with a more standard application like 7-Zip (7zX for OSX), or use the unzip

utility from the command-line. For the latter, open a terminal window, change to the ArtiSynth install

directory, and enter the command

unzip eclipseSettings.zip

2. For artisynth_core, then from outside Eclipse, download the required jar files and native libraries as de-

scribed in Section 4.2.

3. From within Eclipse, choose File > Import

4. An Import dialog will appear. Select General > Existing Projects into Workspace and click Next.

5. An Import Projects dialog will appear. In the field Select root directory, enter (or browse to) the parent directory

of <PROJECT_DIR>. The project itself should now appear in the Projects box (Figure 2). (If other projects are

contained in the parent directory, these will appear as well.) Make sure that the desired project is selected and then

click Finish.

If Eclipse complains that "No projects are found to import", or does not otherwise show the project as available

for import, then most likely the <PROJECT_DIR> directory does not contain a .project file. This can happen if

eclipseSettings.zip was not properly unzipped into <PROJECT_DIR>.

9.2.2 Importing from a Git repository

Recent versions of Eclipse contain integrated support for Git, and so importing a project directly from a Git repository is

relatively easy.

Because ArtiSynth GIT repositories do not directly expose Eclipse project files, the standard import method of

File > Import... > Git > Projects from Git

ArtiSynth Installation Guide for MacOS 11

Figure 2: Eclipse Import Projects dialog.

will not work completely. Instead, one must first clone the Git repository, and then import the project directory as

described in Section 9.2.1.

To clone a Git repository from within Eclipse;

1. Choose Window > Show View > Other ... > Git > Git Repositories from the main menu to open a Git Repositories

view window.

2. Within the Git Repositories window, choose the button (or pull down menu item) that says Clone a repository.

3. A Source Git Repository dialog will appear (Figure 3, left). Enter the URL for the repository. For ArtiSynth itself,

this is https://github.com/artisynth/artisynth_core.git). The URI field is coupled to some of the

others: you can either fill in the URI field directly, or enter the individual URI components in the Host, Repository

path, and Protocol fields. Also, if the repository has read access restrictions, it will generally be necessary to

specify a user name and password in the Authentication fields. After entering the required information, click Next.

4. A Branch Selection dialog may appear. If it does, select only the master branch, and then click Next.

5. A Local Destination dialog will appear (Figure 3, right). In the Directory field, enter the path of the local directory,

which will contain both the cloned repository and the working copy. For ArtiSynth itself, this will also be the

ArtiSynth home directory (<ARTISYNTH_HOME>). After entering the directory information, click Finish.

Finally, import the local directory into Eclipse as a project by following the steps in Section 9.2.1, using the local

directory parent as the “root directory”.

9.2.3 Importing from a Subversion repository

If Eclipse has a Subversion plug-in installed (Section 9.7), you may import an ArtiSynth project by checking it out

directly from the repository located by the project’s Subversion_URL. For the core ArtiSynth distribution, this is

https://svn.artisynth.org/svn/artisynth_core/trunk

Other projects will have different URLs.

The following instructions assume the Subversive plug-in.

1. Choose File > Import from the main menu, select SVN > Project from SVN and click Next.

ArtiSynth Installation Guide for MacOS 12

Figure 3: Eclipse dialogs for importing a Git repository.

2. You now need to specify a repository location, as specified by a Subversion_URL. If you’ve previously done an

SVN checkout, a menu will appear allowing you to select a previously used URL. If one of these is sufficient,

select it and click Next to go to Step 4. Otherwise, select Create a new repository location and click Next to enter a

repository dialog. If no previous locations are known this dialog will appear automatically.

3. If you are specifying a new location in the repository dialog:

• Under the General tab, enter the Subversion_URL in the URL box. If you are just checking out the trunk of the

repository (i.e., if your Subversion URL ends in /trunk), then you should omit the final /trunk since this is

selectable in Step 4.

• If you are checking out a repository that is not available for anonymous access, or if you need write access to

the repository, enter your ArtiSynth User ID and Password (which you will have obtained from us separately) in

the Authentication section of the dialog. You will probably want to check Save authentication as well.

• Click Next.

4. In the Select Resource dialog, use the URL selector box to select the full URL to be used for the checkout. If you

are just checking out the trunk of the repository, then choose Subversion_URL/trunk which should be available

as a selection.

5. Click Finish

6. In the Check Out As dialog, select Check out as a project with name specified, adjust the project name if desired,

and click Next.

7. Specify the location for the check out. If you leave Use default workspace location selected, this will be

workspace/project_name, where workspace is the Eclipse workspace directory and project_name is the

project name selected in the previous step. Otherwise, you can specify an explicit checkout location (which does

not have to be located in the Eclipse workspace). For ArtiSynth core checkouts, the project name is typically

artisynth_core and the the checkout location will become the ArtiSynth install directory <ARTISYNTH_HOME>.

8. Click Finish.

9. If necessary, open a Java perspective by choosing Window > Open Perspective > Java. The project should appear

in the Package Explorer window.

10. From outside Eclipse, install the Eclipse project files by unzipping <PROJECT_DIR>/eclipseSettings.zip into

<PROJECT_DIR>. MacOS users are strongly encouraged to read Section 9.2.4 for details on how to do this.

11. From outside Eclipse, download the required jar files and native libraries as described in Section 4.2.

ArtiSynth Installation Guide for MacOS 13

12. Finally, load the new settings into the project by selecting the project in the Package Explore window and

selecting Refresh from the context menu.

9.2.4 Installing project files

Distributions of artisynth_core and artisynth_models, as well as some other project repositories, contain their

eclipse project files bundled in the zip file eclipseSettings.zip. The reason for not placing project files directly

under repository control is to prevent local changes to them from being propagated back into the repository.

Let <PROJECT_DIR> denote the top-level project directory. Project files can be extracted using the command line. Open

a command shell, switch to the <PROJECT_DIR> directory, and run unzip:

> cd <PROJECT_ROOT>

> unzip eclipseSettings.zip

This will create the files .project and .classpath, along with the directory .settings, in <PROJECT_DIR>. In the

case of artisynth_core, it will also create the file ArtiSynth.launch containing the default launch configuration.

Note: if unzip queries about overwriting .project, answer [y]es.

Attention MacOS users:

While it is possible to unzip files from the file browser by clicking on eclipseSettings.zip and then extracting

directly, the default zip utility on MacOS will create a new sub-folder called eclipseSettings and will extract

the files there. You do not want this!! Some of the files are then labeled as “hidden” by MacOS, which will prevent

you from moving them to the correct place manually. Either extract the files using the command line as described

above, or use a more standard application like 7-Zip (7zX for OSX).

9.3 Configuring environment variables

While it is generally not necessary to set environment variable in Eclipse, it may be useful to do this on occasion to

control certain aspects of ArtiSynth’s operation. Directions on setting the environment variables are given in Section

9.3.1, and descriptions of the variables themselves may be found in Section 10.1.

Some variables that are commonly set within Eclipse include:

• ARTISYNTH_HOME: If set, this should be set to <ARTISYNTH_HOME>. Normally ArtiSynth is able to infer its own

location internally, so it is generally unecessary to set this variable explictly.

• OMP_NUM_THREADS: Specifies the maximum number of processor cores available for multicore execution.

• ARTISYNTH_PATH: A list of folders, separated by semi-colons ";", which ArtiSynth uses to search for configuration

files. See Section 10.1.

If any of the above variables have already been set externally in MacOS (Section 10.1), such that they are visible to

Eclipse at start-up, then they do not need to be set in the launch configuration.

9.3.1 Setting environment variables

To set environment variables within Eclipse:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

4. In the left panel, under Java Application, select ArtiSynth.

5. In the right panel, select the Environment tab.

6. To create a new environment variable, click the New button and enter the name and value in the dialog box.

7. When finished, make sure that Append environment to native environment is selected, and click Apply.

ArtiSynth Installation Guide for MacOS 14

Figure 4: Setting command line and JVM arguments for a run configuration.

9.4 Command line and JVM arguments

As described in Section 6.3, the artisynth command accepts command line arguments. To invoke these when running

from Eclipse, it is necessary to set the desired arguments in the launch configuration, as described below.

Sometimes it may also be necessary to set JVM arguments, which control the Java virtual machine running ArtiSynth.

An example of such an argument is -Xmx, which can be used to increase the maximum amount of memory available to

the application. For example, -Xmx6g sets the maximum amount of memory to 6 gigabytes.

9.4.1 Setting command line and JVM arguments

To set command line arguments for your Eclipse application:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

4. In the left panel, under Java Application, select ArtiSynth.

5. In the right panel, select the Arguments tab.

6. Program arguments (which are passed directly to ArtiSynth) should be specified in the Program arguments box.

JVM arguments should be specified in the VM arguments box. See Figure 4.

7. When finished, click Close.

9.5 Adding projects to the build path

A project imported into Eclipse may depend on the packages and libraries found in other projects to compile prop-

erly. For example, ArtiSynth applications which are external to artisynth_core will nonetheless depend on

artisynth_core. To ensure proper compilation, project dependencies should be added to each dependent project’s

build path.

1. Select the dependent project in the Package Explorer form.

ArtiSynth Installation Guide for MacOS 15

2. Right click and choose Build Path > Configure Build Path...

3. In the right panel, select the Projects tab.

4. Click the Add button, select the project dependencies, and click OK

5. Click OK in the Java Build Path panel

9.6 Adding projects to the ArtiSynth launch configuration

The classes of external projects can be made visible to ArtiSynth by adding the projects to the Classpath of the Ar-

tiSynth launch configuration.

1. From the main menu, choose Run > Run Configurations... to open a Run Configurations dialog.

2. In the left panel, under Java Application, select your ArtiSynth launch configuration (the default one is called

ArtiSynth). This may already be selected when you open the panel.

3. In the right panel, select the Classpath tab.

4. In the Classpath: window, select User Entries, and then click the Add Projects button.

5. In the Project Selection dialog, select the external projects that you wish to add. Generally, the boxes Add

exported entries ... and Add required projects ... can be unchecked. Click OK.

6. Close the Run Configurations dialog.

9.7 Installing a Subversion plug-in

In order to work with Subversion from within Eclipse, either to check out ArtiSynth from the repository, or to update or

commit changes, it is necessary to use a Subversion plug-in. First, check to see if your version of Eclipse contains an

Subversion plug-in:

Open an import panel using File > Import..., and then look for SVN in the set of available import sources. If you don’t

see SVN listed, it will be necessary to install a plug-in.

We recommend the Eclipse-supported Subversive plug-in, but if this proves difficult for any reason, there are other

options, such as Subclipse, currently obtainable from subclipse.tigris.org.

Instructions for installing Subversive can be obtained at www.eclipse.org/subversive/installation-instructions.php.

One way to install Subversive is through the Eclipse Marketplace. If you have an older version of Eclipse that doesn’t

have Marketplace, you may be able to obtain it from www.eclipse.org/mpc. To access the Marketplace, click Help >

Eclipse Marketplace. Once the available applications have been displayed, type Subversive into the Find box in the

top-left corner of the Marketplace window. Navigate to the package labeled Subversive - SVN Team Provider and click

Install. On the Confirm Selected Features screen, ensure all boxes are checked and click the button labeled Confirm >.

Restart Eclipse when prompted.

One more step is now necessary. Re-open Eclipse, and you should be prompted to choose an SVN connector in the start

menu. SVN connectors interface Subversive to the SVN server, and are OS and server-specific. A recommended SVN

Connector will be pre-selected for downloading; this is most likely the one you need.

If Eclipse did not prompt you to choose a connector when it restarted, you can install SVN connectors separately (thanks

to bmaupin at Stackoverflow for this information):

1. Go to www.polarion.com/products/svn/subversive/download.php

2. Under the latest Release, copy the Subversive SVN Connectors URL. The current URL for Eclipse 4.3 Kepler is

http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site.

3. In Eclipse, go to Help > Install New Software... and click Add...

4. Copy the URL for the Subversive SVN Connectors into the Location box and click OK

5. Check Subversive SVN Connectors, click Next, and then follow the instructions to complete installation.

If in doubt about the connector you need, you can install multiple ones, and then adjust the one Subversive actually uses

by going to Windows > Preferences, opening Team > SVN, and then opening the SVN Connector tab.

http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.eclipse.org/subversive/installation-instructions.php
http://www.eclipse.org/mpc/
http://www.polarion.com/products/svn/subversive/download.php
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site/

ArtiSynth Installation Guide for MacOS 16

9.8 Preventing excessive resource copying

By default, ArtiSynth classes are built in a directory tree (<PROJECT_DIR>/classes) that is separate from the source

tree (<PROJECT_DIR>/src), where <PROJECT_DIR> denotes the project root directory and is <ARTISYNTH_HOME> for

ArtiSynth itself. That means that Eclipse will try to copy all non-Java files and directories from the source tree into the

build tree. For ArtiSynth, this is excessive, and results in many files being copied that don’t need to be, since ArtiSynth

looks for resources in the source tree anyway.

It is possible to inhibit most of this copying:

1. Choose Window > Preferences (or Eclipse > Preferences).

2. Select Java > Compiler > Building.

3. Open Output folder, and in the box entitled Filter resources, enter the string:

Makefile ,*.l*,*.?,*.??,*.???,*.????,???,????,?????

That should filter out the copying of most non-java files.

Or, to prevent copying any resource, simply enter:

*

10 Additional Information

10.1 Environment variables

This is a glossary of all the environment variables that are associated with building or running ArtiSynth. Often, the sys-

tem can detect and set appropriate values for these automatically. In other cases, as noted in the above documentation, it

may be necessary or desirable for the user to set them explicitly.

ARTISYNTH_HOME

The path name of the ArtiSynth installation directory.

ARTISYNTH_PATH

A list of directories, separated by colons ":", which ArtiSynth uses to search for configuration files such as

.artisyntInit or .demoModels. A typical setting for ARTISYNTH_PATH consists of the current directory

(indicated by "."), the user’s home directory, and the ArtiSynth installation directory. If ARTISYNTH_PATH is

not defined explicitly in the user’s environment, ArtiSynth assumes an implicit path consisting of the directory

sequence just described.

CLASSPATH

A list of directories and/or jar files, separated by colons ":", which Java uses to locate its class files. This variable

should be set to include <ARTISYNTH_HOME>/classes and <ARTISYNTH_HOME>/lib/* (the latter uses the

wildcard * to specify all the jar files in <ARTISYNTH_HOME>/lib).

PATH

A list of directories, separated by colons ":", which the operating system uses to locate executable programs and

applications. This should be set to include <ARTISYNTH_HOME>/bin

OMP_NUM_THREADS

Specifies the maximum number of processor cores that are available for multicore execution. Setting this variable

to the maximum number of cores on your machine can significantly increase performance.

Note that settings for most of the above can be derived from the value of ARTISYNTH_HOME.

ArtiSynth Installation Guide for MacOS 17

10.1.1 Example environment set up for bash

If you are using bash as your shell, then the environment can be configured by placing a block of commands similar to

the following in one of your bash initialization files (typically ~/.bashrc), located in your home directory:

set ARTISYNTH_HOME to the appropriate location ...

setenv ARTISYNTH_HOME $HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":" $HOME":"$ARTISYNTH_HOME

setenv CLASSPATH "$ARTISYNTH_HOME /classes:$ARTISYNTH_HOME /lib/*:$CLASSPATH "

setenv PATH $ARTISYNTH_HOME /bin":"$PATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

Be sure to set ARTISYNTH_HOME to the proper location of your ArtiSynth installation directory.

These environment variables will be passed on to any program which you run from the shell (such as artisynth or

eclipse). However, they will not be passed on to programs (such as eclipse) which you launch from the dock.

Alternatively, you can source the script setup.bash, located in the installation directory:

> source setup.bash

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME

set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

10.1.2 Example environment setup for csh or tcsh

If you are using csh or tcsh as your shell, then the environment can be configured by placing a block of commands

similar to the following in your .cshrc file, located in your home directory:

set ARTISYNTH_HOME to the appropriate location ...

setenv ARTISYNTH_HOME $HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":" $HOME":"$ARTISYNTH_HOME

setenv CLASSPATH "$ARTISYNTH_HOME /classes:$ARTISYNTH_HOME /lib/*:$CLASSPATH "

setenv PATH $ARTISYNTH_HOME /bin":"$PATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

These environment variables will be passed on to any program which you run from the shell (such as artisynth or

eclipse). However, they will not be passed on to programs (such as eclipse) which you launch from the dock.

Alternatively, you can source the script setup.csh, located in the installation directory:

> source setup.csh

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME

set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

10.2 ArtiSynth Libraries

ArtiSynth uses a set of libraries located under <ARTISYNTH_HOME>/lib. These include a number of jar files, plus

native libraries located in architecture-specific sub-directories (MacOS64 for MacOS systems).

As described in Section 4.2, these libraries need to be downloaded automatically if the system is obtained from the

Github repository. The required libraries are listed in the file <ARTISYNTH_HOME>/lib/LIBRARIES. This file is checked

into the repository, so that the system can always determine what libraries are needed for a particular checkout version.

Occasionally the libraries are changed or upgraded. If you run ArtiSynth with the -updateLibs command line option,

the program will ensure that not only are all the required libraries present, but that they also match the latest versions on

the ArtiSynth server.

ArtiSynth Installation Guide for MacOS 18

10.3 The EXTCLASSPATH File

In order to run an external model or package in ArtiSynth, all class paths (i.e., class directories or jar files) associated

with those external classes must be made visible to ArtiSynth. One way to do this is to list these class paths as entries in

the text file EXTCLASSPATH, located in <ARTISYNTH_HOME>.

To add class paths to EXTCLASSPATH, open it using a standard text editor (such as vim, gedit, or emacs), and add each

required path. For clarity, each path is typically added on a separate line. However, multiple paths can be added on the

same line if they are separated by the path separator character used for that OS.

The syntax rules for EXTCLASSPATH are:

1. Class path entries on the same line should be separated by a path separator character (a semi-colon ’;’ for

Windows and a colon ’:’ for MacOS and Linux).

2. The # character comments out all remaining characters to the end of line.

3. The $ character can be used to expand environment variables.

4. Any spaces present will be included in the path name.

An example EXTCLASSPATH might look like this:

/research/artisynth_models/classes

/research/models/special.jar

$HOME/projects/crazy/classes

10.4 Quick Git Summary

Git is a distributed source control management (SCM) system that is widely used in the software industry. A full

discussion of Git is beyond the scope of this document, but a large literature is available online. Generally, when you

clone a Git repository, you create a local copy of that repository on your machine, along with a checked out working

directory containing the most recent version of the code (which is referred to as the HEAD).

Unlike client/server SCMs, Git is distributed, with users maintaining their own private copies of a repository. This

allows a great deal of flexibility in usage, but also adds an extra “layer” to the workflow: when you “checkout” from a

repository or “commit” to it, you do so with respect to your own local copy of that repository, not the original (origin)

repository from which you performed the original clone. The process of merging in changes from the origin to the local

repository is known as “pulling”, while committing changes from the local repository back to the origin is known as

“pushing”.

There is also another layer of interaction when you commit changes to the local repository: you first add them to a

staging area (also known as the “index”), and then commit them using the commit command.

A very simple workflow for a typical ArtiSynth user is summarized below. The actions are described in command-line

form, but the same commands can generally be issued through Eclipse or other interfaces. First, clone the most recent

version of the ArtiSynth repository on Github:

git clone https://github.com/artisynth/artisynth_core.git [<dir>]

This will create a local copy of the Github repository, along with a checked out “working copy”, in the directory

specified by <dir>, or in artisynth_core if <dir> is omitted. The repository itself will be located in a sub-directory

called .git.

Other Git repositories can be cloned in a similar manner. If the repository has read access restrictions, then when per-

forming a checkout it may also be necessary to specify a user name for which the repository has granted read access.

This is typically done by embedding the user name in the URL, as in (for example) https://user@host.xz/path/to/repo.git.

Later, to fetch the latest updates from the Github repository and merge them into your working copy, then from within

the working copy directory you can do

git pull

ArtiSynth Installation Guide for MacOS 19

If you make changes to some files in your working copy and wish to commit these to your local repository, you first add

(or remove them) from the staging area using commands such as:

git add <fileName> # add a new (or modified) file

git add * # add all files

git rm <fileName> # remove a file

and then commit them to your local repository using

git commit -m "commit message"

Note that you can also add modified files and commit them using the single command

git commit -m -a "commit message"

To see the current status of the files in your working copy and the staging area, use the command

git status

and to see the commit history for particular files or directories, use

git log [<filename> ...]

Finally, to push your changes back to the Github repository (assuming you have permission do so), you would do so

using the command

git push origin master

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been

discussed, including the creation and merging of branches, but there are many useful online resources that describe these

in detail. Some current references include

https://git-scm.com/docs

http://rogerdudler.github.io/git-guide

10.5 Quick Subversion Summary

Subversion is a client/server source control management (SCM) system that is widely used in the software industry. A

full discussion of Subversion is beyond the scope of this document, but a large literature is available online.

Subversion allows you to check out a codebase from a (often remote) repository into a local working copy, update recent

changes from the repository into the working copy, and (if one has the appropriate permissions) commit local changes

back into to repository.

A Subversion client application is used to access both Subversion repositories and local working copies. The remainder

of this discussion will assume use of the command-line client svn, although other clients are available, including

TortoiseSVN for Windows and the Subversion plug-ins for Eclipse (Section 9.7).

Some ArtiSynth models collections and code extensions are distributed through Subversion, including the artisynth_projects

package used by some collaborators. A very simple workflow involving one of these is summarized below.

First, check out the most recent version from the repository, using the repository’s URL. For example, the URL for

artisynth_projects is https://svn.artisynth.org/svn/artisynth_projects, and the associated checkout

command is

svn checkout https://svn.artisynth.org/svn/artisynth_projects/trunk [<dir>]

This will create a local working copy of the “trunk” branch of artisynth_projects in the directory specified by

<dir>, or in artisynth_projects if <dir> is omitted. Local repository information is stored in a sub-directory called

.svn.

If the SVN repository has read access restrictions (which artisynth_projects actually does), then when performing

a checkout it may also be necessary to specify a user name or email address for which the repository has granted read

access. This may be done with the -username option. The user will also typically be prompted for an access password.

ArtiSynth Installation Guide for MacOS 20

Note:

If you omit the trailing /trunk from the Subversion URL, then the checkout will contain the entire Subversion

directory structure, including the subdirectories trunk, branches, and tags, which is generally not needed by

most users.

Later, to fetch the latest updates from the repository and merge them into your working copy, from within the local

directory, would you simply do

svn update

If you make changes to some files in your working copy and wish to commit these back to the repository (assuming you

have the necessary permissions), then you can issue the command

svn commit -m "commit message"

To add or remove files from the repository, one may use the commands

svn add <fileName> ... # add files

svn delete <fileName> ... # delete files

prior to performing the commit.

To see the current status of the files in your working copy, use the command

svn status

and to see the commit history for particular files or directories, use

svn log [<filename> ...]

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been

discussed, including the creation and merging of branches, but there are many useful online resources that describe these

in detail. The most comprehensive is probably the Subversion “Redbook”.

http://svnbook.red-bean.com

	Introduction
	Prerequisites
	Downloading a Prepacked Release
	Downloading and unpacking the zip file

	Cloning from Github
	Cloning the repository
	Cloning using the command line
	Cloning using Eclipse

	Downloading the libraries

	Building ArtiSynth
	Building with Eclipse
	Building from the command line

	Running ArtiSynth
	Running from the command line
	Running from the file browser
	Command line arguments
	Running using Eclipse
	Loading and Running Models

	Installing External Models and Packages
	Downloading
	Building
	Building with Eclipse
	Building from the command line

	Running
	Adding external classes using the Eclipse Classpath
	Adding external classes using EXTCLASSPATH
	Adding external classes using CLASSPATH

	Updating ArtiSynth
	Library updates

	The Eclipse IDE
	Obtaining Eclipse
	Importing ArtiSynth projects into Eclipse
	Importing external projects
	Importing from a Git repository
	Importing from a Subversion repository
	Installing project files

	Configuring environment variables
	Setting environment variables

	Command line and JVM arguments
	Setting command line and JVM arguments

	Adding projects to the build path
	Adding projects to the ArtiSynth launch configuration
	Installing a Subversion plug-in
	Preventing excessive resource copying

	Additional Information
	Environment variables
	Example environment set up for bash
	Example environment setup for csh or tcsh

	ArtiSynth Libraries
	The EXTCLASSPATH File
	Quick Git Summary
	Quick Subversion Summary

