ArtiSynth Installation Guide for Linux

John Lloyd, Sebastian Kazenbroot-Guppy, and Antonio Sanchez
Last updated: January, 2020

ArtiSynth Installation Guide for Linux 2

Contents
1 Introduction 4
2 Prerequisites 4
3 Installing Java 4
3.1 Making the JDK visible to your system e 4
4 Installing a Precompiled Release 5
5 Installing from Github 5
5.1 Cloning the repoSitory o v o it e e e e e e e e e e e e e e 6
5.1.1 Cloningusing thecommandline 6
5.1.2 Cloningusing Eclipse e 6
5.2 Downloading the libraries L 6
6 Compiling ArtiSynth 6
6.1 Compilingwith Eclipse e e e 6
6.2 Compiling from the commandline 7
7 Running ArtiSynth 7
7.1 Running from the commandline 7
7.2 Runningusing Eclipse L e 7
7.3 Command line arguments Ll 7
7.4 Loading and Running Models e 8
8 Installing artisynth_models and Other External Packages 8
8.1 Downloading e 8
82 Compiling L 9
8.2.1 Compiling with Eclipse 9
8.2.2 Compiling fromthe commandline L 9
8.3 Making Classes Visible to ArtiSynth 9
8.3.1 Usingthe Eclipse Classpath 9
8.3.2 Usingthe EXTCLASSPATH file 9
8.3.3 Using CLASSPATH environmentvariable 9
9 Updating ArtiSynth and Other Packages 10

9.1 Library updates e e e e e e e e e e e 10

ArtiSynth Installation Guide for Linux 3
10 The Eclipse IDE 10
10.1 Installing Eclipse o . o o o 10
10.2 Configuring Eclipse for ArtiSynth o 10
10.3 Importing ArtiSynth projectsinto Eclipse oo 11
10.3.1 Importing external projects o 11

10.3.2 Importing projects from a remote Git repositoryo 11

10.3.3 Cloning a project from a remote Git repository 12

10.3.4 Importing from a Subversion repositoryo oL 13

10.3.5 Installing projectfiles L e 14

10.4 Configuring environment variables L L 14
10.4.1 Setting environment variables Lo 15

10.5 Command line and JVM argumentso 15
10.5.1 Setting command line and JVM arguments o 15

10.6 Adding projectstothebuildpath 16
10.7 Adding projects to the ArtiSynth launch configurationo 16
10.8 Installing a Subversion plug-in L 17
10.9 Preventing excessive resource COPYING v v v v v v v v v e e e e e e e 17

11 Additional Information 18
11.1 Adding Directories tothe System Path 18
11.2 Environment variables L e e 18
11.2.1 Example environmentsetup forbash L oL 19

11.2.2 Example environment setup for cshortcsh oo oL Lo 19

11.3 ArtiSynth Libraries e e e e e 19
11.4 The EXTCLASSPATH File o e e, 20
11.5 Quick Git SUMmMAry o o e e e e e e e e e 20
11.6 Quick Subversion Summary e e e e e e 21

ArtiSynth Installation Guide for Linux 4

1 Introduction

This document describes how to install and run ArtiSynth on 64-bit Linux machines. There are two ways to obtain
ArtiSynth: installing a precompiled release, or installing the latest development version from Github. Installing a
precompiled release is the easiest way to try out some of the basic demo programs. Installing the development version is
recommended for developers who want to keep their codebase current and be able to install new features and bug fixes.

Generally, users will also want to install and run external models and packages that have been created either by others or
by themselves. In particular, the package collection artisynth_models contains an open source set of models primarily
related to head and neck anatomy. Installation of this and other packages is discussed in Section 8.

2 Prerequisites
To install ArtiSynth on Linux, you will need:

* A 64 bit version of Linux
» Java 8 (see Section 3)
* Linux systems require GNU libc version 2.17 or higher

¢ A three-button mouse is recommended for GUI interaction

We have stopped supporting 32 bit systems, for ease of maintenance and because ArtiSynth applications often
require more memory than 32 bit systems can provide.

In this document, the location of the ArtiSynth installation directory will be denoted by <ARTISYNTH_HOME>. For
example if ArtiSynth is installed in

/home/roger/artisynth_core
then <ARTISYNTH_HOME> denotes this directory and <ARTISYNTH_HOME>/1ib denotes the sub-directory

/home/roger/artisynth_core/lib

3 Installing Java

By default, ArtiSynth is compiled to be compliant with Java 8. While it may be possible to run ArtiSynth under later
Java versions, there have been reports of compatibility problems and warnings involving the Java OpenGL (JOGL)
interface. Therefore we recommend using Java 8 until these issues are resolved.

ArtiSynth requires that you have a full Java development kit (JDK) installed, which comes with a Java compiler. A
simple run time environment (JRE) will not be sufficient. We recommend Java SE Development Kit 8uXXX (where XXX
is the latest revision number), which can be obtained from Oracle (registration required) at

http://www.oracle.com/technetwork/java/javase/downloads/index.html.

3.1 Making the JDK visible to your system

After the JDK has been installed, it is important to ensure that it is visible to your system and that it supersedes any other
Java installations. One test for this is to open a terminal window and run the command

> javac -version

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ArtiSynth Installation Guide for Linux 5

The output should match the version of the installed JDK. If it does not, or if the command javac is not found, then
one fix is to add the directory <JDK_DIR>/bin to your system Path, as described in Section 11.1, where <JDK_DIR> is
the JDK installation directory. In particular, <JDK_DIR>/bin should be added ahead of any other Java installations that
might be specified on the Path. To see the current contents of the Path, open a terminal window and run the command

> echo S$PATH

It may not be necessary to add <JDK_DIR>/bin to your system Path if you are intending to compile and run
ArtiSynth exclusively within an integrated development environment (IDE), such as Eclipse, since you should be
able to specify the JDK directly within the IDE (as described in Section 10.2).

4 Installing a Precompiled Release

Installing one of the precompiled releases is the easiest way to obtain ArtiSynth for running demo programs or some
existing models. To do this, go to www.artisynth.org/downloads, download the distribution you want, and unzip it in an
appropriate location on your computer.

Once ArtiSynth is downloaded and unzipped, it should be possible to run it immediately by executing the artisynth
command located in <ARTISYNTH_HOME>/bin (see Section 7.1). More details on running ArtiSynth and its demo
models are given in Section 7.

If you modify any of the demonstration models, or add models of your own, it will be necessary to compile the changes.
Compilation is discussed in Section 6.

5 Installing from Github

If you wish to obtain updates and bug fixes, we recommend installing the current development version from Github,
which is a web-based repository service based on the source control management system Git. A very brief summary of
Git is given in Section 11.5.

The latest ArtiSynth development version is available from Github at the URL
https://github.com/artisynth/artisynth_core.git

Users who install from Github can continue to update their codebase to keep it current (Section 9). In some cases,
developers we work with closely can also obtain, by mutual arrangement, write access to our Github repository, allowing
them to also commit changes.

Users who have a Github account combined with SSH keys may instead wish to clone using the SSH URL
git@github.com:artisynth/artisynth_core.git

For users with repository write access, this will allow them to perform subsequent push operations without having
to enter a username and password.

Installing from Github entails the following steps:

* Clone (i.e., checkout) the ArtiSynth repository (Section 5.1).
* Download the Java and native libraries (Section 5.2).

* Compile the codebase (Section 6).

It should then be possible to run ArtiSynth and its demo models as described in Section 7.

http://www.artisynth.org/downloads

ArtiSynth Installation Guide for Linux 6

5.1 Cloning the repository

There are several ways to clone ArtiSynth from Github.

5.1.1 Cloning using the command line

Assuming your Linux distribution has Git installed, then you can clone ArtiSynth from Github using the following
command:

> git clone https://github.com/artisynth/artisynth_core.git [<dir>]

The argument <dir> is optional and gives the name of the directory into which the repository and working copy should
be extracted; if omitted, the directory will be named artisynth_core.

5.1.2 Cloning using Eclipse

If you are planning to develop ArtiSynth models in Java, and if you are planning to do this with the Eclipse IDE (Section
10), then it might be easier to do the Git clone directly in Eclipse. Follow the instructions in Section 10.3.2, using the
URL https://github.com/artisynth/artisynth_core.git described above.

5.2 Downloading the libraries

Because the jar files and native libraries used by ArtiSynth are large, they are not stored in the Github repository.
Instead, they must be downloaded separately. This can be done using the command updateArtisynthLibs, located in
<ARTISYNTH_HOME>/bin. You can execute it from the command line like this:

> cd <ARTISYNTH_HOME>
> bin/updateArtisynthLibs

6 Compiling ArtiSynth

Versions of ArtiSynth obtained from Github need to be compiled before they can be run. Precompiled releases do not
need to be compiled in order to run the demonstration models, but will need to be compiled if models are modified or
new ones are added.

Java compilation and code development is typically done using an integrated development environment (IDE), al-
though it is possible (particularly on Linux and MacOS) to use external text editors and command line tools. This
section describes how to compile ArtiSynth using either the Eclipse IDE, or shell-based command line tools. For more
information on Eclipse and how to obtain it, see Section 10.

6.1 Compiling with Eclipse

Before using Eclipse to work with ArtiSynth projects, you should follow some of the basic configuration steps described
in Section 10.2.

If your Github clone has been done outside of Eclipse (i.e., not according to Section 5.1.2), then you need to first import
ArtiSynth into Eclipse. Follow the instructions in Section 10.3.1, using <ARTISYNTH_HOME> as the top-level project
directory <PROJECT_DIR>.

Once ArtiSynth has been imported, you should be able to compile it. If necessary, first open a Java perspective by
choosing Window > Open Perspective > Java. The project artisynth_core (or whatever you might have named it)
should appear in the Package Explorer window. To compile the system, select the project in the Package Explorer
window, and then choose Project > Build Project. Note that it may be necessary to deselect Build Automatically in order to
enable Build Project.

ArtiSynth Installation Guide for Linux 7

6.2 Compiling from the command line
ArtiSynth can also be built by running a make command in the top level directory. Before doing this, you need to first set

the environment variables ARTISYNTH_HOME and CLASSPATH as described in Sections 11.2. ArtiSynth can then be built
by executing

> cd <ARTISYNTH_HOME>
> make

7 Running ArtiSynth

7.1 Running from the command line
The most direct way to start ArtiSynth is to run the command <ARTISYNTH_HOME>/bin/artisynth:

> cd <ARTISYNTH_HOME>
> bin/artisynth

It is recommended to place <ARTISYNTH_HOME>/bin in your PATH environment variable (Section 11.2), so that the
command simplifies to

> artisynth

regardless of the current directory.

Note:
If the bin directory for your JDK installation is not in your systems’s Path, the java command may not be visible
and this will cause the artisynth command to fail. See 3.1 for a description of how to fix this.

7.2 Running using Eclipse

Once ArtiSynth has been imported into Eclipse (and built if necessary), it should contain a launch configuration called
ArtiSynth that will allow ArtiSynth to be run by choosing Run > Run.

In some cases, one may wish to adjust environment variables, command line arguments, or Java JVM arguments to
affect how ArtiSynth behaves. Instructions for doing so are contained in Sections 10.4 and 10.5.

7.3 Command line arguments

The artisynth command accepts command line arguments, a full list of which can be seen by running artisynth with
the ~help option:

> artisynth -help

Descriptions of these options appear in various places within the ArtiSynth documentation. For example, one commonly
used option is -model <modelClassName>, which instructs ArtiSynth to preload a model associated with a given class
name:

> artisynth -model artisynth.demos.mech.SpringMeshDemo

When running under Eclipse, command line arguments can be set in the launch configuration, as described in Section
10.5.

ArtiSynth Installation Guide for Linux 8

7.4 Loading and Running Models

Once ArtiSynth starts up, you can use it to load and run models. General instructions on how to load and run models are
given in the section “Loading and Simulating Models” of the ArtiSynth User Interface Guide.

By default, ArtiSynth comes with a number of demonstration models, which can be loaded and run as follows:

From the menu bar, Select Models > Demos. This will display a submenu of demonstration models. Choosing one
will cause that model to be loaded and displayed in the viewer. Simulation of the model can then be started, paused,
single-stepped, or reset using the play controls (Figure 1) located at the upper right of the main ArtiSynth window.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.

step:|0.01000 0.00000 |I||:|
N

Figure 1: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, skip-
back, play/pause, single-step and skip-forward buttons.

8 Installing artisynth_models and Other External Packages

Typically, an ArtiSynth developer will want to use external models and packages that exist outside of artisynth_core.
Some of these may be obtained from external sources. For example, artisynth_models is an open source collection of
anatomical models, focused primarily on the head and neck region (see www.artisynth.org/models).

Installing external models and packages requires a sequence of operations similar to that for installing ArtiSynth itself:

1. Downloading (either a precompiled version or repository checkout; Section 8.1).
2. Compiling (if necessary; Section 8.2).

3. Making classes visible to ArtiSynth (Section 8.3).

8.1 Downloading

Model and package collections are usually available from either Git or Subversion repositories.

For artisynth_models:

* A precompiled version is available from www.artisynth.org/models. To ensure compatibility, this should only be used
in combination with the matching precompiled ArtiSynth version. For example, artisynth_models_3.5.zip should
only be used with artisynth_core_3.5.zip.

* The current development version is available from Github at
https://github.com/artisynth/artisynth_models.git

To ensure compatibility, this should only be used in combination with the most recent development version of
ArtiSynth.

Precompiled collections can simply be downloaded and unpacked into a desired location. Those available from Git
or Subversion may be obtained as described in Sections 11.5 or 11.6. For convenience, we recommend placing each
collection in a directory adjacent to <ARTISYNTH_HOME>.

Repository-based collections that contain Eclipse project files (such as artisynth_models) can be imported directly
into Eclipse as described in Section 10.3.2 (Git) or Section 10.3.4 (Subversion). Other collections that contain the
project files bundled inside an eclipseSettings.zip file may be imported as described in Section 10.3.3 (Git) or
Section 10.3.4 (Subversion).

https://www.artisynth.org/doc/artisynth_core_3.6/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.6/pdf/uiguide.pdf
https://www.artisynth.org/models
https://www.artisynth.org/models

ArtiSynth Installation Guide for Linux 9

8.2 Compiling

Collections that are obtained from Git or Subversion will need to be compiled. Compilation will also be necessary if
models in the collection are modified or if new ones are added.

8.2.1 Compiling with Eclipse

If compilation is being done with Eclipse, the collection will need to be imported into Eclipse as a project (if this has not
already been done) by following the instructions in Section 10.3.1. Compilation can then be performed as described in
Section 6.1.

Important: for collection projects to compile properly in Eclipse, the artisynth_core project (and any

other projects they depend on) will have to be added to their build path. The default Eclipse settings supplied

with some projects may already contain the required build path dependencies. For example, the settings for
artisynth_models contain the required reference to artisynth_core. In other cases, it may be necessary to add
projects to the build path explicitly, as described in 10.6.

8.2.2 Compiling from the command line

If the collection has a Makefile in its root directory, then it can be compiled from the command line by running make in
the root directory, as described in Section 6.2. Before doing this, the top-level directory for the collection’s class files
must to be added to the CLASSPATH environment variable (Section 11.2). In collections maintained by ArtiSynth, this
will be the directory classes, located directly under the collection root directory (e.g., artisynth_models/classes).

8.3 Making Classes Visible to ArtiSynth

Models in an external collection are executed by running ArtiSynth itself (Section 7). However, the classes associated
with these models must be made visible to ArtiSynth. This can be arranged in several different ways:

8.3.1 Using the Eclipse Classpath

If you are running from Eclipse, then you can make the classes of a collection visible to ArtiSynth by adding its
associated Eclipse project to the Classpath of your ArtiSynth launch configuration, as described in Section 10.7.

8.3.2 Using the EXTCLASSPATH file

Alternatively, you can make the classes of external projects visible to ArtiSynth by adding the path names of all their
top-level class directories (or jar files, if relevant) to the file <ARTISYNTH_HOME>/EXTCLASSPATH (described in Section
11.4).

For example, suppose the collection artisynth_models has been placed in /projects/artisynth_models. The
top-level class directory for this collection is located in artisynth_models/classes, and so the following entry should
be placed in the EXTCLASSPATH file:

/projects/artisynth_models/classes

8.3.3 Using CLASSPATH environment variable

Finally, if you are running from the command line using the artisynth command, then you can make external classes
visible by adding them to your CLASSPATH environment variable (see Section 11.2).

ArtiSynth Installation Guide for Linux 10

9 Updating ArtiSynth and Other Packages

One reason to use a clone of the latest ArtiSynth development version is to be able to migrate recent changes into
your code base. When a significant update occurs, a posting is made to the ArtiSynth update log, currently located at
www.artisynth.org/doc/html/updates/updates.html. Users may also be notified via the artisynth-updates email list.

Users working from Eclipse may update simply by selecting the project in the Package Explorer and selecting Team >
Pull from the context menu.

Updating may also be done from the command line by issuing the
> git pull

command from within the ArtiSynth installation directory.
Other Git-based packages may be updated similarly.

For Subversion-based packages, updating is done by issuing an update request (Section 11.6). This can be done from
within Eclipse (if a Subversion plugin has been installed; Section 10.8) by selecting the project in the Package Explorer
and selecting Team > Update (or Team > Update to Head) from the context menu. Subversion updates can also be done
from the command line by calling

> svn update

from inside the top-level project directory.

9.1 Library updates
Occasionally, a software update will be accompanied by a change in the libraries located in <ARTISYNTH_HOME>/11ibs.
When this happens, it will be indicated on the ArtiSynth update log and appropriate instructions will be given. Some-

times, it will be necessary to explicitly update the libraries after doing the main update. This can be done by executing
updateArtisynthLibs as described in Section 5.2.

10 The Eclipse IDE

Eclipse is an integrated development environment (IDE) commonly used for Java code development, and many
ArtiSynth developers use it for both developing models in Java and for running the system. This section describes how
to load ArtiSynth projects into Eclipse, and how to configure it for running ArtiSynth. A general introduction to Eclipse
is beyond the scope of this document, but there are many Eclipse resources available online.

10.1 Installing Eclipse

Eclipse can be obtained from www.eclipse.org/downloads/packages. A good version to obtain (at the time of this
writing) is Eclipse IDE for Java Developers.

The Eclipse instructions described below are based on the “Neon” distribution, but should be largely similar for
later versions.

10.2 Configuring Eclipse for ArtiSynth

There are a few things one should do to configure Eclipse for ArtiSynth related projects:

* Open a Java perspective, by choosing Window > Open Perspective > Java. This will place Eclipse in a state suitable
for editing Java projects. Individual projects can be viewed and navigated through the Package Explorer window.

https://www.artisynth.org/doc/artisynth_core_3.6/pdf/updates.pdf
http://www.eclipse.org/downloads/packages

ArtiSynth Installation Guide for Linux 11

* Check that Java is ArtiSynth compatible: The Java version used by Eclipse needs to be set to one that is ArtiSynth
compatible (which is at present Java 8). To verify that this is the case, choose Window > Preferences > Java > Installed
JREs and verify that a compatible Java is installed and selected. If an appropriate JRE is not installed, it can be added
by clicking the Add... button on the right of the panel, and then finding the Java 8 distribution on your system.

* Configure building to prevent excess resource copying: The steps required to do this are described in Section 10.9, and
will speed up project compilation by preventing unneeded files from being copied into the classes directory.

10.3 Importing ArtiSynth projects into Eclipse

ArtiSynth projects include the core distribution (artisynth_core), the open source models collection artisynth_models
(which contains human anatomy models), as well as other model and code collections maintained by the ArtiSynth team
and other users.

There are several ways to import ArtiSynth projects into Eclipse. If the project has already been downloaded or checked
out from a repository, then it can be imported as an external project (Section 10.3.1). Otherwise, Eclipse itself may
sometimes be used to checkout the project directly from either Git or Subversion (Sections 10.3.2, 10.3.3, and 10.3.4).

10.3.1 Importing external projects
Let <PROJECT_DIR> denote the top-level project directory. For the core distribution artisynth_core, this will also be
<ARTISYNTH_HOME>.

First check the following:

* <PROJECT_DIR> should contain the Eclipse project files (including .project). If it does not, it should contain a
file eclipseSettings.zip, which should be unzipped directly into <PROJECT_DIR> (not into a sub-directory), as
described in Section 10.3.5, so that .project and .classpath then appear there.

e If the project is the ArtiSynth core distribution (i.e., artisynth_core), and was obtained from Github, then make
sure you have downloaded the required jar files and native libraries as described in Section 5.2.

Then import the project into Eclipse as follows:

1. From within Eclipse, choose File > Import ...
2. An Import dialog will appear. Select General > Existing Projects into Workspace and click Next.

3. An Import Projects dialog will appear. In the field Select root directory, enter (or browse to) the parent directory
of <PROJECT_DIR>. The project itself should now appear in the Projects box (Figure 2). (If other projects are
contained in the parent directory, these will appear as well.) Make sure that the desired project is selected and then
click Finish.

If Eclipse complains that "No projects are found to import", or does not otherwise show the project as available for
import, then most likely the <PROJECT_DIR> directory does not contain a .project file. In the case of repositories
that keep Eclipse project files bundled in am eclipseSettings.zip file, this usually means that the contents of
that file were not properly unzipped into <PROJECT_DIR> (Section 10.3.5).

10.3.2 Importing projects from a remote Git repository

Some source repositories contain Eclipse project files in their repositories, and so can be imported directly into Eclipse
using the repository’s URL. The Eclipse project associated with ArtiSynth is called artisynth_core, while the models
project is called artisynth_models.

To import these directly:

1. If necessary, open a Java perspective by choosing Window > Open Perspective > Java.

ArtiSynth Installation Guide for Linux 12

Import Projects E_ ii‘

Select a directory to search for existing Eclipse projects 4

© Select root directory: | fhome/lloyd/artisynth v Browse...

Select archive file: v
Projects:

artisynth_core (/home/lloyd/artisynth/artisynth_core) Select All

Deselect All

Refresh

Options
Search for nested projects
Copy projects into workspace
"1 Hide projects that already exist in the workspace

Warking sets

"] Add project to working sets New..

@ <Back ext > Cancel Finish

Figure 2: Eclipse Import Projects dialog.

2. Choose File > Import... > Git > Projects from Git from the main menu.
3. A Select Repository Source dialog will appear. Choose Clone URI and click Next.

4. A Source Git Repository dialog will appear (Figure 3, left). Under Location, enter the project URI in the URL
field. The default URL for ArtiSynth is https://github.com/artisynth/artisynth_core.git. In some
cases, such as when using an SSH URL, or accessing a project with restricted access, it may also be necessary
to provide a user name and password in the Authentication fields. (This will be your Gitlab or Github account
information for repositories stored on those sites.) After entering the required information, click Next.

5. A Branch Selection dialog may appear. If it does, make sure only the master branch is selected, and then click
Next.

6. A Local Destination dialog will appear (Figure 3, right). In the Directory field, enter the path of the local directory,
which will contain both the cloned repository and the working copy. For ArtiSynth itself, this will also be the
ArtiSynth home directory (<ARTISYNTH_HOME>). After entering the directory information, click Next.

7. A Select a wizard ... dialog will appear. Select Import existing Eclipse projects and click Next.
8. An Import Projects dialog will appear. Make sure project you wish to import is selected and click Finish.

9. In the case of ArtiSynth (i.e., artisynth_core), from outside Eclipse, download the Java and native libraries,
as described in Section 5.2. Then refresh the project from within Eclipse (by selecting it in the Package Explorer
window and choosing Refresh from the context menu. The project should now be able to compile.

10.3.3 Cloning a project from a remote Git repository

Some source repositories (such as artisynth_research) do not directly contain Eclipse project files in their reposito-
ries. Instead, the project files is contained inside an eclipseSettings.zip file that must be extracted into the project
root directory. This is to prevent undesired local changes to the project settings from being propagated to all users.

In this case, we proceed as follows:

1. Choose Window > Show View > Other ... > Git > Git Repositories from the main menu to open a Git Repositories
view window.

2. Within the Git Repositories window, choose the button (or pull down menu item) that says Clone a repository.

ArtiSynth Installation Guide for Linux 13

Source Git Repository [GIT] Local Destination GIT]
Enter the location of the source repository. o Configure the local storage location for artisynth_core. o
Location Destination
URI: https://github.com/artisynth/artisynth_core Local File... Directory: /home/lloyd/artisynth/artisynth_core Browse
Host: | github.com Initial branch: | master ¥
Repository path: | /artisynth/artisynth_core Clone submodules
Connection Configuration
Protocol: | hitps ¥ Remote name: | origin
Port: | | Projects

Import all existing Eclipse projects after clone finishes
Authentication
Working sets

User: -
Add project to working sets New...

Password:

‘?:' Bacl Next > Cancel Finish l?)‘ < Back fext Cancel Finish

Figure 3: Eclipse dialogs for importing a Git repository.

3. A Source Git Repository dialog will appear (Figure 3, left). Enter the URL for the repository. Also, if the
repository has read access restrictions, it will generally be necessary to specify a user name and password in the
Authentication fields. (This will be your Gitlab or Github account information for repositories stored on those
sites.) After entering the required information, click Next.

4. A Branch Selection dialog may appear. Usually you want to select only the master branch, and then click Next.

5. A Local Destination dialog will appear (Figure 3, right). In the Directory field, enter the path of the local directory,
which will contain both the cloned repository and the working copy. After entering the directory information,
click Finish.

6. Finally, from outside Eclipse, locate the file eclipseSettings.zip in the project’s top directory, and then unzip
this file directly into that directory (not into a sub-directory), so that .project and .classpath appear in the top
directory. For details, see Section 10.3.5.

The project can now be imported into Eclipse by following the steps in Section 10.3.1, using the project’s parent
directory as the “root directory”.

10.3.4 Importing from a Subversion repository

If Eclipse has a Subversion plug-in installed (Section 10.8), you may import an ArtiSynth project by checking it out
directly from the repository located by the project’s Subversion_URL. For the project artisynth_projects, this is

https://svn.artisynth.org/svn/artisynth_models/trunk

Other projects will have different URLs.

The following instructions assume the Subversive plug-in.

1. Choose File > Import from the main menu, select SVN > Project from SVN and click Next.

2. You now need to specify a repository location, as specified by a Subversion_URL. If you’ve previously done an
SVN checkout, a menu will appear allowing you to select a previously used URL. If one of these is sufficient,
select it and click Next to go to Step 4. Otherwise, select Create a new repository location and click Next to enter a
repository dialog. If no previous locations are known this dialog will appear automatically.

3. If you are specifying a new location in the repository dialog:

ArtiSynth Installation Guide for Linux 14

* Under the General tab, enter the Subversion_URL in the URL box. If you are just checking out the trunk of the
repository (i.e., if your Subversion URL ends in /trunk), then you should omit the final /trunk since this is
selectable in Step 4.

* If you are checking out a repository that is not available for anonymous access, or if you need write access to
the repository, enter the appropriate user name and password in the Authentication section of the dialog. (If the
SVN repository is hosted by us, we will have given you this name and password.) You will probably want to
check Save authentication as well.

* Click Next.

4. In the Select Resource dialog, use the URL selector box to select the full URL to be used for the checkout. If you
are just checking out the trunk of the repository, then choose Subversion_URL/trunk which should be available
as a selection.

5. Click Finish

6. In the Check Out As dialog, select Check out as a project with name specified, adjust the project name if desired,
and click Next.

7. Specify the location for the check out. If you leave Use default workspace location selected, this will be
workspace/project_name, where workspace is the Eclipse workspace directory and project_name is the
project name selected in the previous step. Otherwise, you can specify an explicit checkout location (which does
not have to be located in the Eclipse workspace). For ArtiSynth core checkouts, the project name is typically
artisynth_core and the the checkout location will become the ArtiSynth install directory <ARTISYNTH_HOME>.

8. Click Finish.

9. If necessary, open a Java perspective by choosing Window > Open Perspective > Java. The project should appear
in the Package Explorer window.

10. From outside Eclipse, check to see if the file eclipseSettings.zip exists in the project’s top directory. If it
does, unzip this file directly into the top directory (not into a sub-directory), so that .project and .classpath
appear there. For details, see Section 10.3.5.

11. Finally, load the new settings into the project by selecting the project in the Package Explorer window and
selecting Refresh from the context menu.

10.3.5 Installing project files

Some project repositories contain their eclipse project files bundled in the zip file eclipseSettings.zip, instead

of keeping them under direct repository control. This is to prevent unwanted local configuration changes from being
propagated back into the repository. The project files need to be unzipped directly into the project directory (not into a
sub-directory) to enable the project to be loaded into Eclipse.

Let <PROJECT_DIR> denote the top-level project directory. Project files can be extracted using the command line. Open
a command shell, switch to the <PROJECT_DIR> directory, and run unzip:

> cd <PROJECT_ROOT>
> unzip eclipseSettings.zip

This will create the files .project and .classpath, along with the directory .settings, in <PROJECT_DIR>. In the
case of artisynth_core, it will also create the file ArtiSynth.launch containing the default launch configuration.

Note: if unzip queries about overwriting .project, answer [y]es.

10.4 Configuring environment variables

While it is generally not necessary to set environment variables in Eclipse, it may be useful to do this on occasion to
control certain aspects of ArtiSynth’s operation. Directions on setting the environment variables are given in Section
10.4.1, and descriptions of the variables themselves may be found in Section 11.2.

Some variables that are commonly set within Eclipse include:

ArtiSynth Installation Guide for Linux 15

e ARTISYNTH_HOME: If set, this should be set to <ARTISYNTH_HOME>. Normally ArtiSynth is able to infer its own
location internally, so it is generally unnecessary to set this variable explicitly.

e OMP_NUM_THREADS: Specifies the maximum number of processor cores available for multicore execution.
e ARTISYNTH_PATH: A list of folders, separated by semi-colons ";", which ArtiSynth uses to search for configuration

files. See Section 11.2.

If any of the above variables have already been set externally in Linux (Section 11.2), such that they are visible to
Eclipse at start-up, then they do not need to be set in the launch configuration.

10.4.1 Setting environment variables

To set environment variables within Eclipse:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

In the left panel, under Java Application, select the launch configuration (the default is named ArtiSynth).
In the right panel, select the Environment tab.

To create a new environment variable, click the New button and enter the name and value in the dialog box.

A

When finished, make sure that Append environment to native environment is selected, and click Apply.

10.5 Command line and JVM arguments

As described in Section 7.3, the artisynth command accepts command line arguments. To invoke these when running
from Eclipse, it is necessary to set the desired arguments in the launch configuration, as described below.

Sometimes it may also be necessary to set JVM arguments, which control the Java virtual machine running ArtiSynth.
An example of such an argument is -Xmx, which can be used to increase the maximum amount of memory available to
the application. For example, -Xmx6g sets the maximum amount of memory to 6 gigabytes.

10.5.1 Setting command line and JVM arguments

To set command line arguments for your Eclipse application:

1. Open a java perspective if necessary by choosing Window > Open Perspective > Java.

2. Select the ArtiSynth project in the Package Explorer form.

3. Choose Run > Run Configurations... to open the Run Configurations window.

. In the left panel, under Java Application, select the launch configuration (the default is named ArtiSynth).

. In the right panel, select the Arguments tab.

N A

. Program arguments (which are passed directly to ArtiSynth) should be specified in the Program arguments box.
JVM arguments should be specified in the VM arguments box. See Figure 4.

7. When finished, click Close.

ArtiSynth Installation Guide for Linux 16

Create, manage, and run configurations @

Run a Java application

SO0 Name: | ArtiSynth

type filter text @ Main |- Arguments - Bk JRE| “4 Classpath| %7 Source | B8 Environment | & gommon.‘
G Gradle Project Program arguments:

i Java Applet -model artisynth.demos.mech.5pringMeshDemo

w [l Java Application

Variables...

T CollisionHandlerTableTes

Ju JUnit

VM arguments:

-Xmx6g
mz Maven Build

Jiy Task Context Test \.‘iarlables

Working directory:

Revert Appl:
Filter matched 8 of B items eve Pply

(j) Close | Run

Figure 4: Setting command line and JVM arguments for a run configuration.

10.6 Adding projects to the build path

A project imported into Eclipse may depend on the packages and libraries found in other projects to compile prop-
erly. For example, ArtiSynth applications which are external to artisynth_core will nonetheless depend on
artisynth_core. To ensure proper compilation, project dependencies should be added to each dependent project’s
build path.

1. Select the dependent project in the Package Explorer form.

2. Right click and choose Build Path > Configure Build Path...

3. In the right panel, select the Projects tab.

4. Click the Add button, select the project dependencies, and click OK

5. Click OK in the Java Build Path panel

10.7 Adding projects to the ArtiSynth launch configuration

The classes of external projects can be made visible to ArtiSynth by adding the projects themselves to the Classpath of
the ArtiSynth launch configuration.
1. From the main menu, choose Run > Run Configurations... to open a Run Configurations dialog.

2. In the left panel, under Java Application, select your ArtiSynth launch configuration (the default one is called
ArtiSynth). This may already be selected when you open the panel.

3. In the right panel, select the Classpath tab.
4. In the Classpath window, select User Entries, and then click the Add Projects button.

5. In the Project Selection dialog, select the external projects that you wish to add. Generally, the boxes Add
exported entries ... and Add required projects ... can be unchecked. Click OK.

6. Close the Run Configurations dialog.

ArtiSynth Installation Guide for Linux 17

10.8 Installing a Subversion plug-in

In order to work with Subversion from within Eclipse, either to check out ArtiSynth from the repository, or to update or
commit changes, it is necessary to use a Subversion plug-in. First, check to see if your version of Eclipse contains an
Subversion plug-in:

Open an import panel using File > Import..., and then look for SVN in the set of available import sources. If you don’t
see SVN listed, it will be necessary to install a plug-in.

We recommend the Eclipse-supported Subversive plug-in, but if this proves difficult for any reason, there are other
options, such as Subclipse, currently obtainable from subclipse.tigris.org.

Instructions for installing Subversive can be obtained at www.eclipse.org/subversive/installation-instructions.php.

One way to install Subversive is through the Eclipse Marketplace. If you have an older version of Eclipse that doesn’t
have Marketplace, you may be able to obtain it from www.eclipse.org/mpc. To access the Marketplace, click Help >
Eclipse Marketplace. Once the available applications have been displayed, type Subversive into the Find box in the
top-left corner of the Marketplace window. Navigate to the package labeled Subversive - SVN Team Provider and click
Install. On the Confirm Selected Features screen, ensure all boxes are checked and click the button labeled Confirm >.
Restart Eclipse when prompted.

One more step is now necessary. Re-open Eclipse, and you should be prompted to choose an SVN connector in the start
menu. SVN connectors interface Subversive to the SVN server, and are OS and server-specific. A recommended SVN
Connector will be pre-selected for downloading; this is most likely the one you need.

If Eclipse did not prompt you to choose a connector when it restarted, you can install SVN connectors separately (thanks
to bmaupin at Stackoverflow for this information):
1. Go to www.polarion.com/products/svn/subversive/download.php

2. Under the latest Release, copy the Subversive SVN Connectors URL. The current URL for Eclipse 4.3 Kepler is
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site.

3. In Eclipse, go to Help > Install New Software... and click Add...
4. Copy the URL for the Subversive SVN Connectors into the Location box and click OK
5. Check Subversive SVN Connectors, click Next, and then follow the instructions to complete installation.

If in doubt about the connector you need, you can install multiple ones, and then adjust the one Subversive actually uses
by going to Windows > Preferences, opening Team > SVN, and then opening the SVN Connector tab.

10.9 Preventing excessive resource copying

By default, ArtiSynth classes are built in a directory tree (<PROJECT_DIR>/classes) that is separate from the source
tree (<PROJECT_DIR>/src), where <PROJECT_DIR> denotes the project root directory and is <ARTISYNTH_HOME> for
ArtiSynth itself. That means that Eclipse will try to copy all non-Java files and directories from the source tree into the
build tree. For ArtiSynth, this is excessive, and results in many files being copied that don’t need to be, since ArtiSynth
looks for resources in the source tree anyway.

It is possible to inhibit most of this copying:

1. Choose Window > Preferences (or Eclipse > Preferences).
2. Select Java > Compiler > Building.

3. Open Output folder, and in the box entitled Filter resources, enter the single character “*’.

http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.eclipse.org/subversive/installation-instructions.php
http://www.eclipse.org/mpc/
http://www.polarion.com/products/svn/subversive/download.php
http://community.polarion.com/projects/subversive/download/eclipse/3.0/kepler-site/

ArtiSynth Installation Guide for Linux 18

11 Additional Information

11.1 Adding Directories to the System Path

The system “Path” is a list of directories which the system searches in order to find executables. Adding a directory to
the path allows executables contained in that directory to be called directly from a terminal window.

On Linux, directories can be added to the path by appending them to the PATH environment variable, which is a list of
directories separated by colons ‘:’. The most direct way to do this is to redefine PATH inside one of the initialization files
for whichever command line shell you are using.

Assume that your home folder is <HOMEDIR>. Then for the bash shell, one can edit <HOMEDIR>/.bashrc and insert a
line of the form

export PATH=<DIR>:S$PATH
while for the csh or tcsh shells, one can edit <HOMEDIR>/.cshrc and insert a line of the form

setenv PATH <DIR>":"SPATH

Most most command windows and applications need to be restarted in order to get them to notice changes to the
PATH.

11.2 Environment variables

This is a glossary of all the environment variables that are associated with building or running ArtiSynth. Often, the sys-
tem can detect and set appropriate values for these automatically. In other cases, as noted in the above documentation, it
may be necessary or desirable for the user to set them explicitly.

ARTISYNTH_HOME
The path name of the ArtiSynth installation directory.

ARTISYNTH_PATH

A list of directories, separated by colons ":", which ArtiSynth uses to search for configuration files such as
.artisyntInit or .demoModels. A typical setting for ARTISYNTH_PATH consists of the current directory
(indicated by "."), the user’s home directory, and the ArtiSynth installation directory. If ARTISYNTH_PATH is
not defined explicitly in the user’s environment, ArtiSynth assumes an implicit path consisting of the directory
sequence just described.

CLASSPATH
A list of directories and/or jar files, separated by colons ":", which Java uses to locate its class files. This variable
should be set to include <ARTISYNTH_HOME>/classes and <ARTISYNTH_HOME>/1ib/* (the latter uses the
wildcard * to specify all the jar files in <ARTISYNTH_HOME>/11iDb).

PATH

A list of directories, separated by colons ":", which the operating system uses to locate executable programs and
applications. Placing <ARTISYNTH_HOME>/bin in your PATH (as described in Section 11.1) will allow you to run
artisynth and related commands directly from a command window.

OMP_NUM_THREADS

Specifies the maximum number of processor cores that are available for multicore execution. Setting this variable
to the maximum number of cores on your machine can significantly increase performance.

Note that settings for most of the above can be derived from the value of ARTISYNTH_HOME.

ArtiSynth Installation Guide for Linux 19

11.2.1 Example environment set up for bash

If you are using bash as your shell, then the environment can be configured by placing a block of commands similar to
the following in one of your bash initialization files (typically ~/.bashrc), located in your home directory:

set ARTISYNTH_HOME to the appropriate location

export ARTISYNTH_HOME=$HOME/artisynth_2_X

export ARTISYNTH PATH=.:$HOME:$ARTISYNTH_HOME

export CLASSPATH=S$ARTISYNTH_HOME /classes:S$SARTISYNTH_HOME /lib/’*’:$CLASSPATH
export PATH=S$ARTISYNTH_HOME /bin:S$PATH

Set to the number of cores on your machine:

export OMP_NUM_THREADS =2

Be sure to set ARTISYNTH_HOME to the proper location of your ArtiSynth installation directory.
These environment variables will be passed on to any program which you run from the shell (such as artisynth or
eclipse).

Alternatively, you can source the script setup.bash, located in the installation directory:
> source setup.bash

This will determine the system type automatically and set the environment variables accordingly, with ARTTSYNTH_HOME
set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

11.2.2 Example environment setup for csh or tcsh

If you are using csh or tcsh as your shell, then the environment can be configured by placing a block of commands
similar to the following in your .cshrc file, located in your home directory:

set ARTISYNTH_HOME to the appropriate location

setenv ARTISYNTH_HOME S$HOME/artisynth_2_X

setenv ARTISYNTH_PATH .":"SHOME":"SARTISYNTH_HOME

setenv CLASSPATH "S$ARTISYNTH_HOME /classes:$ARTISYNTH_HOME /lib/*:$CLASSPATH"
setenv PATH SARTISYNTH_HOME /bin":"$PATH

Set to the number of cores on your machine:

setenv OMP_NUM_THREADS 2

These environment variables will be passed on to any program which you run from the shell (such as artisynth or
eclipse).

Alternatively, you can source the script setup.csh, located in the installation directory:
> source setup.csh

This will determine the system type automatically and set the environment variables accordingly, with ARTISYNTH_HOME
set to the current directory from which the script is called (however, it won’t set OMP_NUM_THREADS).

11.3 ArtiSynth Libraries

ArtiSynth uses a set of libraries located under <ARTISYNTH_HOME>/1ib. These include a number of jar files, plus
native libraries located in architecture-specific sub-directories (Linux64 for 64-bit Linux systems).

As described in Section 5.2, these libraries need to be downloaded automatically if the system is obtained from the
Github repository. The required libraries are listed in the file <ARTISYNTH_HOME>/1ib/LIBRARIES. This file is checked
into the repository, so that the system can always determine what libraries are needed for a particular checkout version.

Occasionally the libraries are changed or upgraded. If you run ArtiSynth with the ~updateLibs command line option,
the program will ensure that not only are all the required libraries present, but that they also match the latest versions on
the ArtiSynth server.

ArtiSynth Installation Guide for Linux 20

11.4 The EXTCLASSPATH File

In order to run an external model or package in ArtiSynth, all class paths (i.e., class directories or jar files) associated
with those external classes must be made visible to ArtiSynth. One way to do this is to list these class paths as entries in
the text file EXTCLASSPATH, located in <ARTISYNTH_HOME>.

To add class paths to EXTCLASSPATH, open it using a plain text editor (such as vim, gedit, or emacs), and add each
required path. For clarity, each path is typically added on a separate line. However, multiple paths can be added on the
same line if they are separated by the path separator character used for that OS.

The syntax rules for EXTCLASSPATH are:

1. Class path entries on the same line should be separated by a path separator character (a semi-colon ’;’ for
Windows and a colon *:” for MacOS and Linux).

2. The # character comments out all remaining characters to the end of line.
3. The $ character can be used to expand environment variables.

4. Any spaces present will be included in the path name.
An example EXTCLASSPATH might look like this:

/research/artisynth_models/classes
/research/models/special. jar
SHOME/projects/crazy/classes

11.5 Quick Git Summary

Git is a distributed source control management (SCM) system that is widely used in the software industry. A full
discussion of Git is beyond the scope of this document, but a large literature is available online. Generally, when you
clone a Git repository, you create a local copy of that repository on your machine, along with a checked out working
directory containing the most recent version of the code (which is referred to as the HEAD).

Unlike client/server SCMs, Git is distributed, with users maintaining their own private copies of a repository. This
allows a great deal of flexibility in usage, but also adds an extra “layer” to the workflow: when you “checkout” from a
repository or “commit” to it, you do so with respect to your own local copy of that repository, not the original (origin)
repository from which you performed the original clone. The process of merging in changes from the origin to the local
repository is known as “pulling”, while committing changes from the local repository back to the origin is known as
“pushing”.

There is also another layer of interaction when you commit changes to the local repository: you first add them to a

staging area (also known as the “index”), and then commit them using the commit command.

A very simple workflow for a typical ArtiSynth user is summarized below. The actions are described in command-line
form, but the same commands can generally be issued through Eclipse or other interfaces. First, clone the most recent
version of the ArtiSynth repository on Github:

git clone https://github.com/artisynth/artisynth_core.git [<dir>]

This will create a local copy of the Github repository, along with a checked out “working copy”, in the directory
specified by <dir>, orin artisynth_core if <dir> is omitted. The repository itself will be located in a sub-directory
called .git.

Other Git repositories can be cloned in a similar manner. If the repository has read access restrictions, then when per-
forming a checkout it may also be necessary to specify a user name for which the repository has granted read access.
This is typically done by embedding the user name in the URL, as in (for example) https://userfhost.xz/path/to/repo.git.

Later, to fetch the latest updates from the Github repository and merge them into your working copy, then from within
the working copy directory you can do

git pull

ArtiSynth Installation Guide for Linux 21

If you make changes to some files in your working copy and wish to commit these to your local repository, you first add
(or remove them) from the staging area using commands such as:

git add <fileName> # add a new (or modified) file
git add * # add all files
git rm <fileName> # remove a file

and then commit them to your local repository using
git commit -m "commit message"
Note that you can also add modified files and commit them using the single command
git commit -m -a "commit message"
To see the current status of the files in your working copy and the staging area, use the command
git status
and to see the commit history for particular files or directories, use
git log [<filename> ...]

Finally, to push your changes back to the Github repository (assuming you have permission do so), you would do so
using the command

git push origin master

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been
discussed, including the creation and merging of branches, but there are many useful online resources that describe these
in detail. Some current references include

https://git-scm.com/docs
http://rogerdudler.github.io/git-guide

11.6 Quick Subversion Summary

Subversion is a client/server source control management (SCM) system that is widely used in the software industry. A
full discussion of Subversion is beyond the scope of this document, but a large literature is available online.

Subversion allows you to check out a codebase from a (often remote) repository into a local working copy, update recent
changes from the repository into the working copy, and (if one has the appropriate permissions) commit local changes
back into to repository.

A Subversion client application is used to access both Subversion repositories and local working copies. The remainder
of this discussion will assume use of the command-line client svn, although other clients are available, including
TortoiseSVN for Windows and the Subversion plug-ins for Eclipse (Section 10.8).

Some ArtiSynth models collections and code extensions are distributed through Subversion, including the artisynth_projects
package used by some collaborators. A very simple workflow involving one of these is summarized below.

First, check out the most recent version from the repository, using the repository’s URL. For example, the URL for
artisynth_projects ishttps://svn.artisynth.org/svn/artisynth_projects, and the associated checkout
command is

svn checkout https://svn.artisynth.org/svn/artisynth_projects/trunk [<dir>]

This will create a local working copy of the “trunk” branch of artisynth_projects in the directory specified by
<dir>, orin artisynth_projects if <dir> is omitted. Local repository information is stored in a sub-directory called
.svn.

If the SVN repository has read access restrictions (which artisynth_projects actually does), then when performing
a checkout it may also be necessary to specify a user name or email address for which the repository has granted read
access. This may be done with the —~username option. The user will also typically be prompted for an access password.

ArtiSynth Installation Guide for Linux 22

Note:

If you omit the trailing /t runk from the Subversion URL, then the checkout will contain the entire Subversion
directory structure, including the subdirectories t runk, branches, and tags, which is generally not needed by
most users.

Later, to fetch the latest updates from the repository and merge them into your working copy, from within the local
directory, would you simply do

svn update

If you make changes to some files in your working copy and wish to commit these back to the repository (assuming you
have the necessary permissions), then you can issue the command

svn commit -m "commit message"
To add or remove files from the repository, one may use the commands

svn add <fileName> ... # add files
svn delete <fileName> ... # delete files

prior to performing the commit.

To see the current status of the files in your working copy, use the command
svn status

and to see the commit history for particular files or directories, use
svn log [<filename> ...]

Note that the above commands all have various options not mentioned. There are also numerous topics that haven’t been
discussed, including the creation and merging of branches, but there are many useful online resources that describe these
in detail. The most comprehensive is probably the Subversion “Redbook™.

http://svnbook.red-bean.com

	Introduction
	Prerequisites
	Installing Java
	Making the JDK visible to your system

	Installing a Precompiled Release
	Installing from Github
	Cloning the repository
	Cloning using the command line
	Cloning using Eclipse

	Downloading the libraries

	Compiling ArtiSynth
	Compiling with Eclipse
	Compiling from the command line

	Running ArtiSynth
	Running from the command line
	Running using Eclipse
	Command line arguments
	Loading and Running Models

	Installing artisynth_models and Other External Packages
	Downloading
	Compiling
	Compiling with Eclipse
	Compiling from the command line

	Making Classes Visible to ArtiSynth
	Using the Eclipse Classpath
	Using the EXTCLASSPATH file
	Using CLASSPATH environment variable

	Updating ArtiSynth and Other Packages
	Library updates

	The Eclipse IDE
	Installing Eclipse
	Configuring Eclipse for ArtiSynth
	Importing ArtiSynth projects into Eclipse
	Importing external projects
	Importing projects from a remote Git repository
	Cloning a project from a remote Git repository
	Importing from a Subversion repository
	Installing project files

	Configuring environment variables
	Setting environment variables

	Command line and JVM arguments
	Setting command line and JVM arguments

	Adding projects to the build path
	Adding projects to the ArtiSynth launch configuration
	Installing a Subversion plug-in
	Preventing excessive resource copying

	Additional Information
	Adding Directories to the System Path
	Environment variables
	Example environment set up for bash
	Example environment setup for csh or tcsh

	ArtiSynth Libraries
	The EXTCLASSPATH File
	Quick Git Summary
	Quick Subversion Summary

