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Preface

This guide describes how to create mechanical and biomechanical models in ArtiSynth using its Java API. Detailed
information on how to use the ArtiSynth GUI for model visualization, navigation and simulation control is given in
the ArtiSynth User Interface Guide. It is also possible to interface ArtiSynth with, or run it under, MATLAB. For
information on this, see the guide Interfacing ArtiSynth to MATLAB.

Information on how to install and configure ArtiSynth is given in the installation guides for Windows, MacOS, and
Linux.

It is assumed that the reader is familiar with basic Java programming, including variable assignment, control flow,
exceptions, functions and methods, object construction, inheritance, and method overloading. Some familiarity with
the basic I/O classes defined in java.io.*, including input and output streams and the specification of file paths using
File, as well as the collection classes ArrayList and LinkedList defined in java.util.*, is also assumed.

How to read this guide

Section 1 offers a general overview of ArtiSynth’s software design, and briefly describes the algorithms used for physi-
cal simulation (Section 1.2). The latter section may be skipped on first reading. A more comprehensive overview paper
is available online.

The remainder of the manual gives details instructions on how to build various types of mechanical and biomechanical
models. Sections 3 and 4 give detailed information about building general mechanical models, involving particles,
springs, rigid bodies, joints, constraints, and contact. Section 5 describes how to add control panels, controllers, and
input and output data streams to a simulation. Section 6 describes how to incorporate finite element models. The
required mathematics is reviewed in Section A.

If time permits, the reader will profit from a top-to-bottom read. However, this may not always be necessary. Many of
the sections contain detailed examples, all of which are available in the package artisynth.demos.tutorial and
which may be run from ArtiSynth using Models > All demos > tutorials. More experienced readers may wish to find an
appropriate example and then work backwards into the text and preceding sections for any needed explanatory detail.



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/matlab.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/windowsInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/macosInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/linuxInstallation.pdf
http://www.artisynth.org/doc/artisynth.pdf
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Chapter 1

ArtiSynth Overview

ArtiSynth is an open-source, Java-based system for creating and simulating mechanical and biomechanical models, with
specific capabilities for the combined simulation of rigid and deformable bodies, together with contact and constraints.
It is presently directed at application domains in biomechanics, medicine, physiology, and dentistry, but it can also be
applied to other areas such as traditional mechanical simulation, ergonomic design, and graphical and visual effects.

1.1 System structure

An ArtiSynth model is composed of a hierarchy of models and model components which are implemented by various
Java classes. These may include sub-models (including finite element models), particles, rigid bodies, springs, connec-
tors, and constraints. The component hierarchy may be in turn connected to various agent components, such as control
panels, controllers and monitors, and input and output data streams (i.e., probes), which have the ability to control and
record the simulation as it advances in time. Agents are presented in more detail in Section 5.

The models and agents are collected together within a top-level component known as a root model. Simulation proceeds
under the control of a scheduler, which advances the models through time using a physics simulator. A rich graphical
user interface (GUI) allows users to view and edit the model hierarchy, modify component properties, and edit and
temporally arrange the input and output probes using a timeline display.

1.1.1 Model components

Every ArtiSynth component is an instance of ModelComponent. When connected to the hierarchy, it is assigned

a unique number relative to its parent; the parent and number can be obtained using the methods getParent() and
getNumber(), respectively. Components may also be assigned a name (using setName()) which is then returned using
getName().

A sub-interface of ModelComponent includes CompositeComponent, which contains child components. A ComponentList
is a CompositeComponent which simply contains a list of other components (such as particles, rigid bodies, sub-
models, etc.).

Components which contain state information (such as position and velocity) should extend HasState, which provides the
methods getState() and setState() for saving and restoring state.

A Model is a sub-interface of CompositeComponent and HasState that contains the notion of advancing through time
and which implements this with the methods initialize (t0) and advance (t0, tl1, flags), as discussed further
in Section 1.1.4. The most common instance of Model used in ArtiSynth is MechModel (Section 1.1.5), which is the
top-level container for a mechanical or biomechanical model.

1.1.2 The RootModel

The top-level component in the hierarchy is the root model, which is a subclass of RootModel and which contains a list
of models along with lists of agents used to control and interact with these models. The component lists in RootModel
include:



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getParent--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getNumber--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#setName-java.lang.String-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getName--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ComponentList.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/HasState.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/HasState.html#getState-artisynth.core.modelbase.ComponentState-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/HasState.html#setState-artisynth.core.modelbase.ComponentState-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Model.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

models top-level models of the component hierarchy
inputProbes input data streams for controlling the simulation
controllers functions for controlling the simulation
monitors functions for observing the simulation
outputProbes output data streams for observing the simulation

Each agent may be associated with a specific top-level model.

1.1.3 Component path names

The names and/or numbers of a component and its ancestors can be used to form a component path name. This path has
a construction analogous to Unix file path names, with the ’/* character acting as a separator. Absolute paths start with
’/’, which indicates the root model. Relative paths omit the leading ’/* and can begin lower down in the hierarchy. A
typical path name might be

/models/JawHyoidModel/axialSprings/lad

For nameless components in the path, their numbers can be used instead. Numbers can also be used for components that
have names. Hence the path above could also be represented using only numbers, as in

/0/0/1/5

although this would most likely appear only in machine-generated output.

1.1.4 Model advancement

ArtiSynth simulation proceeds by advancing all of the root model’s top-level models through a sequence of time steps.
Every time step is achieved by calling each model’s advance() method:

public StepAdjustment advance (double t0, double tl1) {
perform simulation

}

This method advances the model from time t0 to time t 1, performing whatever physical simulation is required (see
Section 1.2). The method may optionally return a StepAdjustment indicating that the step size (t1 - t0) was too large
and that the advance should be redone with a smaller step size.

The root model has it’s own advance(), which in turn calls the advance method for all of the top-level models, in
sequence. The advance of each model is surrounded by the application of whatever agents are associated with that
model. This is done by calling the agent’s apply () method:

model.preadvance (t0, t1);

for (each input probe p) {
p.apply (tl1);

}

for (each controller c) {
c.apply (t0, tl1);

}

model.advance (t0, tl);

for (each monitor m) {
m.apply (t0, tl);

}

for (each output probe p) {
p.apply (tl1);

Agents not associated with a specific model are applied before (or after) the advance of all other models.

More precise details about model advancement are given in the ArtiSynth Reference Manual.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Model.html#advance-double-double-int-
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1.1.5 MechModel

Most ArtiSynth applications contain a single top-level model which is an instance of MechModel. This is a
CompositeComponent that may (recursively) contain an arbitrary number of mechanical components, including finite
element models, other MechModels, particles, rigid bodies, constraints, attachments, and various force effectors. The
MechModel advance () method invokes a physics simulator that advances these components forward in time (Section
1.2).

For convenience each MechModel contains a number of predefined containers for different component types, including:

particles 3 DOF particles

points other 3 DOF points

rigidBodies 6 DOF rigid bodies

frames other 6 DOF frames

axialSprings point-to-point springs

connectors joint-type connectors between bodies
constrainers general constraints

forceEffectors general force-effectors

attachments attachments between dynamic components
renderables renderable components (for visualization only)

Each of these is a child component of MechModel and is implemented as a ComponentList. Special methods are
provided for adding and removing items from them. However, applications are not required to use these containers,
and may instead create any component containment structure that is appropriate. If not used, the containers will simply
remain empty.

1.2 Physics simulation

Only a brief summary of ArtiSynth physics simulation is described here. Full details are given in [8] and in the related
overview paper.

For purposes of physics simulation, the components of a MechModel are grouped as follows:

Dynamic components
Components, such as a particles and rigid bodies, that contain position and velocity state, as well as mass. All
dynamic components are instances of the Java interface DynamicComponent.

Force effectors
Components, such as springs or finite elements, that exert forces between dynamic components. All force
effectors are instances of the Java interface ForceEffector.

Constrainers
Components that enforce constraints between dynamic components. All constrainers are instances of the Java
interface Constrainer.

Attachments
Attachments between dynamic components. While technically these are constraints, they are implemented using a
different approach. All attachment components are instances of DynamicAttachment.

The positions, velocities, and forces associated with all the dynamic components are denoted by the composite vectors
q, u, and f. In addition, the composite mass matrix is given by M. Newton’s second law then gives
_ dMu

f=—— =Mu+M 1.1
7 u-+ Mu, (1.1)

where the Mu accounts for various “fictitious” forces.

Each integration step involves solving for the velocities u**! at time step k + 1 given the velocities and forces at step k.
One way to do this is to solve the expression
Mu“t! = Mu* + Af (1.2)



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ComponentList.html
http://www.artisynth.org/doc/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/DynamicComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/ForceEffector.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Constrainer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/DynamicAttachment.html

k+1 sk+1

for u**!, where # is the step size and f = f — Mu. Given the updated velocities u*!, one can determine ¢**' from

¢! = Quit!, (13)
where Q accounts for situations (like rigid bodies) where ¢ # u, and then solve for the updated positions using
qk+1 :qk+hqk+1' (14)

(1.2) and (1.4) together comprise a simple symplectic Euler integrator.

In addition to forces, bilateral and unilateral constraints give rise to locally linear constraints on u of the form
G(qu=0, N(qu>0. (1.5)

Bilateral constraints may include rigid body joints, FEM incompressibility, and point-surface constraints, while
unilateral constraints include contact and joint limits. Constraints give rise to constraint forces (in the directions G(q)”
and N(q)7) which supplement the forces of (1.1) in order to enforce the constraint conditions. In addition, for unilateral
constraints, we have a complementarity condition in which Nu > 0 implies no constraint force, and a constraint force
implies Nu = 0. Any given constraint usually involves only a few dynamic components and so G and N are generally
sparse.

Adding constraints to the velocity solve (1.2) leads to a mixed linear complementarity problem (MLCP) of the form

Mf —GT -NT\ /futt! —Mu* — hf* 0
G 0 0 1|+ —g =lo],
N 0 0 6 -n w
0<0Lw>0, (1.6)

where w is a slack variable, A and 0 give the force constraint impulses over the time step, and g and n are derivative
terms defined by
g=—hGut, n=—INv, (1.7)

to account for time variations in G and N. In addition, M and f are M and f augmented with stiffness and damping terms
terms to accommodate implicit integration, which is often required for problems involving deformable bodies. The
actual constraint forces A and 6 can be determined by dividing the impulses by the time step #:

A=A/h, 6=0/h. (1.8)

We note here that ArtiSynth uses a full coordinate formulation, in which the position of each dynamic body is solved
using full, or unconstrained, coordinates, with constraint relationships acting to restrict these coordinates. In contrast,
some other simulation systems, including OpenSim [4], use reduced coordinates, in which the system dynamics are
formulated using a smaller set of coordinates (such as joint angles) that implicitly take the system’s constraints into
account. Each methodology has its own advantages. Reduced formulations yield systems with fewer degrees of freedom
and no constraint errors. On the other hand, full coordinates make it easier to combine and connect a wide range of
components, including rigid bodies and FEM models.

Attachments between components can be implemented by constraining the velocities of the attached components using
special constraints of the form
u; = —Gjalla (].9)

where u; and uy denote the velocities of the attached and non-attached components. The constraint matrix G ¢ is
sparse, with a non-zero block entry for each master component to which the attached component is connected. The
simplest case involves attaching a point j to another point k, with the simple velocity relationship

u; = Ui (1.10)

That means that G jo has a single entry of —I (where I is the 3 x 3 identity matrix) in the k-th block column. Another
common case involves connecting a point j to a rigid frame k. The velocity relationship for this is

u; =u — 1 < (1.11)

where u; and oy, are the translational and rotational velocity of the frame and /; is the location of the point relative to the
frame’s origin (as seen in world coordinates). The corresponding G ;¢ contains a single 3 x 6 block entry of the form

(T 1) (1.12)
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in the k — th block column, where

0 —L I
M=(L 0 —L (1.13)
I, L 0

is a skew-symmetric cross product matrix. The attachment constraints G j, could be added directly to (1.6), but their
special form allows us to explicitly solve for u;, and hence reduce the size of (1.6), by factoring out the attached
velocities before solution.

The MLCP (1.6) corresponds to a single step integrator. However, higher order integrators, such as Newmark methods,
usually give rise to MLCPs with an equivalent form. Most ArtiSynth integrators use some variation of (1.6) to determine
the system velocity at each time step.

To set up (1.6), the MechModel component hierarchy is traversed and the methods of the different component types are
queried for the required values. Dynamic components (type DynamicComponent) provide q, u, and M; force effectors
(ForceEffector) determine f and the stiffness/damping augmentation used to produce M; constrainers (Constrainer)
supply G, N, g and n, and attachments (DynamicAttachment) provide the information needed to factor out attached
velocities.

1.3 Basic packages

The core code of the ArtiSynth project is divided into three main packages, each with a number of sub-packages.

1.3.1 maspack

The packages under maspack contain general computational utilities that are independent of ArtiSynth and could be
used in a variety of other contexts. The main packages are:

maspack.util // general utilities

maspack.matrix // matrix and linear algebra

maspack.graph // graph algorithms

maspack.fileutil // remote file access

maspack.properties // property implementation
maspack.spatialmotion // 3D spatial motion and dynamics
maspack.solvers // LCP solvers and linear solver interfaces
maspack.render // viewer and rendering classes
maspack.geometry // 3D geometry and meshes

maspack.collision // collision detection

maspack.widgets // Java swing widgets for maspack data types
maspack.apps // stand-alone programs based only on maspack

1.3.2 artisynth.core

The packages under artisynth.core contain the core code for ArtiSynth model components and its GUI infrastruc-

ture.
artisynth.core.util //
artisynth.core.modelbase //
artisynth.core.materials //
artisynth.core.mechmodels //
artisynth.core.femmodels //
artisynth.core.probes //
artisynth.core.workspace //
artisynth.core.driver //
artisynth.core.gui //
artisynth.core.inverse //
artisynth.core.moviemaker //
artisynth.core.renderables //
artisynth.core.opensim //
artisynth.core.mfreemodels //

general ArtiSynth utilities

base classes for model components
materials for springs and finite elements
basic mechanical models

finite element models

input and output probes

RootModel and associated components

start ArtiSynth and drive the simulation
graphical interface

inverse tracking controller

used for making movies

components that are strictly visual
OpenSim model parser (under development)
mesh free models (experimental, not supported)




1.3.3 artisynth.demos

These packages contain demonstration models that illustrate ArtiSynth’s modeling capabilities:

artisynth.demos.mech // mechanical model demos
artisynth.demos. fem // demos involving finite elements
artisynth.demos.inverse // demos involving inverse control
artisynth.demos.tutorial // demos in this manual

1.4 Properties

ArtiSynth components expose properties, which provide a uniform interface for accessing their internal parameters and
state. Properties vary from component to component; those for RigidBody include position, orientation, mass,
and density, while those for AxialSpring include restLength and material. Properties are particularly useful

for automatically creating control panels and probes, as described in Section 5. They are also used for automating
component serialization.

Properties are described only briefly in this section; more detailed descriptions are available in the
Maspack Reference Manual and the overview paper.

The set of properties defined for a component is fixed for that component’s class; while property values may vary
between component instances, their definitions are class-specific. Properties are exported by a class through code
contained in the class definition, as described in Section 5.2.

1.4.1 Querying and setting property values

Each property has a unique name that can be used to access its value interactively in the GUI. This can be done either
by using a custom control panel (Section 5.1) or by selecting the component and choosing Edit properties ... from the
right-click context menu).

Properties can also be accessed in code using their set/get accessor methods. Unless otherwise specified, the names for
these are formed by simply prepending set or get to the property’s name. More specifically, a property with the name
foo and a value type of Bar will usually have accessor signatures of

Bar getFoo ()

void setFoo (Bar value)

1.4.2 Property handles and paths

A property’s name can also be used to obtain a property handle through which its value may be queried or set gener-
ically. Property handles are implemented by the class Property and are returned by the component’s getProperty()
method. getProperty () takes a property’s name and returns the corresponding handle. For example, components of
type Muscle have a property excitation, for which a handle may be obtained using a code fragment such as

Muscle muscle;

Property prop = muscle.getProperty ("excitation");

Property handles can also be obtained for sub-components, using a property path that consists of a path to the sub-

[}

component followed by a colon ‘:” and the property name. For example, to obtain the excitation property for a
sub-component located by axialSprings/lad relative to a MechModel, one could use a call of the form

MechModel mech;

Property prop = mech.getProperty ("axialSprings/lad:excitation");



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf
http://www.artisynth.org/doc/artisynth.pdf
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https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/properties/HasProperties.html#getProperty-java.lang.String-
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B
stiffness=1

Figure 1.1: Inheritance of a property named stiffness among a component hierarchy. Explicit settings are in bold; inher-
ited settings are in gray italic.

1.4.3 Composite and inheritable properties

Composite properties are possible, in which a property value is a composite object that in turn has sub-properties. A
good example of this is the RenderProps class, which is associated with the property renderProps for renderable
objects and which itself can have a number of sub-properties such as visible, faceStyle, faceColor, lineStyle,
lineColor, etc.

Properties can be declared to be inheritable, so that their values can be inherited from the same properties hosted by
ancestor components further up the component hierarchy. Inheritable properties require a more elaborate declaration
and are associated with a mode which may be either Explicit or Inherited. If a property’s mode is inherited, then
its value is obtained from the closest ancestor exposing the same property whose mode is explicit. In Figure (1.1), the
property stiffness is explicitly set in components A, C, and E, and inherited in B and D (which inherit from A) and F
(which inherits from C).

1.5 Creating an application model

ArtiSynth applications are created by writing and compiling an application model that is a subclass of RootModel. This
application-specific root model is then loaded and run by the ArtiSynth program.

The code for the application model should:

e Declare a no-args constructor

* Override the RootModel build() method to construct the application.
ArtiSynth can load a model either using the build method or by reading it from a file:

Build method
ArtiSynth creates an instance of the model using the no-args constructor, assigns it a name (which is either user-
specified or the simple name of the class), and then calls the build () method to perform the actual construction.
Reading from a file

ArtiSynth creates an instance of the model using the no-args constructor, and then the model is named and
constructed by reading the file.

The no-args constructor should perform whatever initialization is required in both cases, while the build () method
takes the place of the file specification. Unless a model is originally created using a file specification (which is very
tedious), the first time creation of a model will almost always entail using the build () method.

The general template for application model code looks like this:



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html#build-java.lang.String:A-

package artisynth.models.experimental; // package where the model resides
import artisynth.core.workspace.RootModel;
other imports

public class MyModel extends RootModel {

// no-args constructor
public MyModel () {
basic initialization

}

// build method to do model construction
public void build (String[] args) {

code to build the model
}

Here, the model itself is called MyModel, and is defined in the (hypothetical) package artisynth.models.experimental
(placing models in the super package artisynth.models is common practice but not necessary).

Note: The build () method was only introduced in ArtiSynth 3.1. Prior to that, application models were con-
structed using a constructor taking a St ring argument supplying the name of the model. This method of model
construction still works but is deprecated.

1.5.1 Implementing the build() method

As mentioned above, the build () method is responsible for actual model construction. Many applications are built
using a single top-level MechModel. Build methods for these may look like the following:

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

create and add components to the mech model
create and add any needed agents to the root model

First, a MechModel is created (with the name "mech" in this example, although any name, or no name, may be given)
and added to the list of models in the root model using the addModel () method. Subsequent code then creates and adds
the components required by the MechModel, as described in Sections 3, 4 and 6. The build () method also creates and
adds to the root model any agents required by the application (controllers, probes, etc.), as described in Section 5.

When constructing a model, there is no fixed order in which components need to be added. For instance, in the above
example, addModel (mech) could be called near the end of the build () method rather than at the beginning. The only
restriction is that when a component is added to the hierarchy, all other components that it refers to should already have
been added to the hierarchy. For instance, an axial spring (Section 3.1) refers to two points. When it is added to the
hierarchy, those two points should already be present in the hierarchy.

The build () method supplies a String array as an argument, which can be used to transmit application arguments

in a manner analogous to the args argument passed to static main () methods. Build arguments can be specified

when a model is loaded directly from a class using Models > Load from class ..., or when the startup model is set to
automatically load a model when ArtiSynth is first started (Settings > Startup model). Details are given in the “Loading,
Simulating and Saving Models” section of the User Interface Guide.

Build arguments can also be listed directly on the ArtiSynth command line when specifying a model to load using the
-model <classname> option. This is done by enclosing the desired arguments within square brackets [ ] immediately
following the -model option. So, for example,

> artisynth -model projects.MyModel [ -size 50 ]

would cause the strings "-size" and "50" to be passed to the build () method of MyModel.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html
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1.5.2 Making models visible to ArtiSynth

In order to load an application model into ArtiSynth, the classes associated with its implementation must be made
visible to ArtiSynth. This usually involves adding the top-level class folder associated with the application code to the
classpath used by ArtiSynth.

The demonstration models referred to in this guide belong to the package artisynth.demos.tutorial and are
already visible to ArtiSynth.

In most current ArtiSynth projects, classes are stored in a folder tree separate from the source code, with the top-level
class folder named classes, located one level below the project root folder. A typical top-level class folder might be
stored in a location like this:

/home/ joeuser/artisynthProjects/classes

In the example shown in Section 1.5, the model was created in the package artisynth.models.experimental. Since
Java classes are arranged in a folder structure that mirrors package names, with respect to the sample project folder
shown above, the model class would be located in

/home/ joeuser/artisynthProjects/classes/artisynth/models/experimental

At present there are three ways to make top-level class folders known to ArtiSynth:

Add projects to your Eclipse launch configuration
If you are using the Eclipse IDE, then you can add the project in which are developing your model code to the
launch configuration that you use to run ArtiSynth. Other IDEs will presumably provide similar functionality.
Add the folders to the external classpath

You can explicitly add the class folders to ArtiSynth’s external classpath. The easiest way to do this is to select
“Settings > External classpath ...” from the Settings menu, which will open an external classpath editor which
lists all the classpath entries in a large panel on the left. (When ArtiSynth is first installed, the external classpath
has no entries, and so this panel will be blank.) Class folders can then by added via the “Add class folder” button,
and the classpath is saved using the Save button.

Add the folders to your CLASSPATH environment variable

If you are running ArtiSynth from the command line, using the artisynth command (or artisynth.bat on
Windows), then you can define a CLASSPATH environment variable in your environment and add the needed
folders to this.

All of these methods are described in more detail in the “Installing External Models and Packages” section of the
ArtiSynth Installation Guide (available for Linux, Windows, and MacQOS).

1.5.3 Loading and running a model

If a model’s classes are visible to ArtiSynth, then it may be loaded into ArtiSynth in several ways:

Loading from the Model menu
If the root model is contained in a package located under artisynth.demos or artisynth.models, then it will
appear in the default model menu (Models in the main menu bar) under the submenu All demos or All models.
Loading by class path

A model may also be loaded by choosing “Load from class ...” from the Models menu and specifying its package
name and then choosing its root model class. It is also possible to use the -model <classname> command line
argument to have a model loaded directly into ArtiSynth when it starts up.



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/linuxInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/windowsInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/macosInstallation.pdf

Loading from a file

If a model has been saved to a .art file, it may be loaded from that file by choosing File > Load model ....

These methods are described in detail in the section “Loading and Simulating Models” of the
ArtiSynth User Interface Guide.

The demonstration models referred to in this guide should already be present in the model menu and may be loaded
from the submenu Models > All demos > tutorial.

Once a model is loaded, it can be simulated, or run. Simulation of the model can then be started, paused, single-stepped,
or reset using the play controls (Figure 1.2) located at the upper right of the ArtiSynth window frame. Starting and
stopping a simulation is done by clicking play/pause, while reset resets the simulation to time 0. The single-step button
advances the simulation by one time step. The stop-all button will also stop the simulation, along with any Jython
commands or scripts that are running.

step: |0.01000 0.00000 EDE

Figure 1.2: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset,
skip-back, play/pause, single-step, skip-forward and stop-all buttons.

Comprehensive information on exploring and interacting with models is given in the ArtiSynth User Interface Guide.
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Chapter 2

Supporting classes

ArtiSynth uses a large number of supporting classes, mostly defined in the super package maspack, for handling
mathematical and geometric quantities. Those that are referred to in this manual are summarized in this section.

2.1 Vectors and matrices

Among the most basic classes are those used to implement vectors and matrices, defined in maspack.matrix. All vector
classes implement the interface Vector and all matrix classes implement Matrix, which provide a number of standard
methods for setting and accessing values and reading and writing from I/O streams.

General sized vectors and matrices are implemented by VectorNd and MatrixNd. These provide all the usual methods
for linear algebra operations such as addition, scaling, and multiplication:

VectorNd vl = new VectorNd (5); // create a 5 element vector
VectorNd v2 = new VectorNd (5);

VectorNd vr = new VectorNd (5);

MatrixNd M = new MatrixNd (5, 5); // create a 5 x 5 matrix
M.setIdentity (); // M =1

M.scale (4); // M = 4*M

vl.set (new double[] {1, 2, 3, 4, 5}); // set values

v2.set (new double[] {0, 1, 0, 2, 0});

vl.add (v2); // vl += v2

M.mul (vr, vl); // vr = M*vl
System.out.println ("result=" + vr.toString ("%8.3f"));

As illustrated in the above example, vectors and matrices both provide a toString () method that allows their elements
to be formatted using a C-printf style format string. This is useful for providing concise and uniformly formatted output,
particularly for diagnostics. The output from the above example is

result= 4.000 12.000 12.000  24.000  20.000

Detailed specifications for the format string are provided in the documentation for NumberFormat.set(String). If either
no format string, or the string "%g", is specified, toString () formats all numbers using the full-precision output
provided by Double.toString (value).

For computational efficiency, a number of fixed-size vectors and matrices are also provided. The most commonly used
are those defined for three dimensions, including Vector3d and Matrix3d:

Vector3d vl = new Vector3d (1, 2, 3);
Vector3d v2 = new Vector3d (3, 4, 5);
Vector3d vr = new Vector3d ();
Matrix3d M = new Matrix3d() ;
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M.set (1, 2, 3, 4, 5, 6, 7, 8, 9);

M.mul (vr, vl); // vr = M * vl
vr.scaledAdd (2, v2); // vr += 2*v2;
vr.normalize () ; // normalize vr

System.out.println ("result=" + vr.toString ("%8.3f"));

2.2 Rotations and transformations

maspack.matrix contains a number classes that implement rotation matrices, rigid transforms, and affine transforms.

Rotations (Section A.1) are commonly described using a RotationMatrix3d, which implements a rotation matrix and
contains numerous methods for setting rotation values and transforming other quantities. Some of the more commonly
used methods are:

RotationMatrix3d () ; // create and set to the identity
RotationMatrix3d (u, angle); // create and set using an axis-angle

setAxisAngle (u, ang); // set using an axis-angle

setRpy (roll, pitch, yaw); // set using roll-pitch-yaw angles
setEuler (phi, theta, psi); // set using Euler angles

invert (); // invert this rotation

mul (R) // post multiply this rotation by R
mul (R1, R2); // set this rotation to RI*R2

mul (vr, vl); // vr = R*vl, where R is this rotation

Rotations can also be described by AxisAngle, which characterizes a rotation as a single rotation about a specific axis.

Rigid transforms (Section A.2) are used by ArtiSynth to describe a rigid body’s pose, as well as its relative position
and orientation with respect to other bodies and coordinate frames. They are implemented by RigidTransform3d,
which exposes its rotational and translational components directly through the fields R (a RotationMatrix3d) and p
(aVector3d). Rotational and translational values can be set and accessed directly through these fields. In addition,
RigidTransform3d provides numerous methods, some of the more commonly used of which include:

RigidTransform3d () ; // create and set to the identity
RigidTransform3d (x, y, z); // create and set translation to x, y, z

// create and set translation to x, y, z and rotation to roll-pitch-yaw
RigidTransform3d (x, y, z, roll, pitch, yaw);

invert (); // invert this transform

mul (T) // post multiply this transform by T
mul (T1, T2); // set this transform to T1*T2
mulLeftInverse (Tl, T2); // set this transform to inv (T1l)*T2

Affine transforms (Section A.3) are used by ArtiSynth to effect scaling and shearing transformations on components.
They are implemented by AffineTransform3d.

Rigid transformations are actually a specialized form of affine transformation in which the basic transform ma-
trix equals a rotation. RigidTransform3d and AffineTransform3d hence both derive from the same base class
AffineTransform3dBase.

2.3 Points and Vectors

The rotations and transforms described above can be used to transform both vectors and points in space.

Vectors are most commonly implemented using Vector3d, while points can be implemented using the subclass Point3d.
The only difference between Vector3d and Point 3d is that the former ignores the translational component of rigid and
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affine transforms; i.e., as described in Sections A.2 and A.3, a vector v has an implied homogeneous representation of

[V
= <0) , (2.1)
p'= (Il’) ) (2.2)

Both classes provide a number of methods for applying rotational and affine transforms. Those used for rotations are

while the representation for a point p is

void transform (R); // this = R * this

void transform (R, vl); // this = R * vl

void inverseTransform (R); // this = inverse(R) * this
void inverseTransform (R, vl); // this = inverse (R) * vl

where R is a rotation matrix and v1 is a vector (or a point in the case of Point3d).

The methods for applying rigid or affine transforms include:

void transform (X); // transforms this by X

void transform (X, vl); // sets this to vl transformed by X

void inverseTransform (X); // transforms this by the inverse of X

void inverseTransform (X, vl); // sets this to vl transformed by inverse of X

where X is a rigid or affine transform. As described above, in the case of Vector3d, these methods ignore the
translational part of the transform and apply only the matrix component (R for a RigidTransform3d and A for an
AffineTransform3d). In particular, that means that for a RigidTransform3d given by X and a Vector3d given by v,
the method calls

v.transform (X.R)
v.transform (X)

produce the same result.

2.4 Spatial vectors and inertias

The velocities, forces and inertias associated with 3D coordinate frames and rigid bodies are represented using
the 6 DOF spatial quantities described in Sections A.5 and A.6. These are implemented by classes in the package
maspack.spatialmotion.

Spatial velocities (or twists) are implemented by Twist, which exposes its translational and angular velocity components
through the publicly accessible fields v and w, while spatial forces (or wrenches) are implemented by Wrench, which
exposes its translational force and moment components through the publicly accessible fields £ and m.

Both Twist and Wrench contain methods for algebraic operations such as addition and scaling. They also contain
transform() methods for applying rotational and rigid transforms. The rotation methods simply transform each
component by the supplied rotation matrix. The rigid transform methods, on the other hand, assume that the supplied
argument represents a transform between two frames fixed within a rigid body, and transform the twist or wrench
accordingly, using either (A.27) or (A.29).

The spatial inertia for a rigid body is implemented by Spatiallnertia, which contains a number of methods for setting its
value given various mass, center of mass, and inertia values, and querying the values of its components. It also contains
methods for scaling and adding, transforming between coordinate systems, inversion, and multiplying by spatial vectors.

2.5 Meshes

ArtiSynth makes extensive use of 3D meshes, which are defined in maspack.geometry. They are used for a variety
of purposes, including visualization, collision detection, and computing physical properties (such as inertia or stiffness
variation within a finite element model).
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A mesh is essentially a collection of vertices (i.e., points) that are topologically connected in some way. All meshes
extend the abstract base class MeshBase, which supports the vertex definitions, while subclasses provide the topology.

Through MeshBase, all meshes provide methods for adding and accessing vertices. Some of these include:

int numVertices () ;
Vertex3d getVertex (int idx);

void addVertex (Vertex3d vtx);
Vertex3d addVertex (Point3d p);
void removeVertex

(Vertex3d vtx);

’
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return the list of vertices

ArrayList<Vertex3d> getVertices () ;

Vertices are implemented by Vertex3d, which defines the position of the vertex (returned by the method getPosition()),
and also contains support for topological connections. In addition, each vertex maintains an index, obtainable via
getIndex(), that equals the index of its location within the mesh’s vertex list. This makes it easy to set up parallel array
structures for augmenting mesh vertex properties.

Mesh subclasses currently include:

PolygonalMesh

Implements a 2D surface mesh containing faces implemented using half-edges.

PolylineMesh

Implements a mesh consisting of connected line-segments (polylines).

PointMesh

Implements a point cloud with no topological connectivity.

PolygonalMesh is used quite extensively and provides a number of methods for implementing faces, including:

int numFaces () ; // return the number of faces

Face getFace (int 1idx); // return the idx-th face

Face addFace (int[] wvidxs); // create and add a face using vertex indices
void removeFace (Face f); // remove the face f

ArrayList<Face> getFaces () ; // return the list of faces

The class Face implements a face as a counter-clockwise arrangement of vertices linked together by half-edges (class
HalfEdge). Face also supplies a face’s (outward facing) normal via getNormal().

Some mesh uses within ArtiSynth, such as collision detection, require a triangular mesh; i.e., one where all faces have
three vertices. The method isTriangular() can be used to check for this. Meshes that are not triangular can be made
triangular using triangulate().

2.5.1 Mesh creation

Meshes are most commonly created using either one of the factory methods supplied by MeshFactory, or by reading a
definition from a file (Section 2.5.5). However, it is possible to create a mesh by direct construction. For example, the
following code fragment creates a simple closed tetrahedral surface:

// a simple four-faced tetrahedral mesh
PolygonalMesh mesh new PolygonalMesh () ;

mesh.addVertex (0, 0, 0);
mesh.addVertex (1, 0, 0);
mesh.addVertex (0, 1, 0);
mesh.addVertex (0, 0, 1);
mesh.addFace (new int[] { 0, 2, 1 });
mesh.addFace (new intf[] { 0, 3, 2 });
mesh.addFace (new int[] { 0, 1, 3 });
mesh.addFace (new int[] { 1, 2, 3 });

Some of the more commonly used factory methods for creating polyhedral meshes include:
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MeshFactory.createSphere (radius, nslices, nlevels);
MeshFactory.createIcosahedralSphere (radius, divisons);
MeshFactory.createBox (widthx, widthy, widthz);
MeshFactory.createCylinder (radius, height, nslices);
MeshFactory.createPrism (double[] =xycoords, height);
MeshFactory.createTorus (rmajor, rminor, nmajor, nminor);

Each factory method creates a mesh in some standard coordinate frame. After creation, the mesh can be transformed
using the transform(X) method, where X is either a rigid transform ( RigidTransform3d) or a more general affine
transform (AffineTransform3d). For example, to create a rotated box centered on (5,6,7), one could do:

// create a box centered at the origin with widths 10, 20, 30:
PolygonalMesh box = MeshFactory.createBox (10, 20, 20);

// move the origin to 5, 6, 7 and rotate using roll-pitch-yaw
// angles 0, 0, 45 degrees:
box.transform (

new RigidTransform3d (5, 6, 7, 0, 0, Math.toRadians (45)));

One can also scale a mesh using scale(s), where s is a single scale factor, or scale(sx,sy,sz), where sx, sy, and sz are
separate scale factors for the x, y and z axes. This provides a useful way to create an ellipsoid:

// start with a unit sphere with 12 slices and 6 levels
PolygonalMesh ellipsoid = MeshFactory.createSphere (1.0, 12, 6);

// and then turn it into an ellipsoid by scaling about the axes:
ellipsoid.scale (1.0, 2.0, 3.0);

MeshFactory can also be used to create new meshes by performing Boolean operations on existing ones:

MeshFactory.getIntersection (meshl, mesh2);
MeshFactory.getUnion (meshl, mesh2);
MeshFactory.getSubtraction (meshl, mesh2);

2.5.2 Setting normals, colors, and textures

Meshes provide support for adding normal, color, and texture information, with the exact interpretation of these
quantities depending upon the particular mesh subclass. Most commonly this information is used simply for rendering,
but in some cases normal information might also be used for physical simulation.

For polygonal meshes, the normal information described here is used only for smooth shading. When flat shading
is requested, normals are determined directly from the faces themselves.

Normal information can be set and queried using the following methods:

setNormals (

List <Vector3d> nrmls, int[] indices); // set all normals and indices
ArrayList<Vector3d> getNormals () ; // get all normals
int [] getNormalIndices (); // get all normal indices
int numNormals () ; // return the number of normals
Vector3d getNormal (int idx); // get the normal at index idx
setNormal (int idx, Vector3d nrml); // set the normal at index idx
clearNormals () ; // clear all normals and indices

The method setNormals() takes two arguments: a set of normal vectors (nrmls), along with a set of index values
(indices) that map these normals onto the vertices of each of the mesh’s geometric features. Often, there will be one
unique normal per vertex, in which case nrmls will have a size equal to the number of vertices, but this is not always
the case, as described below. Features for the different mesh subclasses are: faces for PolygonalMesh, polylines for
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PolylineMesh, and vertices for PointMesh. If indices is specified as null, then normals is assumed to have a
size equal to the number of vertices, and an appropriate index set is created automatically using create VertexIndices()
(described below). Otherwise, indices should have a size of equal to the number of features times the number of
vertices per feature. For example, consider a PolygonalMesh consisting of two triangles formed from vertex indices
(0,1, 2) and (2, 1, 3), respectively. If normals are specified and there is one unique normal per vertex, then the normal
indices are likely to be

[012 213]

As mentioned above, sometimes there may be more than one normal per vertex. This happens in cases when the same
vertex uses different normals for different faces. In such situations, the size of the nrmls argument will exceed the
number of vertices.

The method setNormals () makes internal copies of the specified normal and index information, and this information
can be later read back using getNormals() and getNormallndices(). The number of normals can be queried using
numNormals(), and individual normals can be queried or set using getNormal(idx) and setNormal(idx,nrml). All
normals and indices can be explicitly cleared using clearNormals().

Color and texture information can be set using analogous methods. For colors, we have

setColors (

List<float[]> colors, int[] indices); // set all colors and indices
ArrayList<float[]> getColors () ; // get all colors
int [] getColorIndices () ; // get all color indices
int numColors () ; // return the number of colors
float[] getColor (int idx); // get the color at index idx
setColor (int idx, float[] color); // set the color at index idx
setColor (int idx, Color color); // set the color at index idx
setColor (

int idx, float r, float g, float b, float a); // set the color at index idx
clearColors () ; // clear all colors and indices

When specified as float [], colors are given as RGB or RGBA values, in the range [0, 1], with array lengths of 3 and 4,
respectively. The colors returned by getColors() are always RGBA values.

With colors, there may often be fewer colors than the number of vertices. For instance, we may have only two colors,
indexed by 0 and 1, and want to use these to alternately color the mesh faces. Using the two-triangle example above, the
color indices might then look like this:

[000111]

Finally, for texture coordinates, we have

setTextureCoords (

List <Vector3d> coords, int([] indices); // set all texture coords and indices
ArrayList<Vector3d> getTextureCoords () ; // get all texture coords
int [] getTextureIndices (); // get all texture indices
int numTextureCoords () ; // return the number of texture coords
Vector3d getTextureCoords (int idx); // get texture coords at index idx

setTextureCoords (int idx, Vector3d coords);// set texture coords at index idx
clearTextureCoords () ; // clear all texture coords and indices

When specifying indices using setNormals, setColors, or setTextureCoords, it is common to use the same index set as
that which associates vertices with features. For convenience, this index set can be created automatically using

int[] createVertexIndices ();

Alternatively, we may sometimes want to create a index set that assigns the same attribute to each feature vertex. If there
is one attribute per feature, the resulting index set is called a feature index set, and can be created using



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#createVertexIndices--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#getNormals--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#getNormalIndices--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#numNormals--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#getNormal-int-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#setNormal-int-maspack.matrix.Vector3d-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#clearNormals--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#getColors--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#setNormals-java.util.List-int:A-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#setColors-java.util.List-int:A-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#setTextureCoords-int-maspack.matrix.Vector3d-

ArtiSynth Modeling Guide 17

int[] createFeaturelIndices () ;

If we have a mesh with three triangles and one color per triangle, the resulting feature index set would be

[000111222]

Note: when a mesh is modified by the addition of new features (such as faces for PolygonalMesh), all normal,
color and texture information is cleared by default (with normal information being automatically recomputed on
demand if automatic normal creation is enabled; see Section 2.5.3). When a mesh is modified by the removal of
features, the index sets for normals, colors and textures are adjusted to account for the removal.

For colors, it is possible to request that a mesh explicitly maintain colors for either its vertices or features (Section
2.5.4). When this is done, colors will persist when vertices or features are added or removed, with default colors
being automatically created as necessary.

Once normals, colors, or textures have been set, one may want to know which of these attributes are associated with the
vertices of a specific feature. To know this, it is necessary to find that feature’s offset into the attribute’s index set. This
offset information can be found using the array returned by

int [] getFeatureIndexOffsets ()

For example, the three normals associated with a triangle at index ti can be obtained using

int[] indexOffs = mesh.getFeatureIndexOffsets ();
ArrayList<Vector3d> nrmls = mesh.getNormals () ;

// get the three normals associated with the triangle at index ti:
Vector3d n0 = nrmls.get (indexOffs[ti]);

Vector3d nl = nrmls.get (indexOffs[ti]+1);

Vector3d n2 = nrmls.get (indexOffs[ti]+2);

Alternatively, one may use the convenience methods

Vector3d getFeatureNormal (int fidx, int k);
float[] getFeatureColor (int fidx, int k);
Vector3d getFeatureTextureCoords (int fidx, int k);

which return the attribute values for the k-th vertex of the feature indexed by fidx.

In general, the various get methods return references to internal storage information and so should not be modified.
However, specific values within the lists returned by getNormals(), getColors(), or getTextureCoords() may be modified
by the application. This may be necessary when attribute information changes as the simulation proceeds. Alternatively,
one may use methods such as setNormal(idx,nrml) setColor(idx,color), or setTextureCoords(idx,coords).

Also, in some situations, particularly with colors and textures, it may be desirable to not have color or texture infor-
mation defined for certain features. In such cases, the corresponding index information can be specified as -1, and the
getNormal (), getColor () and getTexture () methods will return null for the features in question.

2.5.3 Automatic creation of normals and hard edges
For some mesh subclasses, if normals are not explicitly set, they are computed automatically whenever getNormals ()
or getNormalIndices () is called. Whether or not this is true for a particular mesh can be queried by the method

boolean hasAutoNormalCreation () ;

Setting normals explicitly, using a call to setNormals (nrmls, indices), will overwrite any existing normal informa-
tion, automatically computed or otherwise. The method

boolean hasExplicitNormals () ;
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will return true if normals have been explicitly set, and false if they have been automatically computed or if there is
currently no normal information. To explicitly remove normals from a mesh which has automatic normal generation,
one may call setNormals () with the nrmls argument set to null.

More detailed control over how normals are automatically created may be available for specific mesh subclasses. For
example, PolygonalMesh allows normals to be created with multiple normals per vertex, for vertices that are associated
with either open or hard edges. This ability can be controlled using the methods

boolean getMultipleAutoNormals () ;
setMultipleAutoNormals (boolean enable);

Having multiple normals means that even with smooth shading, open or hard edges will still appear sharp. To make an
edge hard within a PolygonalMesh, one may use the methods

boolean setHardEdge
boolean setHardEdge
boolean hasHardEdge
boolean hasHardEdge
int numHardEdges () ;
int clearHardEdges () ;

Vertex3d v0, Vertex3d vl);
int vidx0, int vidxl);
Vertex3d v0, Vertex3d vl);
int vidx0, int vidx1l);

(
(
(
(

which control the hardness of edges between individual vertices, specified either directly or using their indices.

2.5.4 Vertex and feature coloring
The method setColors() makes it possible to assign any desired coloring scheme to a mesh. However, it does require that
the user explicitly reset the color information whenever new features are added.

For convenience, an application can also request that a mesh explicitly maintain colors for either its vertices or features.
These colors will then be maintained when vertices or features are added or removed, with default colors being
automatically created as necessary.

Vertex-based coloring can be requested with the method

setVertexColoringEnabled () ;

This will create a separate (default) color for each of the mesh’s vertices, and set the color indices to be equal to the
vertex indices, which is equivalent to the call

setColors (colors, createVertexIndices ());

where colors contains a default color for each vertex. However, once vertex coloring is enabled, the color and index
sets will be updated whenever vertices or features are added or removed. Meanwhile, applications can query or set the
colors for any vertex using getColor (idx), or any of the various setColor methods. Whether or not vertex coloring is
enabled can be queried using

getVertexColoringEnabled () ;

Once vertex coloring is established, the application will typically want to set the colors for all vertices, perhaps using a
code fragment like this:

mesh.setVertexColoringEnabled () ;
for (int i=0; i<mesh.numVertices (); 1i++) {
compute color for the vertex
mesh.setColor (i, color);

Similarly, feature-based coloring can be requested using the method

setFeatureColoringEnabled () ;

This will create a separate (default) color for each of the mesh’s features (faces for PolygonalMesh, polylines for
PolylineMesh, etc.), and set the color indices to equal the feature index set, which is equivalent to the call
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setColors (colors, createFeaturelIndices ());

where colors contains a default color for each feature. Applications can query or set the colors for any vertex using

getColor (idx), or any of the various setColor methods. Whether or not feature coloring is enabled can be queried

using

getFeatureColoringEnabled () ;

2.5.5 Reading and writing mesh files

PolygonalMesh, PolylineMesh, and PointMesh all provide constructors that allow them to be created from a

definition file, with the file format being inferred from the file name suffix:

PolygonalMesh (String fileName) throws IOException
PolygonalMesh (File file) throws IOException

PolylineMesh (String fileName) throws IOException
PolylineMesh (File file) throws IOException

PointMesh (String fileName) throws IOException
PointMesh (File file) throws IOException

Suffix Format PolygonalMesh PolylineMesh PointMesh
.obj Alias Wavefront X X X

.ply Polygon file format X X

stl STereoLithography X

.gts GNU triangulated surface X

.off Object file format X

vtk VTK ascii format X

.vtp VTK XML format X X

Table 2.1: Mesh file formats which are supported for different mesh types

The currently supported file formats, and their applicability to the different mesh types, are given
example, a PolygonalMesh can be read from either an Alias Wavefront .obj file or an . st1 file,
following example:

PolygonalMesh mesh0O = null;
PolygonalMesh meshl null;
try |
mesh0 = new PolygonalMesh ("meshes/torus.obj");

}
catch (IOException e) {
System.err.println ("Can’t read mesh:");
e.printStackTrace () ;
}
try |
meshl = new PolygonalMesh ("meshes/cylinder.stl");
}
catch (IOException e) {
System.err.println ("Can’t read mesh:");
e.printStackTrace () ;

in Table 2.1. For
as show in the

The file-based mesh constructors may throw an I/O exception if an I/O error occurs or if the indicated format does

not support the mesh type. This exception must either be caught, as in the example above, or thrown out of the calling

routine.

In addition to file-based constructors, all mesh types implement read and write methods that allow a mesh to be read

from or written to a file, with the file format again inferred from the file name suffix:




read (File file) throws IOException
write (File file) throws IOException

read (File file, boolean zeroIndexed) throws IOException
write (File file, String fmtStr, boolean zeroIndexed) throws IOException

For the latter methods, the argument zeroIndexed specifies zero-based vertex indexing in the case of Alias Wavefront
.ob7 files, while fmt Str is a C-style format string specifying the precision and style with which the vertex coordinates
should be written. (In the former methods, zero-based indexing is false and vertices are written using full precision.)

As an example, the following code fragment writes a mesh as an .st1 file:

PolygonalMesh mesh;
initialize

try {
mesh.write (new File ("data/mymesh.obj"));
}
catch (IOException e) {
System.err.println ("Can’t write mesh:");
e.printStackTrace () ;

Sometimes, more explicit control is needed when reading or writing a mesh from/to a given file format. The constructors
and read/write methods described above make use of a specific set of reader and writer classes located in the package
maspack.geometry.io. These can be used directly to provide more explicit read/write control. The readers and writers
(if implemented) associated with the different formats are given in Table 2.2.

Suffix Format Reader class Writer class

.obj Alias Wavefront WavefrontReader WavefrontWriter
.ply Polygon file format PlyReader PlyWriter

.stl STereoLithography St1Reader StlWriter

.gts GNU triangulated surface  GtsReader GtsWriter

.off Object file format OffReader OffWriter

vtk VTK ascii format VtkAsciiReader

.vtp VTK XML format VtkXmlReader

Table 2.2: Reader and writer classes associated with the different mesh file formats

The general usage pattern for these classes is to construct the desired reader or writer with a path to the desired file, and
then call readMesh () or writeMesh () as appropriate:

// read a mesh from a .obj file:
WavefrontReader reader = new WavefrontReader ("meshes/torus.obj");
PolygonalMesh mesh = null;
try |
mesh = reader.readMesh () ;
}
catch (IOException e) {
System.err.println ("Can’t read mesh:");
e.printStackTrace () ;

Both readMesh () and writeMesh () may throw I/O exceptions, which must be either caught, as in the example above,
or thrown out of the calling routine.

For convenience, one can also use the classes GenericMeshReader or GenericMeshWriter, which internally create an
appropriate reader or writer based on the file extension. This enables the writing of code that does not depend on the file
format:

String fileName;

PolygonalMesh mesh = null;
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try {
mesh = (PolygonalMesh) GenericMeshReader .readMesh (fileName) ;

}

catch (IOException e) {
System.err.println ("Can’t read mesh:");
e.printStackTrace () ;

Here, fileName can refer to a mesh of any format supported by GenericMeshReader. Note that the mesh returned by
readMesh () is explicitly cast to PolygonalMesh. This is because readMesh () returns the superclass MeshBase, since
the default mesh created for some file formats may be different from PolygonalMesh.

2.5.6 Reading and writing normal and texture information

When writing a mesh out to a file, normal and texture information are also written if they have been explicitly set and
the file format supports it. In addition, by default, automatically generated normal information will also be written if it
relies on information (such as hard edges) that can’t be reconstructed from the stored file information.

Whether or not normal information will be written is returned by the method

boolean getWriteNormals () ;

This will always return t rue if any of the conditions described above have been met. So for example, if a PolygonalMesh
contains hard edges, and multiple automatic normals are enabled (i.e., getMultipleAutoNormals () returns true), then
getWriteNormals () will return true.

Default normal writing behavior can be overridden within the MeshWriter classes using the following methods:

int getWriteNormals ()
setWriteNormals (enable)

where enable should be one of the following values:

0 normals will never be written;
1 normals will always be written;
-1 normals will written according to the default behavior described above.

When reading a PolygonalMesh from a file, if the file contains normal information with multiple normals per vertex
that suggests the existence of hard edges, then the corresponding edges are set to be hard within the mesh.

2.5.7 Constructive solid geometry

ArtiSynth contains primitives for performing constructive solid geometry (CSG) operations on volumes bounded by
triangular meshes. The class that performs these operations is maspack.collision.SurfaceMeshIntersector, and it works
by robustly determining the intersection contour(s) between a pair of meshes, and then using these to compute the
triangles that need to be added or removed to produce the necessary CSG surface.

The CSG operations include union, intersection, and difference, and are implemented by the following methods of
SurfaceMeshIntersector:

findUnion (mesh0O, meshl); // volume(O U volumel
findIntersection (mesh0O, meshl); // volumeO * volumel
findDifference0l (mesh0O, meshl); // volumeO - volumel
findDifferencel0 (mesh0, meshl); // volumel - volume0

Each takes two PolyhedralMesh objects, mesh0 and meshl, and creates and returns another PolyhedralMesh which
represents the boundary surface of the requested operation. If the result of the operation is null, the returned mesh will
be empty.

The example below uses findUnion to create a dumbbell shaped mesh from two balls and a cylinder:
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Figure 2.1: Dumbbell shaped mesh produced from the CSG union of two balls and a cylinder.

// first create two ball meshes and a bar mesh
double radius = 1.0;

int division = 1; // number of divisons for icosahedral sphere

PolygonalMesh ball0 = MeshFactory.createlIcosahedralSphere (radius, division);
ball0.transform (new RigidTransform3d (0, -2*radius, 0));

PolygonalMesh balll = MeshFactory.createlIcosahedralSphere (radius, division);

balll.transform (new RigidTransform3d (0, 2*radius, 0));
PolygonalMesh bar = MeshFactory.createCylinder (

radius/2, radius*4, /*ns=*/32, /*nr=*/1, /*nh*/10);
bar.transform (new RigidTransform3d (0, 0, 0, 0, 0, Math.PI/2));

// use a SurfaceMeshIntersector to create a CSG union of these meshes

SurfaceMeshIntersector smi = new SurfaceMeshIntersector ();
PolygonalMesh balls = smi.findUnion (ball0, balll);
PolygonalMesh mesh = smi.findUnion (balls, bar);

The balls and cylinder are created using the MeshFactory methods createlcosahedralSphere() and createCylinder(),
where the latter takes arguments ns, nr, and nh giving the number of slices along the circumference, end-cap radius, and
length. The final resulting mesh is shown in Figure 2.1.

2.6 Reading source relative files

ArtiSynth applications frequently need to read in various kinds of data files, including mesh files (as discussed in
Section 2.5.5), FEM mesh geometry (Section 6.2.2), probe data (Section 5.4.4), and custom application data.

Often these data files do not reside in an absolute location but instead in a location relative to the application’s class or
source files. For example, it is common for applications to store geometric data in a subdirectory "geometry" located
beneath the source directory. In order to access such files in a robust way, and ensure that the code does not break when
the source tree is moved, it is useful to determine the application’s source (or class) directory at run time. ArtiSynth
supplies several ways to conveniently handle this situation. First, the RootModel itself supplies the following methods:

// find path to the root model’s source directory
String findSourceDir ();

// get path to a file specified relative to the root model’s source directory
String getSourceRelativePath (String relpath);

The first method returns the path to the source directory of the root model, while the second returns the path to a file
specified relative to the root model source directory. If the root model source directory cannot be found (see discussion
at the end of this section) both methods return null. As a specific usage example, assume that we have an application
model whose build () method needs to load in a mesh torus.obj from a subdirectory meshes located beneath the
source directory. This could be done as follows:
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String pathToMesh = getSourceRelativePath ("meshes/torus.obj");
// read the mesh from a .obj file
WavefrontReader reader = new WavefrontReader (pathToMesh);
PolygonalMesh mesh = null;
try f{

mesh = reader.readMesh () ;

}

catch (IOException e) {
System.err.println ("Can’t read mesh:");
e.printStackTrace () ;

A more general path finding utility is provided by maspack.util.PathFinder, which provides several static methods for
locating source and class directories:

// find path to the source directory associated with classObj
String findSourceDir (Object classObj);

// get path to a file specified relative to classObj source directory
String getSourceRelativePath (Object classObj, String relpath);

// find path to the class directory associated with classObj
String findClassDir (Object classObj);

// get path to a file specified relative to classObj class directory
String getClassRelativePath (Object classObj, String relpath);

The “find” methods return a string path to the indicated class or source directory, while the “relative path” methods
locate the class or source directory and append the additional path relpath. For all of these, the class is determined
from classObj, either directly (if it is an instance of Class), by name (if it is a String), or otherwise by calling
classObj.getClass (). When identifying a package by name, the name should be either a fully qualified class name,
or a simple name that can be located with respect to the packages obtained via Package.getPackages (). For example,
if we have a class whose fully qualified name is artisynth.models.test.Foo, then the following calls should all
return the same result:

Foo foo = new Foo();

PathFinder.findSourceDir (foo);
PathFinder.findSourceDir
PathFinder.findSourceDir
PathFinder.findSourceDir

Foo.class);
"artisynth.models.test.Foo");
Foo")

(
(
(
("
If the source directory for Foo happens to be /home/projects/src/artisynth/models/test, then

PathFinder.getSourceRelativePath (foo, "geometry/mesh.obj");

will return /home/projects/src/artisynth/models/test/geometry/mesh.obj.

When calling PathFinder methods from within the relevant class, one can specify this as the classObj argu-
ment.

With respect to the above example locating the file "meshes/torus.obj", the call to the root model method
getSourceRelativePath () could be replaced with

String pathToMesh = PathFinder.getSourceRelativePath (
this, "meshes/torus.obj");

Since this is assumed to be called from the root model’s build method, the “class” can be indicated by simply passing
this to getSourceRelativePath().
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As an alternative to placing data files in the source directory, one could place them in the class directory, and
then use findClassDir () and getClassRelativePath (). If the data files were originally defined in the source
directory, it will be necessary to copy them to the class directory. Some Java IDEs will perform this automatically.

The PathFinder methods work by climbing the class’s resource hierarchy. Source directories are assumed to be located
relative to the parent of the root class directory, via one of the paths specified by getSourceRootPaths(). By default, this
list includes "src", "source", and "bin". Additional paths can be added using addSourceRootPath(path), or the entire
list can be set using setSourceRootPaths(paths).

At preset, source directories will not be found if the reference class is contained in a jar file.

2.7 Reading and caching remote files

ArtiSynth applications often require the use of large data files to specify items such as FEM mesh geometry, surface
mesh geometry, or medical imaging data. The size of these files may make it inconvenient to store them in any version
control system that is used to store the application source code. As an alternative, ArtiSynth provides a file manager
utility that allows such files to be stored on a separate server, and then downloaded on-demand and cached locally. To
use this, one starts by creating an instance of a FileManager, using the constructor

FileManager (String downloadPath, String remoteSourceName)

where downloadPath is a path to the local directory where the downloaded file should be placed, and remoteSourceName
is a URI indicating the remote server location of the files. After the file manager has been created, it can be used to fetch
remote files and cache them locally, using various get methods:

File get (String destName) ;

File get (String destName, String sourceName) ;

Both of these look for the file destName specified relative to the local directory, and return a File handle for it if it is
present. Otherwise, they attempt to download the file from the remote source location, place it in the local directory, and
return a File handle for it. The location of the remote file is given relative to the remote source URI by destName for
the first method and sourceName for the second.

A simple example of using a file manager within a RootModel build () method is given by the following fragment:

// create the file manager

FileManager fm = new FileManager (
getSourceRelativePath ("geometry"),
"http://myserver.org/artisynth/data/geometry");

// ... and use it to get a bone mesh file

File meshFile = fm.get ("tibia.obj");

Here, a file manager is created that uses a local directory "geometry", located relative to the RootModel source
directory (see Section 2.6), and looks for missing files relative to the URI

http://myserver.org/artisynth/data/geometry

The get () method is then used to obtain the file "tibia.obj" from the local directory. If it is not already present, it is
downloaded from the remote location.

The FileManager contains other features and functionality, and one should consult its API documentation for more
information.
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Chapter 3

Mechanical Models |

This section details how to build basic multibody-type mechanical models consisting of particles, springs, rigid bodies,
joints, and other constraints.

3.1 Springs and particles

The most basic type of mechanical model consists simply of particles connected together by axial springs. Particles
are implemented by the class Particle, which is a dynamic component containing a three-dimensional position state, a
corresponding velocity state, and a mass. It is an instance of the more general base class Point, which is used to also
implement spatial points such as markers which do not have a mass.

3.1.1 Axial springs and materials

An axial spring is a simple spring that connects two points and is implemented by the class AxialSpring. This is a
force effector component that exerts equal and opposite forces on the two points, along the line separating them, with a
magnitude f that is a function f(/,1) of the distance / between the points, and the distance derivative /.

Each axial spring is associated with an axial material, implemented by a subclass of AxialMaterial, that specifies the
function f(I,1). The most basic type of axial material is a LinearAxialMaterial, which determines f according to the
linear relationship

FLD =k(l—1y)+di (3.1
where [ is the rest length and k and d are the stiffness and damping terms. Both k and d are properties of the material,
while [j is a property of the spring.

Axial springs are assigned a linear axial material by default. More complex, nonlinear axial materials may be defined
in the package artisynth.core.materials. Setting or querying a spring’s material may be done with the methods
setMaterial () and getMaterial ().

3.1.2 Example: a simple particle-spring model

An complete application model that implements a simple particle-spring model is given below.

i package artisynth.demos.tutorial;

3 import java.awt.Color;

4+ lmport maspack.matrix.*;

s import maspack.render.*;

6o import artisynth.core.mechmodels.*;

7 import artisynth.core.materials.*;

¢ import artisynth.core.workspace.RootModel;

0 /%%
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Figure 3.1: ParticleSpring model loaded into ArtiSynth.

* Demo of two particles connected by a spring

*x /

public class ParticleSpring extends RootModel {
public void build (String[] args) {

create MechModel and add to RootModel
MechModel mech = new MechModel ("mech");
addModel (mech);

create the components
Particle pl = new Particle ("pl", /*mass=*/2, /*x,y,z=*/0, 0, 0);
Particle p2 = new Particle ("p2", /*mass=*/2, /*x,y,z=*/1, 0, 0);
AxialSpring spring = new AxialSpring ("spr", /*restLength=*/0);
spring.setPoints (pl, p2);
spring.setMaterial (

new LinearAxialMaterial (/*stiffness=%*/20, /*damping=*/10));

add components to the mech model
mech.addParticle (pl);
mech.addParticle (p2);
mech.addAxialSpring (spring);

pl.setDynamic (false); // first particle set to be fixed

increase model bounding box for the viewer
mech.setBounds (/*min=*/-1, 0, -1, /*max=*/1, 0, 0);

set render properties for the components
RenderProps.setSphericalPoints (pl, 0.06, Color.RED);
RenderProps.setSphericalPoints (p2, 0.06, Color.RED);
RenderProps.setCylindricallines (spring, 0.02, Color.BLUE);

Line 1 of the source defines the package in which the model class will reside, in this case artisynth.demos.tutorial.
Lines 3-8 import definitions for other classes that will be used.

The model application class is named ParticleSpring and declared to extend RootModel (line 13), and the build ()
method definition begins at line 15. (A no-args constructor is also needed, but because no other constructors are defined,
the compiler creates one automatically.)

To begin, the build () method creates a MechModel named "mech", and then adds it to the models list of the root model
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using the addModel () method (lines 18-19). Next, two particles, pl and p2, are created, with masses equal to 2 and
initial positions at 0, 0, 0, and 1, 0, 0, respectively (lines 22-23). Then an axial spring is created, with end points set

to pl and p2, and assigned a linear material with a stiffness and damping of 20 and 10 (lines 24-27). Finally, after the
particles and the spring are created, they are added to the particles and axialSprings lists of the MechModel using
the methods addParticle () and addAxialSpring() (lines 30-32).

At this point in the code, both particles are defined to be dynamically controlled, so that running the simulation would
cause both to fall under the MechModel’s default gravity acceleration of (0,0,—9.8). However, for this example, we
want the first particle to remain fixed in place, so we set it to be non-dynamic (line 34), meaning that the physical
simulation will not update its position in response to forces (Section 3.1.3).

The remaining calls control aspects of how the model is graphically rendered. setBounds () (line 37) increases the
model’s “bounding box” so that by default it will occupy a larger part of the viewer frustum. The convenience method
RenderProps.setSphericalPoints () is used to set points pl and p2 to render as solid red spheres with a radius of
0.06, while RenderProps.setCylindricallines () is used to set spring to render as a solid blue cylinder with a
radius of 0.02. More details about setting render properties are given in Section 4.3.

To run this example in ArtiSynth, select All demos > tutorial > ParticleSpring from the Models menu. The model should
load and initially appear as in Figure 3.1. Running the model (Section 1.5.3) will cause the second particle to fall and
swing about under gravity.

3.1.3 Dynamic, parametric, and attached components

By default, a dynamic component is advanced through time in response to the forces applied to it. However, it is also
possible to set a dynamic component’s dynamic property to false, so that it does not respond to force inputs. As shown
in the example above, this can be done using the method setDynamic ():

comp.setDynamic (false);

The method isDynamic() can be used to query the dynamic property.

Dynamic components can also be attached to other dynamic components (as mentioned in Section 1.2) so that their
positions and velocities are controlled by the master components that they are attached to. To attach a dynamic com-
ponent, one creates an AttachmentComponent specifying the attachment connection and adds it to the MechModel,
as described in Section 3.6. The method isAttached() can be used to determine if a component is attached, and if it is,
getAttachment() can be used to find the corresponding AttachmentComponent.

Overall, a dynamic component can be in one of three states:

active
Component is dynamic and unattached. The method isActive() returns t rue. The component will move in
response to forces.

parametric

Component is not dynamic, and is unattached. The method isParametric() returns t rue. The component will
either remain fixed, or will move around in response to external inputs specifying the component’s position and/or
velocity. One way to supply such inputs is to use controllers or input probes, as described in Section 5.

attached

Component is attached. The method isAttached() returns t rue. The component will move so as to follow the
other master component(s) to which it is attached.

3.1.4 Custom axial materials

Application authors may create their own axial materials by subclassing AxialMaterial and overriding the functions

double computeF (1, ldot, 10, excitation);
double computeDFdl (1, ldot, 10, excitation);
double computeDFdldot (1, ldot, 10, excitation);
boolean isDFdldotZero ();
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where excitation is an additional excitation signal a, which is used to implement active springs and which in
particular is used to implement axial muscles (Section 4.4), for which a is usually in the range [0, 1].

The first three methods should return the values of

oftla) o 3f(Lia)

al al (3-2)

f(lviaa)a

respectively, while the last method should return t rue if df(I,1,a)/dl = 0; i.e., if it is always equals to 0.

3.1.5 Damping parameters

Mechanical models usually contain damping forces in addition to spring-type restorative forces. Damping generates
forces that reduce dynamic component velocities, and is usually the major source of energy dissipation in the model.
Damping forces can be generated by the spring components themselves, as described above.

A general damping can be set for all particles by setting the MechModel’s pointDamping property. This causes a force
to be applied to all particles, where d), is the value of the pointDamping and v; is the particle’s velocity.

pointDamping can be set and queried using the MechModel methods

setPointDamping (double d);
double getPointDamping () ;

In general, whenever a component has a property propX, that property can be set and queried in code using
methods of the form

setPropX (T d);
T getPropX();

where T is the type associated with the property.

pointDamping can also be set for particles individually. This property is inherited (Section 1.4.3), so that if not set
explicitly, it inherits the nearest explicitly set value in an ancestor component.

3.2 Rigid bodies

Rigid bodies are implemented in ArtiSynth by the class RigidBody, which is a dynamic component containing a
six-dimensional position and orientation state, a corresponding velocity state, an inertia, and an optional surface mesh.

A rigid body is associated with its own 3D spatial coordinate frame, and is a subclass of the more general Frame
component. The combined position and orientation of this frame with respect to world coordinates defines the body’s
pose, and the associated 6 degrees of freedom describe its “position” state.

3.2.1 Frame markers

ArtiSynth makes extensive use of markers, which are (massless) points attached to dynamic components in the model.
Markers are used for graphical display, implementing attachments, and transmitting forces back onto the underlying
dynamic components.

A frame marker is a marker that can be attached to a Frame, and most commonly to a RigidBody (Figure 3.2). They are
frequently used to provide the anchor points for attaching springs and, more generally, applying forces to the body.

Frame markers are implemented by the class FrameMarker, which is a subclass of Point. The methods

Point3d getLocation () ;
void setLocation (Point3d r);
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Figure 3.2: A force f applied to a frame marker attached to a rigid body. The marker is located at the point r with respect
to the body coordinate frame B.

get and set the marker’s location r with respect to the frame’s coordinate system. When a 3D force f is applied to the
marker, it generates a spatial force f (Section A.5) on the frame given by

N f
- (rx f) . (3.4)

Frame markers can be created using a variety of constructors, including

FrameMarker ();
FrameMarker (String name);
FrameMarker (Frame frame, Point3d loc);

where FrameMarker () creates an empty marker, FrameMarker (name) creates an empty marker with a name, and
FrameMarker (frame, loc) creates an unnamed marker attached to frame at the location 1oc with respect to the
frame’s coordinates. Once created, a marker’s frame can be set and queried with

void setFrame (Frame frame);
Frame getFrame ();

A frame marker can be added to a MechModel with the MechModel methods

void addFrameMarker (FrameMarker mkr);
void addFrameMarker (FrameMarker mkr, Frame frame, Point3d loc);

where addFrameMarker (mkr, frame, loc) also sets the frame and the marker’s location with respect to it.
MechModel also supplies convenience methods to create a marker, attach it to a frame, and add it to the model:

FrameMarker addFrameMarker (Frame frame, Point3d loc);
FrameMarker addFrameMarkerWorld (Frame frame, Point3d locw);

Both methods return the created marker. The first, addFrameMarker (frame, loc), places it at the location Loc with
respect to the frame, while addFrameMarkerWorld (frame, pos) places it at pos with respect to world coordinates.

3.2.2 Example: a simple rigid body-spring model
A simple rigid body-spring model is defined in
artisynth.demos.tutorial.RigidBodySpring

This differs from ParticleSpring only in the build () method, which is listed below:
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Figure 3.3: RigidBodySpring model loaded into ArtiSynth.

public void build (String[] args) {

create MechModel and add to Roo
MechModel mech = new MechModel ("m
addModel (mech);

tModel
ech");

create the components
Particle pl = new Particle ("pl", /*mass=*/2, /*x,y,z=*/0, 0, 0);
'/ create box and set it’s pose (position/orientation):
RigidBody box =
RigidBody.createBox ("box", /*wx,wy,wz=*/0.5, 0.3, 0.3, /*density=*/20);
box.setPose (new RigidTransform3d (/*x,y,z=*/0.75, 0, 0));
create marker point and connect it to the box:
FrameMarker mkr = new FrameMarker (/*x,y,z=*/-0.25, 0, 0);
mkr.setFrame (box);

AxialSpring spring = new AxialSpring ("spr", /*restLength=*/0);
spring.setPoints (pl, mkr);
spring.setMaterial (

new LinearAxialMaterial (/*stiffness=*/20, /*damping=%*/10));

add components to the mech model
mech.addParticle (pl);
mech.addRigidBody (box);
mech.addFrameMarker (mkr);
mech.addAxialSpring (spring);

pl.setDynamic (false); // first particle set to be fixed

increase model bounding box for the viewer
mech.setBounds (/*min=*/-1, 0, -1, /*max=*/1, 0, 0);
'/ set render properties for the components
RenderProps.setSphericalPoints (pl, 0.06, Color.RED);
RenderProps.setSphericalPoints (mkr, 0.06, Color.RED);
RenderProps.setCylindricallLines (mkr, 0.02, Color.BLUE);

The differences from ParticleSpring begin at line 9. Instead of creating a second particle, a rigid body is created
using the factory method RigidBody.createBox(), which takes X, y, z widths and a (uniform) density and creates a box-
shaped rigid body complete with surface mesh and appropriate mass and inertia. As the box is initially centered at the
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origin, moving it elsewhere requires setting the body’s pose, which is done using setPose (). The RigidTransform3d
passed to setPose () is created using a three-argument constructor that generates a translation-only transform. Next,
starting at line 14, a FrameMarker is created for a location (—0.25,0,0)7 relative to the rigid body, and attached to the
body using its setFrame () method.

The remainder of build () is the same as for ParticleSpring, except that the spring is attached to the frame marker
instead of a second particle.

To run this example in ArtiSynth, select All demos > tutorial > RigidBodySpring from the Models menu. The model
should load and initially appear as in Figure 3.3. Running the model (Section 1.5.3) will cause the rigid body to fall and
swing about under gravity.

3.2.3 Creating rigid bodies

As illustrated above, rigid bodies can be created using factory methods supplied by RigidBody. Some of these include:

createBox (name, widthx, widthy, widthz, density);
createCylinder (name, radius, height, density, nsides);
createSphere (name, radius, density, nslices);
createEllipsoid (name, radx, rady, radz, density, nslices);

The bodies do not need to be named; if no name is desired, then name and can be specified as null.
In addition, there are also factory methods for creating a rigid body directly from a mesh:

createFromMesh (name, mesh, density, scale);
createFromMesh (name, meshFileName, density, scale);

These take either a polygonal mesh (Section 2.5), or a file name from which a mesh is read, and use it as the body’s
surface mesh and then compute the mass and inertia properties from the specified (uniform) density.

Alternatively, one can create a rigid body directly from a constructor, and then set the mesh and inertia properties
explicitly:

PolygonalMesh femurMesh;
SpatialInertia inertia;

initialize mesh and inertia appropriately

RigidBody body = new RigidBody ("femur");
body.setMesh (femurMesh);
body.setInertia (inertia);

3.2.4 Pose and velocity

A body’s pose can be set and queried using the methods

setPose (RigidTransform3d T); // sets the pose to T
getPose (RigidTransform3d T); // gets the current pose in T
RigidTransform3d getPose () ; // returns the current pose (read-only)

These use a RigidTransform3d (Section 2.2) to describe the pose. Body poses are described in world coordinates and
specify the transform from body to world coordinates. In particular, the pose for a body A specifies the rigid transform
TAW~

Rigid bodies also expose the translational and rotational components of their pose via the properties position and
orientation, which can be queried and set independently using the methods

setPosition (Point3d p); // sets the position to p
getPosition (Point3d p); // gets the current position in p
Point3d getPosition () ; // returns the current position (read-only)

setOrientation (AxisAngle a); // sets the orientation to a
getOrientation (AxisAngle a); // gets the current orientation in a
AxisAngle getOrientation (); // returns the current orientation (read-only)
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The velocity of a rigid body is described using a Twist (Section 2.4), which contains both the translational and rotational
velocities. The following methods set and query the spatial velocity as described with respect to world coordinates:

setVelocity (Twist v); // sets the spatial velocity to v
getVelocity (Twist v); // gets the current spatial velocity in v
Twist getVelocity (); // returns current spatial velocity (read-only)

During simulation, unless a rigid body has been set to be parametric (Section 3.1.3), its pose and velocity are updated in
response to forces, so setting the pose or velocity generally makes sense only for setting initial conditions. On the other
hand, if a rigid body is parametric, then it is possible to control its pose during the simulation, but in that case it is better
to set its farget pose and/or target velocity, as described in Section 5.3.1.

3.2.5 Inertia and the surface mesh

The “mass” of a rigid body is described by its spatial inertia (Section A.6), implemented by a Spatiallnertia object,
which specifies its mass, center of mass, and rotational inertia with respect to the center of mass.

Most rigid bodies are also associated with a polygonal surface mesh, which can be set and queried using the methods

setSurfaceMesh (PolygonalMesh mesh);
setSurfaceMesh (PolygonalMesh mesh, String meshFileName) ;
PolygonalMesh getSurfaceMesh () ;

The second method takes an optional fileName argument that can be set to the name of a file from which the mesh was
read. Then if the model itself is saved to a file, the model file will specify the mesh using the file name instead of explicit
vertex and face information, which can reduce the model file size considerably.

Rigid bodies can also have more than one mesh, as described in Section 3.2.8.

The inertia of a rigid body can be explicitly set using a variety of methods including

setInertia (M) // set using SpatialInertia M

setInertia (mass, Jxx, Jyy, Jzz); // mass and diagonal rotational inertia
setInertia (mass, J); // mass and full rotational inertia
setInertia (mass, J, com); // mass, rotational inertia, center-of-mass

and can be queried using

getInertia (M); // get Spatiallnertia in M
getInertia (); // return read-only Spatiallnertia

In practice, it is often more convenient to simply specify a mass or a density, and then use the geometry of the surface
mesh (and possibly other meshes, Section 3.2.8) to compute the remaining inertial values. How a rigid body’s inertia is
computed is determined by its inertiaMethod property, which can be one

EXPLICIT

Inertia is set explicitly.

MASS

Inertia is determined implicitly from the mesh geometry and the body’s mass.

DENSITY

Inertia is determined implicitly from the mesh geometry and the body’s density (which is multiplied by the mesh
volume(s) to determine a mass).

When using DENSITY to determine the inertia, it is generally assumed that the contributing meshes are both
polygonal and closed. Meshes which are either open or non-polygonal generally do not have a well-defined volume
which can be multiplied by the density to determine the mass.

The inertiaMethod property can be set and queried using
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setInertiaMethod (InertiaMethod method) ;
InertiaMethod getInertiaMethod () ;

and its default value is DENSITY. Explicitly setting the inertia using one of setInertia () methods described above will
set inertiaMethod to EXPLICIT. The method

setInertiaFromDensity (density);

will (re)compute the inertia using the mesh geometry and a density value and set inertiaMethod to DENSITY, and the
method

setInertiaFromMass (mass);

will (re)compute the inertia using the mesh geometry and a mass value and set inertiaMethod to MASS.
Finally, the (assumed uniform) density of the body can be queried using

getDensity () ;

There are some subtleties involved in determining the inertia using either the DENSITY or MASS methods when the
rigid body contains more than one mesh. Details are given in Section 3.2.8.

3.2.6 Damping parameters

As with particles, it is possible to set damping parameters for rigid bodies.

MechModel provides two properties, frameDamping and rotaryDamping, which generate a spatial force centered on
each rigid body’s coordinate frame
R —d i
= 7 :
L (drwi) ’ (3 5)

where dy and d, are the frameDamping and rotaryDamping values, and v; and @; are the translational and angular
velocity of the body’s coordinate frame. The damping parameters can be set and queried using the MechModel methods

setFrameDamping (double df);
setRotaryDamping (double dr);
double getFrameDamping () ;
double getRotaryDamping () ;

For models involving rigid bodies, it is often necessary to set rotaryDamping to a non-zero value because
frameDamping will provide no damping at all when a rigid body is simply rotating about its coordinate frame
origin.

Frame and rotary damping can also be set for individual bodies using their own (inherited) frameDamping and
rotaryDamping properties.

3.2.7 Rendering rigid bodies

A rigid body is rendered in ArtiSynth by drawing its mesh (or meshes, Section 3.2.8) and/or coordinate frame.

Meshes are drawn using the face rendering properties described in more detail in Section 4.3. The most commonly used
of these are:
» faceColor: A value of type java.awt.Color giving the color of mesh faces. The default value is GRAY.

 shading: A value of type Renderer.Shading indicating how the mesh should be shaded, with the options being FLAT,
SMOOTH, METAL, and NONE. The default value is FLAT.
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* alpha: A double value between 0 and 1 indicating transparency, with transparency increasing as value decreases from
1. The default value is 1.

» faceStyle: A value of type Renderer.FaceStyle indicating which face sides should be drawn, with the options being
FRONT, BACK, FRONT_AND_BACK, and NONE. The default value is FRONT.

* drawEdges: A boolean indicating whether the mesh edges should also be drawn, using either the edgeColor rendering
property, or the lineColor property if edgeColor is not set. The default value is false.

These properties, and others, can be set either interactively in the GUI, or in code. To set the render properties in the
GUI, select the rigid body or its mesh component, and then right click the mouse and choose Edit render props .... More
details are given in the section “Render properties” in the ArtiSynth User Interface Guide.

Figure 3.4: Different rendering settings for a rigid body hip mesh showing the default (left), smooth rendering with a
lighter color (center), and wireframe (right).

Properties can also be set in code, usually during the build () method. Typically this is done using a static method of
the RenderProps class that has the form

RenderProps.setXXX (comp, value)

where XXX is the property name, comp is the component for which the property should be set, and value is the desired
value. Some examples are shown in Figure 3.4 for a rigid body hip representation with a fairly coarse mesh. The left
image shows the default rendering, using a gray color and flat shading. The center image shows a lighter color and
smooth shading, which could be set by the following code fragment:

import maspack.render.*;
import maspack.render.Renderer.*;

RigidBody hipBody;

RenderProps.setFaceColor (hipBody, new Color (255, 255, 204));
RenderProps.setShading (hipBody, Shading.SMOOTH) ;

Finally, the right image shows the body rendered as a wire frame, which can by done by setting faceStyle to NONE and
drawEdges to true:

RenderProps.setFaceStyle (hip, FaceStyle.NONE) ;
RenderProps.setDrawEdges (hip, true);
RenderProps.setEdgeWidth (hip, 2);
RenderProps.setEdgeColor (hip, Color.CYAN);

Render properties can also be set in higher level model components, from which their values will be inherited by lower
level components that have not explicitly set their own values. For example, setting the faceColor render property in the
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Figure 3.5: Rigid body axes rendered with axisDrawStyle set to LINE (left) and ARROW (right).

MechModel will automatically set the face color for all subcomponents which have not explicitly set faceColor. More
details on render properties are given in Section 4.3.

In addition to mesh rendering, it is often useful to draw a rigid body’s coordinate frame, which can be done using its
axisLength and axisDrawStyle properties. Setting axisLength to a positive value will cause the body’s three coordinate
axes to be drawn, with the indicated length, with the x, y and z axes colored red, green, and blue, respectively. The
axisDrawStyle property controls how the axes are rendered (Figure 3.5). It has the type Renderer. AxisDrawStyle, and
can be set to the following values:

OFF

Axes are not rendered.

LINE

Axes are rendered as simple red-green-blue lines, with a width given by the joint’s lineWidth rendering property.

ARROW

Axes are rendered as solid red-green-blue arrows.

As with the rendering proprieties, the axisLength and axisDrawStyle properties can be managed either interactively in the
GUI (by selecting the body, right clicking and choosing Edit properties ...), or in code, using the following methods:

double getAxisLength ()
void setAxisLength (double len)

AxisDrawStyle getAxisDrawStyle ()
void setAxisDrawStyle (AxisDrawStyle style)

3.2.8 Multiple meshes

A RigidBody may contain multiple meshes, which can be useful for various reasons:

* It may be desirable to use different meshes for collision detection, inertia computation, and visual presentation;

* Different render properties can be set for different mesh components, allowing the body to be rendered in a more
versatile way;

* Different mesh components can be selected individually.
Each rigid body mesh is encapsulated inside a RigidMeshComp component, which is in turn stored in a subcompo-

nent list called meshes. Meshes do not need to be instances of PolygonalMesh; instead, they can be any instance of
MeshBase, including PointMesh and PolylineMesh.
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The default surface mesh, returned by getSurfaceMesh (), is also stored inside a RigidMeshComp in the meshes
list. By default, the surface mesh is the first mesh in the list, but is otherwise defined to be the first mesh in meshes
which is also an instance of PolygonalMesh. The RigidMeshComp containing the surface mesh can be obtained
using the method get SurfaceMeshComp ().

A RigidMeshComp contains a number of properties that control how the mesh is displayed and interacts with its rigid
body:

renderProps

Render properties controlling how the mesh is rendered (see Section 4.3).

hasMass

A boolean, which if true means that the mesh will contribute to the body’s inertia when the inertiaMethod is
either MASS or DENSITY. The default value is true.

massDistribution

An enumerated type defined by MassDistribution which specifies how the mesh’s inertia contribution is
determined for a given mass. VOLUME, AREA, LENGTH, and POINT indicate, respectively, that the mass is dis-
tributed evenly over the mesh’s volume, area (faces), length (edges), or points. The default value is determined
by the mesh type: VOLUME for a closed PolygonalMesh, AREA for an open PolygonalMesh, LENGTH for a
PolylineMesh, and POINT for a PointMesh. Applications can specify an alternate value providing the mesh has
the features to support it. Specifying DEFAULT will restore the default value.

isCollidable

A boolean, which if true, and if the mesh is a PolygonalMesh, means that the mesh will take part in collision
and wrapping interactions (Sections 4.5 and 7.3). The default value is true, and the get/set accessors have the
names isCollidable () and setIsCollidable ().

volume

A double whose value is the volume of the mesh. If the mesh is a PolygonalMesh, this is the value returned by its
compute Volume() method. Otherwise, the volume is 0, unless setVolume(vol) is used to explicitly set a non-zero
volume value.

mass

A double whose default value is the product of the density and volume properties. Otherwise, if mass has been
explicitly set using setMass(mass), the value is the explicit mass.

density

A double whose default value is the rigid body’s density. Otherwise, if density has been explicitly set using
setDensity(density), the value is the explicit density, or if mass has been explicitly set using setMass(mass), the
value is the explicit mass divided by volume.

Note that by default, the density of a RigidMeshComp is simply the density setting for the rigid body, and the mass is
this times the volume. However, it is possible to set either an explicit mass or a density value that will override this.
(Also, explicitly setting a mass will unset any explicit density, and explicitly setting the density will unset any explicit
mass.)

When the inertiaMethod of the rigid body is either MASS or DENSITY, then its inertia is computed from the sum of
all the inertias My, of the component meshes k for which hasMass is t rue. Each My, is computed by the mesh’s
createlnertia(mass,massDistribution) method, using the mass and massDistribution properties of its RigidMeshComp.

When forming the body inertia from the inertia components of individual meshes, no attempt is made to account
for mesh overlap. If this is important, the meshes themselves should be modified in advance so that they do not
overlap, perhaps by using the CSG primitives described in Section 2.5.7.

Instances of RigidMeshComp can be created directly, using constructions such as
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PolygonalMesh mesh;
initialize mesh

RigidMeshComp mcomp = new RigidMeshComp (mesh);

or

RigidMeshComp mcomp = new RigidMeshComp ("meshName");
mcomp.setMesh (mesh);

after which they can be added or removed from the meshes list using the methods

void addMeshComp (RigidMeshComp mcomp)

void addMeshComp (RigidMeshComp mcomp, int idx)
int numMeshComps ()

boolean removeMeshComp (RigidMeshComp mcomp)
boolean removeMeshComp (String name)

void clearMeshComps ()

It is also possible to add meshes directly to the meshes list, using the methods

RigidMeshComp addMesh (MeshBase mesh)
RigidMeshComp addMesh (MeshBase mesh, boolean hasMass, boolean collidable)

each of which creates a RigidMeshComp, adds it to the mesh list, and returns it. The second method also specifies the
values of the hasMass and collidable properties (both of which are true by default).

Figure 3.6: RigidCompositeBody loaded into ArtiSynth and run for 0.75 seconds. The ball on the right falls less be-
cause it has a lower density than the rest of the body.

3.2.9 Example: a composite rigid body

An example of constructing a rigid body from multiple meshes is defined in
artisynth.demos.tutorial.RigidCompositeBody

This uses three meshes to construct a rigid body whose shape resembles a dumbbell. The code, with the include files
omitted, is listed below:




i public class RigidCompositeBody extends RootModel ({

public void build (String[] args) {

5 // create MechModel and add to RootModel
6 MechModel mech = new MechModel ("mech");
7 addModel (mech);

9 // create the component meshes

10 PolygonalMesh balll = MeshFactory.createIcosahedralSphere (0.8, 1);
1 balll.transform (new RigidTransform3d (1.5, 0, 0));

12 PolygonalMesh ball2 = MeshFactory.createIcosahedralSphere (0.8, 1);
13 ball2.transform (new RigidTransform3d (-1.5, 0, 0));

14 PolygonalMesh axis = MeshFactory.createCylinder (0.2, 2.0, 12);

15 axis.transform (new RigidTransform3d (0, 0, 0, 0, Math.PI/2, 0));

17 // create the body and add the component meshes

18 RigidBody body = new RigidBody ("body");
19 body.setDensity (10);
20 body.setFrameDamping (10); // add damping to the Dbody

21 body.addMesh (axis);
2 RigidMeshComp bcompl = body.addMesh (balll);

23 RigidMeshComp bcomp2 = body.addMesh (ball2);

24 mech.addRigidBody (body);

26 // connect the body to a spring attached to a fixed particle

27 Particle pl = new Particle ("pl", /*mass=*/0, /*x,y,z=*/0, 0, 2);
28 pl.setDynamic (false);

29 mech.addParticle (pl);

30 FrameMarker mkr = mech.addFrameMarkerWorld (body, new Point3d (0, 0, 0.2));
31 AxialSpring spring =

32 new AxialSpring ("spr", /*k=*/150, /*d=*/0, /*restLength=*/0);

33 spring.setPoints (pl, mkr);

34 mech.addAxialSpring (spring);

36 // set the density for balll to be less than the body density
37 bcompl.setDensity (8);

39 // set render properties for the component, with the ball

40 // meshes having different colors

41 RenderProps.setFaceColor (body, new Color (250, 200, 200));

2 RenderProps.setFaceColor (bcompl, new Color (200, 200, 250));
43 RenderProps.setFaceColor (bcomp2, new Color (200, 250, 200));
44 RenderProps.setSphericalPoints (mech, 0.06, Color.WHITE);

45 RenderProps.setCylindricallines (spring, 0.02, Color.BLUE);

46 }

As in the previous examples, the build () method starts by creating a MechModel (lines 6-7). Three different meshes
(two balls and an axis) are then constructed at lines 10-15, using MeshFactory methods (Section 2.5) and transforming
each result to an appropriate position/orientation with respect to the body’s coordinate frame.

The body itself is constructed at lines 18-24. Its default density is set to 10, and its frame damping (Section 3.2.6) is also
set to 10 (the previous rigid body example in Section 3.2.2 relied on spring damping to dissipate energy). The meshes
are added using addMesh(), which allocates and returns a RigidMeshComp. For the ball meshes, these are saved in
becompl and bcomp?2 and used later to adjust density and/or render properties.

Lines 27-34 create a simple linear spring, connected to a fixed point p0 and a marker mkr. The marker is created and
attached to the body by the MechModel method addFrameMarkerWorld(), which places the marker at a known position
in world coordinates. The spring is created using an AxialSpring constructor that accepts a name, along with stiffness,
damping, and rest length parameters to specify a LinearAxialMaterial.

At line 37, bcompl is used to set the density of balll to 8. Since this is less than the default body density, the inertia
component of balll will be lighter than that of ball2. Finally, render properties are set at lines 41-45. This includes
setting the default face colors for the body and for each ball.
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To run this example in ArtiSynth, select All demos > tutorial > RigidCompositeBody from the Models menu. The model
should load and initially appear as in Figure 3.6. Running the model (Section 1.5.3) will cause the rigid body to fall and
swing about under gravity, with the right ball (ball1l) not falling as far because it has less density.

3.3 Joints and connectors

In a typical mechanical model, many of the rigid bodies are interconnected, either using spring-type components that
exert binding forces on the bodies, or through joints and connectors that enforce the connection using hard constraints.
This section describes the latter. While the discussion focuses on rigid bodies, joints and connectors can be used

more generally with any body that implements the ConnectableBody interface. In particular, this allows joints to also
interconnect finite element models, as described in Section 6.6.2.

3.3.1 Joints and coordinate frames

Consider two rigid bodies A and B. The pose of body B with respect to body A can be described by the 6 DOF rigid
transform Tpy. If A and B are unconnected, Tp4 may assume any possible value and has a full six degrees of freedom.
A joint between A and B constrains the set of poses that are possible between the two bodies and reduces the degrees of
freedom available to Tps. For ease of use, the constraining action of a joint is described with respect to a pair of local
coordinate frames C and D that are connected to frames A and B, respectively, by auxiliary transformations. This allows
joints to be placed at locations that do not correspond directly to frames A or B.

Djpy

Figure 3.7: Coordinate frames D and C for a hinge joint.

The joint frames C and D move with respect to each other as the joint moves. The allowed joint motions therefore
correspond to the allowed values of the joint transform Tcp. Although both frames typically move with their attached
bodies, D is considered the base frame and C the motion frame (this is because when a joint is used to connect a single
body to ground, body B is set to null and the world frame takes its place). As an example of a joint’s constraining
effect, consider a hinge joint (Figure 3.7), which allows C to move with respect to D only by rotating about the z axis
while the origins of C and D remain coincident. Other motions are prohibited. If we let 8 describe the counter-clockwise
rotation angle of C about the z axis, then T¢p should always have the form

cos(f) —sin(6) 0 O

~ | sin(@) cos(@) O O
Teo 0 0 10 (36)

0 0 0 1

When a joint is attached to bodies A and B, frame C is fixed to body A and frame D is fixed to body B. Except in special
cases, the joint frames C and D are not coincident with the body frames A and B. Instead, they are located relative to A
and B by the transforms T¢4 and Tpp, respectively (Figure 3.8). Since T¢a and Tpp are both fixed, the joint constraints
on T¢p constrain the relative poses of A and B, with T4p determined from

Tap = Tog Tep Ty 3.7

(See Section A.2 for a discussion of determining transforms between related coordinate frames).
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Figure 3.8: Transforms connecting joint coordinate frames C and D with rigid bodies A and B.

3.3.2 Joint coordinates, constraints, and errors

Each different joint and connector type restricts the motion between two bodies to M degrees of freedom, for some

M < 6. Sometimes, the joint also defines a set of M coordinates that parameterize these M DOFs. For example, the
hinge joint described above is parameterized by 8. Other examples are given in Section 3.4: a 2 DOF cylindrical has
coordinates z and 6, a 3 DOF gimbal joint is parameterized by the roll-pitch-yaw angles 0, ¢, and y, etc. When T¢p =1
(where 1 is the identity transform), the coordinates are usually all equal to zero, and the joint is said to be in the zero
state.

As explained in Section 1.2, ArtiSynth uses a full coordinate formulation for dynamic simulation. That means that
instead of using joint coordinates to describe system state, it uses the combined full coordinates q of all dynamic
components. For example, a model consisting of a single rigid body connected to ground by a hinge joint will have 6
DOF (corresponding to the 6 DOF of the body), rather than the 1 DOF implied by the hinge joint. The DOF restrictions
imposed by the joints are then enforced by a set of linearized constraint relationships

G(qQu=g, N(qu>n (3.8)

that restrict the body velocities u computed at each simulation step, usually by solving an MLCP like (1.6). As ex-
plained in Section 1.2, the right side vectors g and n in (3.8) contain time derivative terms, which for simplicity much of
the following presentation will assume to be 0.

Each joint contributes its own set of constraint equations to (3.8). Typically these take the form of bilateral, or equality,
constraints
Gi(qQu=0 3.9

which are added to the system’s global bilateral constraint matrix G. Gj contains 6 — M rows providing 6 — M individual
constraints G;. During simulation, these give rise to 6 — M constraint forces (corresponding to A in (1.8)) which enforce
the constraints.

In some cases, the joint also maintains unilateral, or inequality constraints, to keep T¢p out of inadmissible regions.
These take the form
Ni(qJu=>0 (3.10)

and are added to the system’s global unilateral constraint matrix N. They give rise to constraint forces corresponding to
0 in (1.8). A common use of unilateral constraints is to enforce range limits of the joint coordinates, such as

Omin < 0 < Oax. 3.11)

A specific unilateral constraint is added to Nj only when T¢p is on or within the boundary of the inadmissible region
associated with that constraint. The constraint is then said to be engaged. The combined number of bilateral and
engaged unilateral constraints for a particular joint should not exceed 6; otherwise, the joint would be overconstrained.
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Joint coordinates, when supported for a particular joint, can be both read and set. Setting a coordinate causes the joint
transform T¢p to change. To accommodate this, the system adjusts the poses of one or both bodies connected to the
joint, along with adjacent bodies connected to them, with preference given to bodies that are not attached to “ground”.
However, if this is done during simulation, and particularly if one or both of the bodies connected to the joint are moving
dynamically, the results will be unpredictable and will likely conflict with the simulation.

Joint coordinates are also often exported as properties. For example, the HingeJoint class (Section 3.4) exports its 0
coordinate as the property theta, which can be accessed in the GUI, or via the accessor methods

double getTheta () // get theta in degrees

void setTheta (double deg) // set theta in degrees

Since joint constraints are generally nonlinear, their linearized enforcement at the velocity level by (3.8) will usually
produce small errors as the simulation proceeds. These errors are reduced using a position correction step described in
Section 4.10.1 and [8]. Errors can also be caused by joint compliance (Section 3.3.7). Both effects mean that the joint
transform T¢p may deviate from the allowed values dictated by the joint type. In ArtiSynth, this is accounted for by
introducing an additional constraint frame G between D and C (Figure 3.9). G is computed to be the nearest frame to C
that lies exactly in the joint constraint space. Tgp is therefore a valid joint transform, Tsc accommodates the error, and
the whole joint transform is given by the composition

Tep =Tep Teg- (3.12)

If there is no compliance or joint error, then frames G and C are identical, Tcg = I, and Tcp = Tgp. Because Teg
describes the joint error, we sometimes refer to it as Te,r = Teg.

G C

TCG
errors
TG D

valid transform

Figure 3.9: 2D schematic showing the joint frames D and C, along with the intermediate frame G that accounts for
numeric error and complaint motion.

T

CD

joint transform

3.3.3 Creating Joints

Joint and connector components in ArtiSynth are both derived from the superclass BodyConnector, with joints being
further derived from JointBase, which provides support for coordinates. Some of the commonly used joints and
connectors are described in Section 3.4.

An application creates a joint by constructing it and adding it to a MechModel. Many joints have constructors of the form

XXXJoint (bodyA, bodyB, TDW)
which specifies the bodies A and B which the joint connects, along with the transform Tpy giving the pose of the joint

base frame D in world coordinates. The constructor then assumes that the joint is in the zero state, so that C and D are
the same and T¢p =1 and Tew = Tpw, and then computes Teyq and Tpp from

Tca = Ty Tew (3.13)
Tps = Tgy Tow, (3.14)
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where T4y and Tpy are the current poses of A and B.

After the joint is created, it should be added to the system’s MechModel using addBodyConnector(), as shown in the
following code fragment:

MechModel mech;
RigidBody bodyA, bodyB;
RigidTransform3d TDW;

initialize mech, bodyA, bodyB, and TDW

HingeJoint joint = new HingeJoint (bodyA, bodyB, TDW);
mech.addBodyConnector (joint);

It is also possible to create a joint using its default constructor and attach it to the bodies afterward, using the method
setBodies(bodyA,bodyB,TDW), as in the following:

HingeJoint joint = new HingeJoint ();
joint.setBodies (bodyA, bodyB, TDW);
mech.addBodyConnector (joint);

One reason for doing this is that it allows the joint transform T¢p to be modified (by setting coordinate values) before
setBodies () is called; this is discussed further in Section 3.3.4.

Joints usually offer a number of other constructors that let its world location and body relationships to be specified in
different ways. These may include:

XXXJoint (bodyA, TCA, bodyB, TDB)

XXXJoint (bodyA, bodyB, TCW, TDW)

The first, which is restricted to rigid bodies, allows the application to explicitly specify transforms Tc4 and Tpp
connecting frames C and D to the body frames A and B, and is useful when T4 and Tpp are explicitly known, or the
initial value of T¢p is not the identity. Likewise, the second constructor allows Ty and Tpw to be explicitly specified,
with Tep # Lif Tew # Tpw. For instance, suppose Tep and Tpy are both known. Then we can use the relationship

Tcw =Tpw Tep (3.15)

to create the joint as in the following code fragment:

MechModel mech;
RigidBody bodyA, bodyB;
RigidTransform3d TDW, TCD;

initialize mech, bodyA, bodyB, TDW, and TCD

// compute TCW:

RigidTransform3d TCW = new RigidTransform3d () ;

TCW.mul (TDW, TCD);

HingeJoint joint = new HingeJoint (bodyA, bodyB, TCW, TDW);
mech.addBodyConnector (joint);

As an alternative to specifying Tpw or its equivalents, some joint types provide constructors that let the application
locate specific joint features. These may be easier to use in some cases. For instance, HingeJoint provides a constructor

HingeJoint (bodyA, bodyB, originD, zaxis)

that specifies origin of D and its z axis (which is the rotation axis), with the remaining orientation of D aligned as closely
as possible with the world. SphericalJoint provides a constructor

SphericalJoint (bodyA, bodyB, originD)

that specifies origin of D and aligns its orientation with the world. Users should consult the source code or API
documentation for specific joints to see what special constructors may be available.

Finally, it is possible to use joints to connect a single body to ground (by convention, this is the A body). Most joints
provide a constructor of the form
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XXXJoint (bodyA, TDW)

which allows this to be done explicitly. Alternatively, most joint constructors which supply body B will allow this to be
specified as null, so that body A will be connected to ground by default.

3.3.4 Working with coordinates

As mentioned in Section 3.3.2, some joints support coordinates that parameterize the valid motions within the joint
transform T¢p. All such joints are subclasses of JointBase, which provides some generic methods for querying and
setting coordinate values (JointBase is in turn a subclass of BodyConnector).

The number of coordinates is returned by the method numCoordinates () ; if this returns O, then coordinates are not
supported. Each coordinate has an index in the range 0...M — 1, where M is the number of coordinates. Coordinate
values can be queried or set using the following methods:

getCoordinate (int idx) // get coordinate value with index idx
getCoordinates (VectorNd coords) // get all coordinates values

setCoordinate (int idx, double value) // set coordinate value with index idx
setCoordinates (VectorNd values) // set all coordinates values

Similarly, there are methods for managing coordinate ranges:

// get/set range information for coordinate with index idx
DoubleInterval getCoordinateRange (int idx)

double getMinCoordinate (int idx)

double getMaxCoordinate (int idx)

void setCoordinateRange (idx, DoubleInterval rng)

// get/set range information in degrees for coordinate with index idx
DoubleInterval getCoordinateRangeDeg (int idx)

double getMinCoordinateDeg (int idx)

double getMaxCoordinateDeg (int idx)

void setCoordinateRangeDeg (idx, DoubleInterval rng)

Range checking can be disabled by setting the range to (— inf, inf), or by specifying rng as null, which implicitly does
the same thing.

Specific joint types usually also provide names for their joint coordinates, along with integer constants describing their
indices and methods for managing their ranges and values. For example, CylindricalJoint supports two coordinates, z
and 0, along with the following:

// coordinate indices
static final int Z_IDX = 0;
static final int THETA_IDX = 1;

// set/get z value and range

double getZ ()

void setZ (double z)

DoubleInterval getZRange ()

void setZRange (double min, double max)

// set/get theta value and range in degrees
double getTheta ()

volid setTheta (double theta)

DoubleInterval getThetaRange ()

void setThetaRange (double min, double max)
void setThetaRange (DoubleInterval rng)

The coordinate value and range information is also exported as the properties z, theta, zRange and thetaRange, allowing
them to be set in the GUI. For convenience, particularly in GUI applications, the properties and methods controlling the
value and range of angular coordinates generally use degrees instead of radians.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/JointBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/BodyConnector.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CylindricalJoint.html

As discussed in Section 3.3.2, unlike in some multibody simulation systems (such as OpenSim), joint coordinates are
not fundamental quantities that describe system state. As such, then, coordinates can usually only be set in specific
circumstances that avoid simulation conflicts. In general, when joint coordinates are set, the system adjusts the poses

of one or both bodies connected to this joint, along with adjacent bodies connected to them, with preference given to
bodies that are not attached to “ground”. However, if this is done during simulation, and particularly if one or both of the
bodies connected to the joint are moving dynamically, the results will be unpredictable and will likely conflict with the
simulation.

If a joint has been created with its default constructor and not yet attached to any bodies, then setting joint values will
simply set the joint transform T¢p. This can be useful in situations where one needs to initialize a joint’s T¢p to a
non-identity value corresponding to a particular set of joint coordinates:

RigidTransform3d TDW; // known location for D frame
double z, theta; // desired initial coordinate values

CylindricalJoint joint = new CylindricaldJdoint ();
joint.setZ (z);

joint.setTheta (thetaDeg);

joint.setBodies (bodyA, bodyB, TDW);

This can also be done in vector form:

RigidTransform3d TDW; // known location for D frame
VectorNd coordValues; // desired initial coordinate values

CylindricalJoint joint = new CylindricalJdoint ();
joint.setCoordinates (coordvValues);
joint.setBodies (bodyA, bodyB, TDW);

In either of these cases, setBodies () will not use Tcp = I but instead use the value determined by the initial coordinate
values.

To determine the T¢p corresponding to a particular set of coordinates, one may use the method

void coordinatesToTCD (RigidTransform3d TCD, VectorNd coords)

In some cases, within a model’s build () method, one may wish to set initial coordinates after a joint has been attached
to its bodies, in order to move those bodies (along with the bodies attached to them) into an initial configuration without
having to explicitly calculate the poses from the joint coordinates. As mentioned above, the system will make a decision
about which attached bodies are most “free” and adjust their poses accordingly. This is done in the example of the next
section.

3.3.5 Example: a simple hinge joint
A simple model showing two rigid bodies connected by a joint is defined in
artisynth.demos.tutorial.RigidBodyJoint

The build method for this model is given below:

1 public void build (String[] args) {

// create MechModel and add to RootModel
4 mech = new MechModel ("mech");
5 mech.setGravity (0, 0, -98);
6 mech.setFrameDamping (1.0);
7 mech.setRotaryDamping (4.0);
8 addModel (mech);

10 PolygonalMesh mesh; // bodies will be defined using a mesh

12 // create first body and set its pose
13 mesh = MeshFactory.createRoundedBox (lenxl, lenyl, lenzl, /*nslices=*/8);
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Figure 3.10: RigidBodyJoint model loaded into ArtiSynth.

RigidTransform3d TMB =

new RigidTransform3d (0, 0, 0, /*axisAng=*/1, 1, 1, 2*Math.PI/3);
mesh.transform (TMB);
bodyB = RigidBody.createFromMesh ("bodyB", mesh, /*density=*/0.2, 1.0);
bodyB.setPose (new RigidTransform3d (0, 0, 1.5*lenxl, 1, 0, 0, Math.PI/2));
bodyB.setDynamic (false);

create second body and set its pose
mesh = MeshFactory.createRoundedCylinder (
leny2/2, lenx2, /*nslices=*/16, /*nsegs=*/1, /*flatBottom=*/false);
mesh.transform (TMB);
bodyA = RigidBody.createFromMesh ("bodyA", mesh, 0.2, 1.0);
bodyA.setPose (new RigidTransform3d (
(lenxl+lenx2)/2, 0, 1.5*1lenx1, 1, 0, 0, Math.PI/2));

create the joint
RigidTransform3d TDW =

new RigidTransform3d (lenxl1/2, 0, 1.5*lenxl, 1, 0, 0, Math.PI/2);
HingeJoint joint = new HingeJoint (bodyA, bodyB, TIDW);

add components to the mech model
mech.addRigidBody (bodyB) ;
mech.addRigidBody (bodyA);
mech.addBodyConnector (joint);

joint.setTheta (35); // set joint position

set render properties for components
RenderProps.setFaceColor (joint, Color.BLUE);
joint.setShaftLength (4);
joint.setShaftRadius (0.2);

A MechModel is created as usual at line 4. However, in this example, we also set some parameters for it: setGravity()
is used to set the gravity acceleration vector to (0,0, —98)7 instead of the default value of (0,0,—9.8)7, and the
frameDamping and rotaryDamping properties (Section 3.2.6) are set to provide appropriate damping.

Each of the two rigid bodies are created from a mesh and a density. The meshes themselves are created using the factory
methods MeshFactory.createRoundedBox() and MeshFactory.createRoundedCylinder() (lines 13 and 22), and then
RigidBody.createFromMesh() is used to turn these into rigid bodies with a density of 0.2 (lines 17 and 25). The pose of
the two bodies is set using RigidTransform3d objects created with X, y, z translation and axis-angle orientation values
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(lines 18 and 26).

The hinge joint is implemented using HingeJoint, which is constructed at line 32 with the joint coordinate frame D being
located in world coordinates by TDW as described in Section 3.3.3.

Once the joint is created and added to the MechModel, the method setTheta() is used to explicitly set the joint parameter
to 35 degrees. The joint transform T¢p is then set appropriately and bodyA is moved to accommodate this (bodyA being
chosen since it is the most free to move).

Finally, joint rendering properties are set starting at line 42. We render the joint as a cylindrical shaft about the rotation
axis, using its shaftLength and shaftRadius properties. Joint rendering is discussed in more detail in Section 3.3.9).

To run this example in ArtiSynth, select All demos > tutorial > RigidBodyJoint from the Models menu. The model should
load and initially appear as in Figure 3.10. Running the model (Section 1.5.3) will cause body? to fall and swing under
gravity.

3.3.6 Constraint forces

During each simulation solve step, the joint velocity constraints described by (3.9) and (3.10) are enforced by bilateral

and unilateral constraint forces f, and f,:
f,=Gl1A;, f,=N]0,. (3.16)

Here, f, and f, are spatial forces (or wrenches, Section A.5) acting in the joint coordinate frame C, and A; and 6 are
the Lagrange multipliers computed as part of the mechanical system solve (see (1.6) and (1.8)). The sizes of A; and

0 equal the number of bilateral and engaged unilateral constraints in the joint; these numbers can be queried for a
particular joint using the methods numBilateralConstraints() and numEngagedUnilateralConstraints(). (The number of
engaged unilateral constraints may be less than the total number of unilateral constraints; the latter may be queried with
numUnilateralConstraints(), while the total number of constraints is returned by numConstraints().

Applications may sometimes need to query the current constraint force values, typically from within a controller or
monitor (Section 5.3). The Lagrange multipliers themselves may be obtained with

void getBilateralForces (VectorNd lam)

void getUnilateralForces (VectorNd the)

which load the multipliers into lam or the and set their sizes to the number of bilateral or engaged unilateral constraints.
Alternatively, one can retrieve the individual multiplier for the constraint indexed by idx using

double getConstraintForce (int idx);

Typically, it is more useful to find the spatial constraint forces f, and f,,, which can be obtained with respect to frame C:

// place the forces in the wrench f
void getBilateralForcesInC (Wrench f)
void getUnilateralForcesInC (Wrench f)

// convenience methods that allocate the wrench and return it
Wrench getBilateralForcesInC () ;
Wrench getUnilateralForcesInC ();

If the attached bodies A and B are rigid bodies, it is also possible to obtain the constraint wrenches experienced by those
bodies:

// place the forces in the wrench f

void getBilateralForcesInA (Wrench f)
void getUnilateralForcesInA (Wrench f)
void getBilateralForcesInB (Wrench f)
void getUnilateralForcesInB (Wrench f)

// convenience methods that allocate the wrench and return it
Wrench getBilateralForcesInA ();

Wrench getUnilateralForcesInA ();

Wrench getBilateralForcesInB () ;

Wrench getUnilateralForcesInB () ;
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Constraint wrenches obtained for bodies A or B are given in world coordinates, which is consistent with the forces
reported by rigid bodies via their getForce () method. To orient the forces into body coordinates, one may use the
inverse of the rotation matrix R of the body’s pose. For example:

RigidBody bodyA;

// ... body A initialized, etc.
Wrench force = joint.getBilateralForcelInA ();
force.inverseTransform (bodyA.getPose () .R);

3.3.7 Compliance and regularization

By default, the constraints used to implement joints and couplings are treated as hard, so that the system tries to respect
the constraint conditions (3.8) as exactly as possible as the simulation proceeds. Sometimes, however, it is desirable to
introduce some “softness” into the constraints, whereby constraint forces are determined as a linear function of their
distance from the constraint. Adding compliance also allows an application to regularize a system of joint constraints
that would otherwise be overconstrained, as illustrated in Section 3.3.8.

To describe compliance precisely, consider the bilateral constraint portion of the MLCP in (1.6), which solves for the
updated system velocities u**! at each time step:

1k _ T k+1 k_ pp
(5 6)()-(454)

Here G is the system’s bilateral constraint matrix, A denotes the constraint impulses (from which the constraint forces A
can be determined by A = A /h), and for simplicity we have assumed that G is constant and so the g term on the lower
right side is 0.

Solving (3.17) results in constraint forces that satisfy Gu**! = 0 precisely, corresponding to hard constraints. To
implement soft constraints, start by defining a function ¢ (q) that defines the distances from each constraint, where q is
the vector of system positions; these distances are the local translational and rotational deviations from each constraint’s
correct position and are discussed in more detail in Section 4.10.1. Then assume that the constraint forces are a linear
function of these distances:

A =—-C"¢(q), (3.18)

where C is a diagonal compliance matrix that is equivalent to an inverse stiffness matrix. We also note that ¢ will be
time varying, and that we can approximate its change between time steps as

O ok 1 ng" T with ¢ = GuktL (3.19)

Next, assume that in using (3.18) to determine A for a particular time step, we use the average value of ¢ over the step,
represented by ¢ = (¢k+1 + ¢k)/2. Substituting this and (3.19) into (3.18), multiplying by C, and rearranging yields:

2C

Gk+1
u +h

_ 2.
A=—Tok (3.20)

Then noting that 1= hA, we obtain a revised form of (3.17),

MF —GT Y [utt! Mu¥ — At
5 s )= % , (3.21)
G 2C/h A —2¢"/h
in the which the zeros in the matrix and right hand side have been replaced by compliance terms. The resulting con-
straint behavior is different from that of (3.17) in two important ways:

1. The joint now allows 6 DOF, with motion along the constrained directions limited by restoring spring constants
given by the reciprocals of the diagonal entries of C.

2. If C has no zero diagonal entries, then the system (3.21) is regularized by the 2C/h* term in the lower right matrix
block. This means that the matrix is always non-singular, even if G is rank deficient, and so compliance offers a
way to handle overconstrained models, as discussed further in Section 3.3.8.




Unilateral constraints can be regularized using the same approach, with a distance function defined such that ¢(q) < 0.

The reason for specifying soft constraints using compliance instead of stiffness is that by setting C = 0 we can easily
handle the case of infinite stiffness where the constraints are strictly enforced. The ArtiSynth compliance implementa-
tion uses a slightly more complex version of (3.21) that accounts for non-constant G and also allows for a damping term
—Dq}, where D is again a diagonal matrix. For more details, see [6] and [16].

When using compliance, damping is often needed for stability, and, in the case of unilateral constraints, to prevent
“bouncing”. A good choice for damping is usually critical damping, which is discussed further below.

Any joint which is a subclass of BodyConnector allows individual compliance values C; and damping values D; to be set
for each of the joint’s i constraints. These values comprise the diagonal entries in the compliance and damping matrices
C and D, and can be queried and set using the methods

VectorNd getCompliance ()
void setCompliance (VectorNd compliance)

VectorNd getDamping ()
void setCompliance (VectorNd damping)

The vectors supplied to the above set methods contain the requested compliance or damping values. If their size n is
less than numConstraints (), then compliance or damping will be set for the first n constraints. Damping for a specific
constraint only has an effect if the compliance for that constraint is nonzero.

What compliance and damping values should be specified? Compliance is usually relatively easy to figure out. Each of
the joint’s individual constraints i corresponds to a row in its bilateral constraint matrix Gy or unilateral constraint matrix
Nj, and represents a specific 6 DOF direction along which the spatial velocity ¥¢p (of frame C with respect to D) is
restricted (more details on this are given in Section 4.10.1). Each of these constraint directions is usually predominantly
linear or rotational; specific descriptions for the constraints of different joints are provided in Section 3.4. To determine
compliance for a constraint i, estimate the typical force f likely to act along its direction, decide how much displacement
d¢ (translational or rotational) along that constraint is desirable, and then set the compliance C; to the associated inverse
stiffness:

Ce=0q/f. (3.22)

Once Cy, is determined, the damping Dy can be estimated based on the desired damping ratio {, using the formula

Dy =28/MJC; (3.23)

where M is total mass of the bodies attached to the joint. Typically, the desired damping will be close to critical
damping, for which { = 1.

Constraints associated with linear motion will typically require different compliance values from those associated with
rotation. To make this process easier, joint components allow the setting of collective compliance values for their linear
and rotary constraints, using the methods

void setLinearCompliance (double c)
double getLinearCompliance ()

void setRotaryCompliance (double c)
double getRotaryCompliance ()

The set () methods will set a uniform compliance for all linear or rotary constraints, except for unilateral constraints
associated with coordinate limits. At the same time, they will also set an automatically computed critical damping
value. Likewise, the get () methods query these linear or rotary constraints for uniform compliance values (with the
corresponding critical damping), and return either that value, or -1 if it does not exist.

Most of the demonstration models for the joints described in Section 3.4 allow these linear and rotary compliance
settings to be adjusted interactively using a control panel, enabling users to experimentally gain a feel for their behavior.

To determine programmatically whether a particular constraint is linear or rotary, one can use the joint method

VectorNi getConstraintFlags ()

which returns a vector of information flags for all its constraints. Linear and rotary constraints are indicated by the flags
LINEAR and ROTARY, defined in RigidBodyConstraint.
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3.3.8 Example: an overconstrained linkage

Situations may occasionally arise in which a model is overconstrained, which means that the rows of the bilateral
constraint matrix G in (3.8) are not all linearly dependent, or in other words, G does not have full row rank. At present,
the ArtiSynth solver has difficultly handling overconstrained models, but these situations can often be handled by adding
a small amount of compliance to the constraints. (Overconstraining is not a problem with unilateral constraints N,
because of the way they are handled by the solver.)

One possible symptom of an overconstrained system is a error message in the application’s terminal output, such as
Pardiso: num perturbed pivots=12

Overconstraining frequently occurs in closed-chain linkages, involving loops in which a jointed sequence of links is
connected back on itself. Depending on how the constraints are configured and how redundant they are, the system may
still be able to move. A classical example is the four-bar linkage, a common version of which consists of four links,

or “bars”, arranged as a parallelogram and connected by hinge joints at the corners. One link is usually connected to
ground, and so the remaining three links together have 18 DOF, while the four hinge joints together remove 20 DOF,
overconstraining the system. However, the constraints are redundant in such as way that the linkage still actually has 1
DOF.

Figure 3.11: FourBarLinkage model, several steps into the simulation.

To model a four-bar in ArtiSynth presently requires adding compliance to the hinge joints. An example of this is defined
by the demo program

artisynth.demos.tutorial.FourBarLinkage

shown in Figure 3.11. The code for the build () method and a couple of supporting methods is given below:

* Create a link with a length of 1.0, width of 0.25, and specified depth
* and add it to the mech model. The parameters x, z, and deg specify the
* link’s position and orientation (in degrees) in the x-z plane.

6 protected RigidBody createLink (
MechModel mech, String name,
8 double depth, double x, double z, double deg) {
int nslices = 20; // num slices on the rounded mesh ends
10 PolygonalMesh mesh =
1 MeshFactory.createRoundedBox (1.0, 0.25, depth, nslices);
12 RigidBody body = RigidBody.createFromMesh (
13 name, mesh, /*density=*/1000.0, /*scale=*/1.0);
body.setPose (new RigidTransform3d (x, 0, z, 0, Math.toRadians (deg), 0));




15 mech.addRigidBody (body);
16 return body;

19 /**
20 * Create a hinge joint connecting one end of 1ink0 with the other end of
21 * 1linkl, and add it to the mech model.

2 *x/

23 protected HingeJoint createdoint (

24 MechModel mech, String name, RigidBody 1link0, RigidBody linkl) {

25 // easier to locate the link using TCA and TDB since we know where frames
2% // C and D are with respect the 1link0 and linkl

27 RigidTransform3d TCA = new RigidTransform3d (0, 0, 0.5, 0, 0, Math.PI/2);
28 RigidTransform3d TDB = new RigidTransform3d (0, 0, -0.5, 0, 0, Math.PI/2);

29 HingeJoint joint = new HingeJoint (l1ink0O, TCA, linkl, TDB);
30 joint.setName (name);
31 mech.addBodyConnector (joint);

32 // set joint render properties

33 joint.setAxisLength (0.4);

34 RenderProps.setLineRadius (joint, 0.03);

35 return joint;

36 }

37

38 public void build (String[] args) {

39 // create a mech model and set rigid body damping parameters
40 MechModel mech = new MechModel ("mech");

41 addModel (mech);

) mech.setFrameDamping (1.0);

43 mech.setRotaryDamping (4.0);

44

45 // create four ’bars’ from which to construct the linkage
46 RigidBody [] bars = new RigidBody [4];

47 bars[0] = createlLink (mech, "linkO", 0.2, -0.5, 0.0, 0);
48 bars[1] = createLink (mech, "link1", 0.3, 0.0, 0.5, 90);
49 bars[2] = createlLink (mech, "link2", 0.2, 0.5, 0.0, 180);
50 bars[3] = createlink (mech, "1link3", 0.3, 0.0, -0.5, 270);
51 // ground the left bar

52 bars [0].setDynamic (false);

54 // connect the bars using four hinge joints

55 HingeJoint [] joints = new HingedJoint [4];

56 joints[0] = createJoint (mech, "joint0", bars[0], bars[1l]);
57 joints[l] = createJoint (mech, "jointl", bars([l], bars[2]);
58 joints[2] = createJoint (mech, "joint2", bars([2], bars[3]);
59 joints[3] = createJoint (mech, "joint3", bars[3], bars[0]);
60

61 // Set uniform compliance and damping for all bilateral constraints,
6 // which are the first 5 constraints of each joint

63 VectorNd compliance = new VectorNd (5);

64 VectorNd damping = new VectorNd (5);

65 for (int 1=0; 1i<5; 1i++) {

66 compliance.set (i, 0.000001) ;

67 damping.set (i, 25000);

68 }

69 for (int i=0; i<joints.length; i++) {

70 joints[i].setCompliance (compliance);

71 joints[i].setDamping (damping);

Two helper methods are used to construct the model: createLink () (lines 6-17), and createJoint () (lines 23-36).
createlink () makes the individual rigid bodies used to build the linkage: a mesh is produced defining the body’s
shape (a box with rounded ends), and then passed to the RigidBody createFromMesh () method which creates the
body and sets its inertia according to a specified density. The body’s pose is then set so as to center it at (x,0,z) while
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rotating it about the y axis by the angle deg (in degrees). The completed body is then added to the MechModel mech and
returned.

The second helper method, createJoint (), connects two rigid bodies (1ink0 and 1ink1) together using a HingeJoint.
Because we know the location of the joint in body-relative coordinates, it is easier to create the joint using the trans-
forms T¢4 and Tpp instead of Tpw: Tea locates the joint at the top end of 1ink0, at (0,0,0.5), with the z axis parallel

to the body’s y axis, while Tpp similarly locates the joint at the bottom of 1ink1. After the joint is created and added to
the MechModel, its render properties are set so that its axis drawn as a blue cylinder.

The build () method itself begins by creating a MechModel and setting damping parameters for the rigid bodies

(lines 40-43). Next, createLink () is used to create and store the four links (lines 46-50), and the left bar is at-

tached to ground by making it non-dynamic (line 52). The links are then connected together using joints created by
createdJdoint () (lines 55-59). Finally, uniform compliance and damping values are set for each of the joint’s bilateral
constraints, using the setCompliance () and setDamping () methods (lines 63-72). Values are set for the first five
constraints, since for a HingeJoint these are the bilateral constraints. The compliance value of C = 10~% was found
experimentally to be low enough so as to not cause noticeable deflections in the joints. Given C and an average mass of
around M = 150 for each link pair, (3.23) suggests the damping factor of D = 25000. Note that for this example, very
similar settings could be achieved by simply calling

for (int 1i=0
joints[1i]
joints[i]

; i<joints.length; 1i++) {
.setLinearCompliance (0.000001) ;
.setRotaryCompliance (0.000001) ;

In principle, we only need to set compliance for the constraints that are redundant, but it can sometimes be difficult to
determine exactly which these are. Also, different values are often needed for linear and rotary constraints; that is not
necessary here because the links have unit length and so the linear and rotary units have similar scales.

3.3.9 Rendering joints

Most joints provide a means to render themselves in order to provide a graphical representation of their position
and configuration. Control over this is achieved by setting various properties in the joint component, including both
specialized properties and the standard render properties (Section 4.3) used by all renderable components.

All joints which are subclasses of JointBase support rendering of both their C and D coordinate frames, through the
properties drawFrameC, drawFrameD, and axisLength. The first two properties are of the type Renderer.AxisDrawStyle
(described in detail in Section 3.2.7), and can be set to LINE or ARROW to enable the coordinate axes to be drawn either as
lines or solid arrows. The axisLength property has type double and specifies the length with which the axes are drawn.
As with all properties, these properties can be set either in the GUI, or in code using accessor methods supplied by the
joint:

void setAxisLength (double 1)

double getAxisLength ()

void setDrawFrameC (AxisDrawStyle style)
(AxisDrawStyle getDrawFrameC ()

void setDrawFrameD (AxisDrawStyle style)
(AxisDrawStyle getDrawFrameD ()

Another pair of properties used by several joints is shaftLength and shaftRadius, which specify the length and radius
used to draw shaft or axis structures associated with the joint. These are rendered as solid cylinders, using the color
indicated by the faceColor rendering property. The default value of both properties is 0; if shaftLength is 0, then the
structures are not drawn, while if shaftRadius is 0, a default value proportional to shaftLength is used. For example, to
enable rendering of a blue shaft along the rotation axis of a hinge joint, one may use the code fragment

HingeJoint joint;

joint.setShaftLength (0.5); // set shaft dimensions
joint.setShaftRadius (0.05);
RenderProps.setFaceColor (joint, Color.BLUE); // set the color
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As another example, to enable rendering of a green ball about the center of a spherical joint, one may use the fragment

SphericalJoint joint;

joint.setJointRadius (0.02); // set the ball size
RenderProps.setFaceColor (joint, Color.GREEN); // set the color

Specific joints may define additional properties to control how they are rendered.

3.4 Joint components

ArtiSynth supplies a number of basic joints and connectors in the package artisynth.core.mechmodels, the most
common of which are described here.

Many of the descriptions are associated with a demonstration model, named XXXJointDemo, where XXX is the joint type.
These demos are located in the package artisynth.demos.mech, and can be loaded by selecting All demos > mech >
XXXJointDemo from the Models menu. When run, they can be interactively controlled, using either the pull tool (see the
section “Pull Manipulation” in the ArtiSynth User Interface Guide), or the interactive control panel. The control panel
allows the adjustment of coordinate values and ranges (if supported), some of the render properties, and the different
compliance and damping properties (Section 3.3.7). One can inspect the source code for each demo in its . java file
located in the folder <ARTISYNTH_HOME>/src/artisynth/demos/mech.

3.4.1 Hinge Joint

Figure 3.12: Coordinate frames (left) and demo model (right) for the hinge joint.

The HingeJoint (Figure 3.12) is a 1 DOF joint that constrains motion between frames C and D to a simple rotation about
the z axis of D. It implements six constraints and one coordinate 6 (Table 3.1), to which the joint transform T¢p is
related by

cos(@) —sin(6) 0 O
Tor — sin(6) cos() 0 O
L=l o 0 10
0 0 0 1

The value and ranges for 6 are exported by the properties theta and thetaRange, and the 6 coordinate index is defined
by the constant THETA_IDX. For rendering, the properties shaftLength and shaftRadius control the size of a shaft drawn
about the rotation axis, using the faceColor rendering property. A demo is provided by
artisynth.demos.mech.HingeJointDemo.

In addition to the standard constructors described in Section 3.3.3,

HingeJoint (bodyA, bodyB, originD, zaxis)

creates a hinge joint with a specified origin and z axis direction for frame D (in world coordinates), and frames C and D
coincident.
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Index | type/name | description
0 bilateral restricts translation along x
1 bilateral restricts translation along y
2 bilateral restricts translation along z
3 bilateral restricts rotation about x
4 bilateral restricts rotation about y
5 unilataral | enforces limits on 8
| 0 | 0 | counter-clockwise rotation of C about the z axis |

Table 3.1: Constraints (top) and coordinates (bottom) for the hinge joint.

3.4.2 Slider Joint

Figure 3.13: Coordinate frames (left) and demo model (right) for the slider joint.

The SliderJoint (Figure 3.13) is a 1 DOF joint that constrains motion between frames C and D to a simple translation
along the z axis of D. It implements six constraints and one coordinate z (Table 3.2), to which the joint transform T¢p is
related by

Tep =

SO O
O O = O
o = O O
—_n OO

The value and ranges for z are exported by the properties z and zRange, and the z coordinate index is defined by the con-
stant Z_IDX. For rendering, the properties shaftLength and shaftRadius control the size of a shaft drawn about the sliding
axis, using the faceColor rendering property. A demo is provided by artisynth.demos.mech.SliderJointDemo.

In addition to the standard constructors described in Section 3.3.3,

SliderJoint (bodyA, bodyB, originD, zaxis)

creates a slider joint with a specified origin and z axis direction for frame D (in world coordinates), and frames C and D
coincident.

Index | type/name | description

0 bilateral restricts translation along x

1 bilateral restricts translation along y

2 bilateral restricts rotation about x

3 bilateral restricts rotation about y

4 bilateral restricts rotation about z

5 unilataral | enforces limits on the z coordinate
| 0 | z | translation of C along the z axis

Table 3.2: Constraints (top) and coordinates (bottom) for the slider joint.
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Figure 3.14: Coordinate frames (left) and demo model (right) for the cylindrical joint.

3.4.3 Cylindrical Joint

The CylindricalJoint (Figure 3.14) is a 2 DOF joint that constrains motion between frames C and D to translation and
rotation along and about the z axis of D. It implements six constraints and two coordinates z and 8 (Table 3.3), to which
the joint transform T¢p is related by

cos(f) —sin(6) 0 O
Tor — sin(6) cos(8) 0 O
R 0 1z
0 0 0 1

The value and ranges for z and 6 are exported by the properties z, theta, zZRange and thetaRange, and the coordinate
indices are defined by the constants z_IDX and THETA_IDX. For rendering, the properties shaftLength and shaftRadius
control the size of a shaft drawn about the sliding/rotation axis, using the faceColor rendering property. A demo is
provided by artisynth.demos.mech.CylindricalJointDemo.

In addition to the standard constructors described in Section 3.3.3,
CylindricalJdoint (bodyA, bodyB, originD, zaxis)

creates a cylindrical joint with a specified origin and z axis direction for frame D (in world coordinates), and frames C
and D coincident.

Index | type/name | description

0 bilateral restricts translation along x

1 bilateral restricts translation along y

2 bilateral restricts rotation about x

3 bilateral restricts rotation about y

4 unilataral | enforces limits on the z coordinate
5 unilataral | enforces limits on the 8 coordinate
0 z translation of C along the z axis

1 0 rotation of C about the z axis

Table 3.3: Constraints (top) and coordinates (bottom) for the cylindrical joint.

3.4.4 Slotted Hinge Joint

The SlottedHingeJoint (Figure 3.15) is a 2 DOF joint that constrains motion between frames C and D to translation
along the x axis and rotation about the z axis of D. It implements six constraints and two coordinates x and 6 (Table 3.4),
to which the joint transform T¢p is related by

cos(6) —sin(0)
0

0 x

_ | sin(6) cos(6) 0 O
Ten = | ™ o Lo (3.24)

0 0 0 1
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Figure 3.15: Coordinate frames (left) and demo model (right) for the slotted hinge joint.

The value and ranges for x and 6 are exported by the properties x, theta, xRange and thetaRange, and the coor-
dinate indices are defined by the constants X_IDX and THETA_IDX. For rendering, the properties shaftLength and
shaftRadius control the size of a shaft drawn about the rotation axis, while slotWidth and slotDepth control the
width and depth of a slot drawn along the sliding (x) axis; both are drawn using the faceColor rendering prop-
erty. When rendering the slot, its bounds along the x axis are set to xRange by default. However, this may be
too large, particularly if xRange is unbounded. As an alternate, the property slotRange will be used instead if its
range (i.e., the upper bound minus the lower bound) exceeds 0. A demo of SlottedHingeJoint is provided by
artisynth.demos.mech.SlottedHingeJointDemo.

In addition to the standard constructors described in Section 3.3.3,

SlottedHingeJoint (bodyA, bodyB, originD, =zaxis)

creates a slotted hinge joint with a specified origin and z axis direction for frame D (in world coordinates), and frames C
and D coincident.

Index | type/name | description

0 bilateral restricts translation along y

1 bilateral restricts translation along z

2 bilateral restricts rotation about x

3 bilateral restricts rotation about y

4 unilataral | enforces limits on the x coordinate
5 unilataral | enforces limits on the 6 coordinate
0 X translation of C along the x axis

1 0 rotation of C about the z axis

Table 3.4: Constraints (top) and coordinates (bottom) for the slotted hinge joint.

3.4.5 Universal Joint

Index | type/name | description

0 bilateral restricts translation along x

1 bilateral restricts translation along y

2 bilateral restricts translation along z

3 bilateral restricts rotation about the final x axis of C

4 unilataral | enforces limits on the roll coordinate

5 unilataral | enforces limits on the pitch coordinate

0 0 (roll) first rotation of C about the z axis of D

1 ¢ (pitch) second rotation of C about the rotated y’ axis

Table 3.5: Constraints (top) and coordinates (bottom) for the universal joint.

The UniversallJoint (Figure 3.16) is a 2 DOF joint that allows C two rotational degrees of freedom with respect to D: a
roll rotation @ about D’s 7 axis, followed by a pitch rotation ¢ about the rotated y" axis. It implements six constraints and
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Figure 3.16: Coordinate frames (left) and demo model (right) for the universal joint.

the two coordinates 6 and ¢ (Table 3.5), to which the joint transform T¢p is related by

CoCyp —So CpSy 0

_ | %6Cy Co S9S¢ 0
TCD* —S5¢ 0 Co ol

0 0 0 1

where
cg =cos(0), sg =sin(0), cy =cos(9), sy =sin(@).

The value and ranges for 6 and ¢ are exported by the properties roll, pitch, rollRange and pitchRange, and the coor-
dinate indices are defined by the constants ROLL_IDX and PITCH_IDX. For rendering, the properties shaftLength and
shaftRadius control the size of shafts drawn about the roll and pitch axes, while jointRadius specifies the radius of

a ball drawn around the origin of D; both are drawn using the faceColor rendering property. A demo is provided by
artisynth.demos.mech.UniversalJointDemo.

3.4.6 Skewed Universal Joint

The SkewedUniversalJoint (Figure 3.17) is a version of the universal joint in which the pitch axis is skewed relative to
its nominal direction by an angle o.. More precisely, let x' and y’ be the x and y axes of C after the initial roll rotation.
For a regular universal joint, the pitch axis is y’, whereas for a skewed universal joint it is y rotated by a clockwise
about x’. The joint still has 2 DOF, but the space of allowed rotations is reduced.

Figure 3.17: Left: diagram for a skewed universal joint, showing the pitch axis (dotted line) skewed by an angle &
relative to its nominal direction along the y' axis. Right: demo model with skew angle of 30°.

The constraints and the coordinates are the same as for the universal joint, although the relationship between T¢p is now
more complicated. With cg, 59, ¢y, and sy defined as for the universal joint, Tcp is given by

cocp —SoSaSy —SeP —Sacesy calcesy —sasevy) O

50Co +CoSaSy o —SaseSy  Ca(sgSy+Sacevy) O
Ten = —cqgS : 2 +cie 01’
aso CaSaVe So T CaCo
0 0 0 1
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where
ca=cos(®), sg=sin(a), vy=1—cy, B=ck+sico.

Rendering is controlled using the properties shaftLength, shaftRadius and jointRadius in the same way as for the
UniversalJoint. A demo is provided by calling artisynth.demos.mech.UniversalJointDemo with the model
arguments -skew <angDeg>, where <angDeg> is the desired skew angle in degrees.

Constructors for skewed universal joints take the standard forms described in Section 3.3.3, with an additional argument
at the end indicating the skew angle:

SkewedUniveralJoint (bodyA, TCA, bodyB, TCB, skewAngle)
SkewedUniveralJoint (bodyA, bodyB, TDW, skewAngle)

SkewedUniveralJdoint (bodyA, bodyB, TCW, TDW, skewAngle)

In addition, the constructor

SkewedUniveralJdoint (bodyA, bodyB, originD, rollAxis, pitchAxis)

creates a skewed universal joint specifying the origin of frame D together with the directions of the roll and pitch axes
(in world coordinates). Frames C and D are coincident and the skew angle is inferred from the angle between the axes.

3.4.7 Gimbal Joint

Figure 3.18: Coordinate frames (left; rotation angles not shown) and demo model (right) for the gimbal joint.

The GimbalJoint (Figure 3.18) is a 3 DOF spherical joint that anchors the origins of C and D together but otherwise
allows C complete rotational freedom. The rotational degrees of freedom are parameterized by three roll-pitch-yaw
angles, denoted by 6, ¢, y, which define a rotation 6 about D’s 7 axis, followed by a second rotation ¢ about the rotated
y' axis, followed by a third rotation y about the final x” axis. It implements six constraints and the three coordinates
0,0,y (Table 3.6), to which the joint transform T¢p is related by

CeCyp CPSpSy —SeCy  CpSpCy + SoSy 0
SeCo SeSeSw + CoC S9S¢Cy — CoS 0
Tep = _9¢ 05¢3y T Coly  305¢Cy 9'4/0’
S¢ CoSy CoCy
0 0 1

where
cog =cos(0), sg =sin(0), cy = cos(), 5o =sin(), cy = cos(y), sy = sin(y).

The value and ranges for 0, ¢, y are exported by the properties roll, pitch, yaw, rollRange, pitchRange, and yawRange,
and the coordinate indices are defined by the constants ROLL_IDX, PITCH_IDX, and YAW_IDX. For rendering, the property
jointRadius specifies the radius of a ball drawn around the origin of D, using the faceColor rendering property. A demo is
provided by artisynth.demos.mech.GimbalJointDemo.

In addition to the standard constructors described in Section 3.3.3,

GimbalJoint (bodyA, bodyB, originD)
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creates a gimbal joint with a specified origin for frame D (in world coordinates), and frames C and D coincident and
world aligned.

The constraints implementing GimbalJoint are designed so that it is immune to gimbal lock, in which a degree of
freedom is lost when ¢ = 47 /2. However, the coordinate values themselves are not immune to this singularity,
and neither are the unilateral constraints which enforce limits on their values. Therefore, if coordinate limits are
implemented, the joint should be deployed so as try and avoid pitch values near +7/2.

Index | type/name | description

0 bilateral restricts translation along x

1 bilateral restricts translation along y

2 bilateral restricts translation along z

3 unilataral | enforces limits on the roll coordinate

4 unilataral | enforces limits on the pitch coordinate

5 unilataral | enforces limits on the yaw coordinate

0 0 (roll) first rotation of C about the z axis of D

1 ¢ (pitch) second rotation of C about the rotated y’ axis
2 v (yaw) third rotation of C about the final x” axis

Table 3.6: Constraints (top) and coordinates (bottom) for the gimbal joint.

3.4.8 Spherical Joint

Figure 3.19: Left: coordinate frames of the spherical joint, showing the tilt angle ¢ between the z axes of C and D.
Right: demo model for the spherical joint.

The SphericalJoint (Figure 3.19) is a 3 DOF spherical joint that, like GimbalJoint, anchors the origins of C and D
together but otherwise allows C complete rotational freedom. SphericalJoint does not implement any coordinates,
and so is conceptually more like a ball joint. However, it does provide two choices for limiting its rotation:

* A limit on the tilt angle ¢ between the z axes of D and C, such that

0 < Pmax- (3.25)
This is intended to emulate the limit imposed by a ball joint socket.

* A limit on the total rotation, defined as follows: Let (u, 8) be the axis-angle representation of the rotation matrix of
Tcp, normalized such that 8 > 0 and ||u|| = 1, and let ryax be a three-vector giving maximum rotation angles with x,
v, and z components. Then 6 is constrained by

0 < [|rmaxoul, (3.26)

where o denotes the element-wise product. If the components of rpax are set to a uniform value Oy,,x, this simplifies to
6 S Gmax-
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These limits can be enabled by setting the joint’s properties isTiltLimited and isRotationLimited, respectively, where
enabling one disables the other. The limit values @, and rp,x are managed using the properties maxTilt and maxRo-
tation, and setting either automatically enables tilt or rotation limiting, as appropriate. Finally, the tilt angle ¢ can

be queried using the (read-only) tilt property. For rendering, the property jointRadius specifies the radius of a ball
drawn around the origin of D, using the faceColor rendering property. A demo of the SphericalJoint is provided by
artisynth.demos.mech.SphericalJointDemo.

In addition to the standard constructors described in Section 3.3.3,

SphericalJdoint (bodyA, bodyB, originD)

creates a spherical joint with a specified origin for frame D (in world coordinates), and frames C and D coincident and
world aligned.

One should use the rotation limit with some caution, as the orientations which it prohibits can be somewhat hard to
predict, particularly when rpyax has non-uniform values.

Index | type/name | description

0 bilateral restricts translation along x

1 bilateral restricts translation along y

2 bilateral restricts translation along z

3 unilataral | enforces either the “tilt” or “rotation” limits

Table 3.7: Constraints for the spherical joint.

3.4.9 Planar Joint

Figure 3.20: Coordinate frames (left) and demo model (right) for the planar joint.

The PlanarJoint (Figure 3.20) is a 3 DOF joint that constrains C to translation in the x-y plane and rotation about the z
axis of D. It implements six constraints and three coordinates x, y and 0 (Table 3.8), to which the joint transform T¢p is
related by

Tep = 0 0

The value and ranges for x, y and 6 are exported by the properties X, y, theta, xRange, yRange and thetaRange, and
the coordinate indices are defined by the constants X_IDX, Y_IDX and THETA_IDX. A planar joint can be rendered as a
square centered on the origin of D, using face rendering properties and with a size given by the planeSize property. For
example,

PlanarJoint joint;

joint.setPlaneSize (5.0);
RenderProps.setFaceColor (joint, Color.LIGHT_GRAY);
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will cause joint to be drawn as a light grey square with size 5.0. The default value of planeSize is 0, so drawing

the plane is disabled by default. Also, the default faceStyle rendering property for PlanarConnector is set to
FRONT_AND_BACK, so that the plane (when drawn) can be seen from both sides. A shaft about the rotation axis can
also be drawn, as controlled by the properties shaftLength and shaftRadius and using the faceColor rendering property.
A demo is provided by artisynth.demos.mech.PlanarJointDemo.

In addition to the standard constructors described in Section 3.3.3,

PlanarJoint (bodyA, bodyB, originD, zaxis)

creates a planar joint with a specified origin and z axis direction for frame D (in world coordinates), and frames C and D
coincident.

Index | type/name | description

0 bilateral restricts translation along z

1 bilateral restricts rotation about x

2 bilateral restricts rotation about y

3 unilataral | enforces limits on the x coordinate

3 unilataral | enforces limits on the y coordinate

5 unilataral | enforces limits on the 6 coordinate
0 X translation of C along the x axis of D
1 y translation of C along the y axis of D
2 2] rotation of C about the z axis of D

Table 3.8: Constraints (top) and coordinates (bottom) for the planar joint.

3.4.10 Planar Translation Joint

Figure 3.21: Coordinate frames (left) and demo model (right) for the planar translation joint.

Index | type/name | description

0 bilateral restricts translation along z

1 bilateral restricts rotation about x

2 bilateral restricts rotation about y

3 bilateral restricts rotation about z

4 unilataral | enforces limits on the x coordinate

5 unilataral | enforces limits on the y coordinate

0 X translation of C along the x axis of D
1 y translation of C along the y axis of D

Table 3.9: Constraints (top) and coordinates (bottom) for the planar translation joint.

The PlanarTranslationJoint (Figure 3.21) is a 2 DOF joint that is the same as the planar joint without rotation: C is
restricted to translation in the x-y plane of D. It implements six constraints and two coordinates x and y (Table 3.9), to
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which the joint transform T¢p is related by

1 0 0 x
o1 0y
Teo=10 0 1 0
00 0 1

The value and ranges for x and y are exported by the properties X, y, xXRange and yRange, and the coordinate indices are
defined by the constants X_IDX and Y_IDX. A planar translation joint can be rendered as a square centered on the origin
of D, using face rendering properties and with a size given by the planeSize property, in the same way as described for
PlanarJoint. A demo is provided by artisynth.demos.mech.PlanarJointDemo.

In addition to the standard constructors described in Section 3.3.3,

PlanarTranslationJoint (bodyA, bodyB, originD, =zaxis)

creates a planar translation joint with a specified origin and z axis direction for frame D (in world coordinates), and
frames C and D coincident.

3.4.11 Solid Joint

The SolidJoint is a 0 DOF joint that rigidly constrains C to D. It implements six constraints and no coordinates (Table
3.10) and the resulting T¢p is the identity.

There aren’t normally many uses for solid joints. If one wishes to create a complex rigid body by joining together a
variety of shapes, this can be done more efficiently by making these shapes mesh components of a single rigid body
(Section 3.2.8).

Index | type/name | description

0 bilateral restricts translation along x
1 bilateral restricts translation along y
2 bilateral restricts translation along z
3 bilateral restricts rotation about x

4 bilateral restricts rotation about y

5 bilateral restricts rotation about z

Table 3.10: Constraints for the solid joint.

3.4.12 Planar Connector

Figure 3.22: Demo model for the planar connector, in which a corner point of a box is constrained to the x-y plane of D.
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Index | type/name description
0 bilateral or unilateral | restricts translation along z

Table 3.11: Constraints for the planar connector.

The PlanarConnector (Figure 3.22) is a 5 DOF connector that attaches the origin of C to the x-y plane of D. C is com-
pletely free to rotate, and to translate within the x-y plane. Only motion in the z direction is restricted. PlanarConnector
implements one constraint and has no coordinates (Table 3.11).

A PlanarConnector constrains a point on body A (located at the origin of C) to move within a plane on body B.
Several planar connectors can be employed to constrain body motions in more complicated ways, although one must

be careful to avoid overconstraining the system. The connector can also be configured to function unilaterally, via its
unilateral property, in which case the point is constrained to lie in the half-space defined by z > 0 with respect to D.
Several unilateral PlanarConnectors can therefore be used to implement a cheap and approximate collision mechanism
with fixed collision points.

When set to function unilaterally, overconstraining the system is not an issue because of the way in which Ar-
tiSynth solves unilateral constraints.

A planar connector can be rendered as a square centered on the origin of D, using face rendering properties and with a
size given by the planeSize property. The point attached to A can also be rendered using point rendering properties. For
example,

PlanarConnector connector;

connector.setPlaneSize (5.0);
RenderProps.setFaceColor (connector, Color.LIGHT_GRAY);
RenderProps.setSphericalPoints (connector, 0.1, Color.BLUE);

will cause connector to be drawn as a light grey square with size 5, and for the point on body A to be drawn as a blue
sphere with radius 0.1. The default value of planeSize is 0, so drawing the plane is disabled by default. Also, the default
faceStyle rendering property for PlanarConnector is set to FRONT_AND_BACK, so that the plane (when drawn) can be
seen from both sides.

Constructors for the PlanarConnector include

PlanarConnector (bodyA, pCA, bodyB, TDB)
PlanarConnector (bodyA, pCA, TDW)

PlanarConnector (bodyA, bodyA, TDW)

where pCA gives the connection point of body A with respect to frame A, TDB gives the transform from frame D to frame
B, and TDW gives the transform from frame D to world.

3.4.13 Segmented Planar Connector

Index | type/name description
0 bilateral or unilateral | restricts translation normal to the surface

Table 3.12: Constraints for the segmented planar connector.

The SegmentedPlanarConnector (Figure 3.23) is a 5 DOF connector that generalizes P1lanarConnector to a piecewise
linear surface, to which the origin of C is constrained while C is otherwise completely free to rotate. The surface is
specified by a sequence of 2D points defining a piecewise linear curve in the x-z plane of D (Figure 3.23, left). This
curve does not need to be a function; the segment nearest to C is the one used to enforce the constraint at any given time.
The surface has infinite extent and is extrapolated beyond the first and last segments. It implements one constraint and
has no coordinates (Table 3.12).
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Figure 3.23: Left: cross-section in the x-z plane of frame D showing the segments of a segmented planar connector, with
the points defining the segments shown as black dots. Right: demo model for the segmented planar connector.

By appropriate choice of segments, a SegmentedPlanarConnector can approximate any surface defined by a curve in
the x-z plane. As with PlanarConnector, it can also be configured as unilateral, constraining the origin of C to lie on
the side of the surface defined by the normal vectors n; of each segment k. If p;_; and p; are the points in the x-z plane
defining the k-th segment, and § is the y axis unit vector, then n; is given by

uxy
W= w=p . (3.27)
[Ju> gl

The properties controlling the rendering of a segmented planar connector are the same as for a planar connector, with

each of the individual plane segments drawn as a rectangle whose length along the y axis is controlled by planeSize.

Constructors for a SegmentedPlanarConnector are analogous to those used for PlanarConnector,
SegmentedPlanarConnector (bodyA, pCA, bodyB, TDB, segs)

SegmentedPlanarConnector (bodyA, pCA, TDW, segs)

SegmentedPlanarConnector (bodyA, bodyA, TDW, segs)

where segs is an additional argument of type double[] giving the 2D coordinates defining the segments in the x-z
plane.

3.4.14 Legacy Joints

ArtiSynth maintains three legacy joint for compatibility with earlier software:

* RevoluteJoint is identical to the HingeJoint, except that its coordinate 0 is oriented clockwise about the z axis instead
of counter-clockwise. Rendering is also done differently, with shafts about the rotation axis drawn using line rendering
properties.

* RollPitchJoint is identical to the UniversalJoint, except that its roll-pitch coordinates 0, ¢ are computed with respect
to the rotation Rp¢ from frame D to C, instead of the rotation R¢p from frame C to D. Rendering is also done
differently, with shafts along the roll and pitch axes drawn using line rendering properties, and the ball around the
origin of D drawn using point rendering properties.

» SphericalRpyJoint is identical to the GimbalJoint, except that its roll-pitch-yaw coordinates 6, ¢, y are computed with
respect to the rotation Rp¢ from frame D to C, instead of the rotation R¢p from frame C to D. Rendering is also done
differently, with the ball around the origin of D drawn using point rendering properties.

3.5 Frame springs

Another way to connect two rigid bodies together is to use a frame spring, which is a six dimensional spring that
generates restoring forces and moments between coordinate frames.
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3.5.1 Frame spring coordinate frames

C D

Figure 3.24: A frame spring connecting two coordinate frames D and C.

The basic idea of a frame spring is shown in Figure 3.24. It generates restoring forces and moments on two frames C
and D which are a function of Tp¢ and Vpe (the spatial velocity of frame D with respect to frame C).

Decomposing forces into stiffness and damping terms, the force fc and moment 7¢ acting on C can be expressed as

fc =1 (Tpc) +£4(Ync)

¢ = T(Tpc) + ta(Vpe). (3.28)
where the translational and rotational forces £, f;, 7¢, and 7, are general functions of Tp¢ and Vpc.
The forces acting on D are equal and opposite, so that

fD = 7fC7
Tp = —TcC. (3.29)

Figure 3.25: A frame spring connecting two rigid bodies A and B.

If frames C and D are attached to a pair of rigid bodies A and B, then a frame spring can be used to connect them in a
manner analogous to a joint. As with joints, C and D generally do not coincide with the body frames, and are instead
offset from them by fixed transforms T¢4 and Tpp (Figure 3.25).

3.5.2 Frame materials

The restoring forces (3.28) generated in a frame spring depend on the frame material associated with the spring. Frame
materials are defined in the package artisynth.core.materials, and are subclassed from FrameMaterial. The most
basic type of material is a LinearFrameMaterial, in which the restoring forces are determined from

fc = Kixpc+Drvpe

tc =K, 8pc + D, opc
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where 0 p¢ gives the small angle approximation of the rotational components of Xpc with respect to the x, y, and z axes,
and

ke O 0 dy 0 0

K=[0 k, 0|, D=[0 4, 0],
0 0 ke 0 0 d.
ke O 0 de 0 0

K,=|0 ky 0|, D,=[0 dy 0
0 0 ke 0 0 d.

are the stiffness and damping matrices. The diagonal values defining each matrix are stored in the 3-dimensional vectors
k;, k;, d;, and d, which are exposed as the stiffness, rotaryStiffness, damping, and rotaryDamping properties
of the material. Each of these specifies stiffness or damping values along or about a particular axis. Specifying different
values for different axes will result in anisotropic behavior.

Other frame materials offering nonlinear behavior may be defined in artisynth.core.materials.

3.5.3 Creating frame springs

Frame springs are implemented by the class FrameSpring. Creating a frame spring generally involves instantiating this
class, and then setting the material, the bodies A and B, and the transforms T¢4 and Tpp.

A typical construction sequence might look like this:

FrameSpring spring = new FrameSpring ("springA");
spring.setMaterial (new LinearFrameMaterial (kt, kr, dt, dr));
spring.setFrames (bodyA, bodyB, TDW);

The material is set using setMaterial(). The example above uses a LinearFrameMaterial, created with a constructor
that sets k;, k,, d;, and d, to uniform Isotropic values specified by kt, kr, dt, and dr.

The bodies and transforms can be set in the same manner as for joints (Section 3.3.3), with the methods
setFrames(bodyA,bodyB,TDW) and setFrames(bodyA,TCA,bodyB,TDB) assuming the role of the setBodies ()
methods used for joints. The former takes D specified in world coordinates and computes T¢4 and Tpp assuming that
there is no initial spring displacement (i.e., that Tpc = I), while the latter allows Tc4 and Tpp to be specified explicitly
with Tpe assuming whatever value is implied.

Frame springs and joints are often placed together, using the same transforms Tc4 and Tpp, with the spring providing
restoring forces to help keep the joint within prescribed bounds.

As with joints, a frame spring can be connected to only a single body, by specifying frameB as null. Frame B is then
taken to be the world coordinate frame W.

3.5.4 Example: two bodies connected by a frame spring

A simple model showing two simplified lumbar vertebrae, modeled as rigid bodies and connected by a frame spring, is
defined in

artisynth.demos.tutorial.LumbarFrameSpring

The definition for the entire model class is shown here:

i package artisynth.demos.tutorial;

3 import java.io.IOException;

4+ lmport java.io.File;

s import java.awt.Color;

6 import artisynth.core.modelbase.*;

7 import artisynth.core.mechmodels.*;

s import artisynth.core.materials.*;

v import artisynth.core.workspace.RootModel;
0 import maspack.matrix.*;
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import maspack.
import maspack.
import maspack.

/% *
* Demo of two

* /
/

Figure 3.26: LumbarFrameSpring model loaded into ArtiSynth.

geometry.*;
render.*;
util.PathFinder;

rigid bodies connected by a 6 DOF frame spring

double density = 1500;

// path from
private String geometryDir

¢ public class LumbarFrameSpring extends RootModel {

which meshes will be read

LumbarFrameSpring.class,

// create and add a rigid body
public RigidBody addBone

PathFinder.getSourceRelativePath (
../mech/geometry/");

from a mesh

(MechModel mech, String name) throws IOException
PolygonalMesh mesh = new PolygonalMesh (new File (geometryDir+name+".obj"));
/*scale=*/1);

RigidBody rb = RigidBody.createFromMesh (name, mesh, density,
mech.addRigidBody (zrb);
return rb;

public void build (String[]

args) throws IOException {

// create mech model and set it’s properties

MechModel mech = new MechModel ("mech");
mech.setGravity (0, 0, -1.0);
mech.setFrameDamping (0.10);

(0.001) ;

mech.setRotaryDamping
addModel

// create two
RigidBody lumbarl = addBone
RigidBody lumbar2 = addBone
lumbarl.setPose
lumbar2.setDynamic

(mech) ;

rigid bodies

and second one to be fixed
(mech, "lumbarl");
(mech, "lumbar2");

(new RigidTransform3d (-0.016, 0.039, 0));
(false);

// flip entire mech model around

mech.transformGeometry (
new RigidTransform3d

0, 0, 0, 0, Math.toRadians (90)));
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53 //create and add the frame spring
54 FrameSpring spring = new FrameSpring (null);
spring.setMaterial (
56 new LinearFrameMaterial (
57 /*ktrans=*/100, /*krot=*/0.01, /*dtrans=*/0, /*drot=*/0));
58 spring.setFrames (lumbarl, lumbar2, lumbarl.getPose());
59 mech.addFrameSpring (spring);

61 // set render properties for components

62 RenderProps.setlLineColor (spring, Color.RED);

63 RenderProps.setLineWidth (spring, 3);

64 spring.setAxisLength (0.02);

65 RenderProps.setFaceColor (mech, new Color (238, 232, 170)); // bone color

For convenience, the code to create and add each vertebrae is wrapped into the method addBone () defined at lines
27-32. This method takes two arguments: the MechModel to which the bone should be added, and the name of the
bone. Surface meshes for the bones are located in . ob7 files located in the directory . . /mech/geometry relative
to the source directory for the model itself. PathFinder.getSourceRelativePath() is used to find a proper path to this
directory (see Section 2.6) given the model class type (LumbarFrameSpring.class), and this is stored in the static
string geometryDir. Within addBone (), the directory path and the bone name are used to create a path to the bone
mesh itself, which is in turn used to create a PolygonalMesh (line 28). The mesh is then used in conjunction with a
density to create a rigid body which is added to the MechModel (lines 29-30) and returned.

The build () method begins by creating and adding a MechModel, specifying a low value for gravity, and setting the
rigid body damping properties frameDamping and rotaryDamping (lines 37-41). (The damping parameters are needed
here because the frame spring itself is created with no damping.) Rigid bodies representing the vertebrae lumbarl and
lumbar? are then created by calling addBone () (lines 44-45), lumbarl is translated by setting the origin of its pose to
(—0.016,0.039,0)7, and 1umbar? is set to be fixed by making it non-dynamic (line 47).

Figure 3.27: LumbarFrameSpring model as it would appear if not rotated about the x axis.

At this point in the construction, if the model were to be loaded, it would appear as in Figure 3.27. To change the
viewpoint to that seen in Figure 3.26, we rotate the entire model about the x axis (line 50). This is done using
transformGeometry(X), which transforms the geometry of an entire model using a rigid or affine transform. This
method is described in more detail in Section 4.8.

The frame spring is created and added at lines 54-59, using the methods described in Section 3.5.3, with frame D set to
the (initial) pose of lumbarl.

Render properties are set starting at line 62. By default, a frame spring renders as a pair of red, green, blue coordinate
axes showing frames C and D, along with a line connecting them. The line width and the color of the connecting line are
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controlled by the line render properties 1inelWidth and 1ineColor, while the length of the coordinate axes is controlled
by the special frame spring property axisLength.

To run this example in ArtiSynth, select All demos > tutorial > LumbarFrameSpring from the Models menu. The model
should load and initially appear as in Figure 3.26. Running the model (Section 1.5.3) will cause lumbarl to fall slightly
under gravity until the frame spring arrests the motion. To get a sense of the spring’s behavior, one can interactively
apply forces to Lumbarl using the pull tool (see the section “Pull Manipulation” in the ArtiSynth User Interface Guide).

3.6 Attachments

ArtiSynth provides the ability to rigidly attach dynamic components to other dynamic components, allowing different
parts of a model to be connected together. Attachments are made by adding to a MechModel special attachment
components that manage the attachment physics as described briefly in Section 1.2.

3.6.1 Point attachments

Point attachments allow particles and other point-based components to be attached to other, more complex components,
such as frames, rigid bodies, or finite element models (Section 6.4). Point attachments are implemented by creating
attachment components that are instances of PointAttachment. Modeling applications do not generally handle the
attachment components directly, but instead create them implicitly using the following MechModel method:

attachPoint (Point pl, PointAttachable comp) ;

This attaches a point p1 to any component which implements the interface PointAttachable, indicating that it is capable
creating an attachment to a point. Components that implement PointAttachable currently include rigid bodies,
particles, and finite element models. The attachment is created based on the the current position of the point and
component in question. For attaching a point to a rigid body, another method may be used:

attachPoint (Point pl, RigidBody body, Point3d loc);

This attaches p1l to body at the point 1oc specified in body coordinates. Finite element attachments are discussed in
Section 6.4.

Once a point is attached, it will be in the attached state, as described in Section 3.1.3. Attachments can be removed by
calling

detachPoint (Point pl);

3.6.2 Example: model with particle attachments

A model illustrating particle-particle and particle-rigid body attachments is defined in
artisynth.demos.tutorial.ParticleAttachment

and most of the code is shown here:

1 public Particle addParticle (MechModel mech, double x, double y, double z) {
2 // create a particle at x, y, z and add it to mech
; Particle p = new Particle (/*name=*/null, /*mass=*/.1, x, y, 2z);
4 mech.addParticle (p);
return p;

8 public AxialSpring addSpring (MechModel mech, Particle pl, Particle p2) {
9 // create a spring connecting pl and p2 and add it to mech

10 AxialSpring spr = new AxialSpring (/*name=*/null, /*restLength=*/0);
0 spr.setMaterial (new LinearAxialMaterial (/*k=*/20, /*d=*/10));

12 spr.setPoints (pl, p2);

13 mech.addAxialSpring (spr);
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1 return spr;

i public void build

19 // create
( MechModel mech
)1 addModel (mech

create the

Particle pl
Particle p2
Particle p3

27 Particle p4
addSpring
addSpring
'/ create
31 RigidBody

box
box

RigidBody.createBox
(new RigidTransform3d

box.setPose
mech.addRigidB

pl.setDynamic
set

mech.attachPoi
mech.attachPoi

up the

increase
mech.setBounds
' // set render

MechModel
new MechModel

(mech,
(mech,

Figure 3.28: ParticleAttachment model loaded into ArtiSynth.

(String|[]

and

)i

components

addParticle
addParticle
addParticle
addParticle
pl, p2);
p3, p4);
and set its

(u

RenderProps.setSphericalPoints

args) |
dd to RootModel
("mech");
(mech, 0, 0, 0.55);
(mech, 0.1, 0, 0.35);
(mech, 0.1, 0, 0.35);
(mech, 0, 0, 0.15);
pose (position/orientation):

0.3,
0,

*wx,wy,wz=*/0.5, /*density=*/20) ;

(/*x,y,z=*/0.2,

box™", 0.3,
)

0));

ody (box) ;

(false); // first particle set to be fixed

attachments

nt (p2, p3);

nt (p4, box, new Point3d (0, 0, 0.15));

model bounding box for the viewer
(/*min=*/-0.5, 0, -0.5, /*max=*/0.5, 0, 0);
properties for the components
(mech, 0.06, Color.RED);

RenderProps.setCylindricalLines (mech, 0.02, Color.BLUE);

The code is very similar to ParticleSpring and RigidBodySpring described in Sections 3.1.2 and 3.2.2, except that
two convenience methods, addParticle () and addSpring (), are defined at lines 1-15 to create particles and spring
and add them to a MechModel. These are used in the build () method to create four particles and two springs (lines
24-29), along with a rigid body box (lines 31-34). As with the other examples, particle p1l is set to be non-dynamic (line
36) in order to fix it in place and provide a ground.




The attachments are added at lines 39-40, with p2 attached to p3 and p4 connected to the box at the location (0,0,0.15)
in box coordinates.

Finally, render properties are set starting at line 43. In this example, point and line render properties are set for the
entire MechModel instead of individual components. Since render properties are inherited, this will implicitly set the
specified render properties in all sub-components for which these properties are not explicitly set (either locally or in an
intermediate ancestor).

To run this example in ArtiSynth, select All demos > tutorial > ParticleAttachment from the Models menu. The model
should load and initially appear as in Figure 3.28. Running the model (Section 1.5.3) will cause the box to fall and
swing under gravity.

3.6.3 Frame attachments

Frame attachments allow rigid bodies and other frame-based components to be attached to other components, including
frames, rigid bodies, or finite element models (Section 6.6). Frame attachments are implemented by creating attachment
components that are instances of FrameAttachment.

As with point attachments, modeling applications do not generally handle frame attachment components directly, but
instead create and add them implicitly using the following MechModel methods:

attachFrame (Frame frame, FrameAttachable comp);

attachFrame (Frame frame, FrameAttachable comp, RigidTransform3d TFW);

These attach frame to any component which implements the interface FrameAttachable, indicating that it is capable

of creating an attachment to a frame. Components that implement FrameAttachable currently include frames, rigid
bodies, and finite element models. For the first method, the attachment is created based on the the current position of the
frame and component in question. For the second method, the attachment is created so that the initial pose of the frame
(in world coordinates) is described by TFW.

Once a frame is attached, it will be in the attached state, as described in Section 3.1.3. Frame attachments can be
removed by calling

detachFrame (Frame frame);

While it is possible to create composite rigid bodies using FrameAttachments, this is much less computationally
efficient (and less accurate) than creating a single rigid body through mesh merging or similar techniques.

3.6.4 Example: model with frame attachments
A model illustrating rigidBody-rigidBody and frame-rigidBody attachments is defined in
artisynth.demos.tutorial.FrameBodyAttachment

Most of the code is identical to that for RigidBodyJoint as described in Section 3.3.5, except that the joint is further to
the left and connects bodyB to ground, rather than to bodya, and the initial pose of bodyA is changed so that it is aligned
vertically. bodyA is then connected to bodyB, and an auxiliary frame is created and attached to body2, using code at the
end of the build () method as shown here:

1 public void build (String[] args) {

create model mostly similar to RigidBodyJoint

// now connect bodyA to bodyB using a FrameAttachment
6 mech.attachFrame (bodyA, bodyB);

8 // create an auxiliary frame and add it to the mech model
9 Frame frame = new Frame () ;
10 mech.addFrame (frame);



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/FrameAttachment.html
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Figure 3.29: FrameBodyAttachment model loaded into ArtiSynth.

12 // set the frames axis length > 0 so we can see it

13 frame.setAxisLength (4.0);

I // set the attached frame’s pose to that of bodyA

15 RigidTransform3d TFW = new RigidTransform3d (bodyA.getPose());
17 < plus a translation of lenx2/2 along the x axis:

TFW.mulXyz (lenx2/2, 0, 0);

18 // finally, attach the frame to bod

19 mech.attachFrame (frame, bodyA, TFW

To run this example in ArtiSynth, select All demos > tutorial > FrameBodyAttachment from the Models menu. The model
should load and initially appear as in Figure 3.28. The frame attached to bodyA is visible in the lower right corner.
Running the model (Section 1.5.3) will cause both bodies to fall and swing about the joint under gravity.
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Chapter 4

Mechanical Models lI

This section provides additional material on building basic multibody-type mechanical models.

4.1 Simulation control properties

Both RootModel and MechModel contain properties that control the simulation behavior.

4.1.1 maxStepSize

One of the most important of these is maxStepSize. By default, simulation proceeds using the maxStepSize value
defined for the root model. A MechModel (or any other type of Model) contained in the root model’s models list may
also request a smaller step size by specifying a smaller value for its own maxStepSize property. For all models, the
maxStepSize may be set and queried using

void setMaxStepSize (double maxh);
double getMaxStepSize () ;

4.1.2 integrator

Another important simulation property is integrator in MechModel, which determines the type of integrator used for
the physics simulation. The value type of this property is the enumerated type MechSystemSolver. Integrator, for
which the following values are currently defined:

ForwardEuler

First order forward Euler integrator. Unstable for stiff systems.

SymplecticEuler

First order symplectic Euler integrator, more energy conserving that forward Euler. Unstable for stiff systems.

RungeKutta4

Fourth order Runge-Kutta integrator, quite accurate but also unstable for stiff systems.

ConstrainedBackwardEuler

First order backward order integrator. Generally stable for stiff systems.

Trapezoidal

Second order trapezoidal integrator. Generally stable for stiff systems, but slightly less so than
ConstrainedBackwardEuler.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html
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The term “Unstable for stiff systems” means that the integrator is likely to go unstable in the presence of “stiff” systems,
which typically include systems containing finite element models, unless the simulation step size is set to an extremely
small value. The default value for integrator is ConstrainedBackwardEuler.

Stiff systems tend to arise in models containing interconnected deformable elements, for which the step size should
not exceed the propagation time across the smallest element, an effect known as the Courant-Friedrichs-Lewy
(CFL) condition. Larger stiffness and damping values decrease the propagation time and hence the allowable step
size.

4.1.3 stabilization

Another MechModel simulation property is stabilization, which controls the stabilization method used to correct
drift from position constraints and correct interpenetrations due to collisions. The value type of this property value is the
enumerated type MechSystemSolver.PosStabilization, which presently has two values:

GlobalMass

Uses only a diagonal mass matrix for the MLCP that is solved to determine the position corrections. This is the
default method.

GlobalStiffness

Uses a stiffness-corrected mass matrix for the MLCP that is solved to determine the position corrections. Slower
than GlobalMass, but more likely to produce stable results, particularly for problems involving FEM collisions.

4.2 Units

ArtiSynth is primarily “unitless”, in the sense that it does not define default units for the fundamental physical quantities
of time, length, and mass. Although time is generally understood to be in seconds, and often declared as such in method
arguments and return values, there is no hard requirement that it be interpreted as seconds. There are no assumptions at
all regarding length and mass. Some components may have default parameter values that reflect a particular choice of
units, such as MechModel’s default gravity value of (0,0, —9.8)7, which is associated with the MKS system, but these
values can always be overridden by the application.

Nevertheless, it is important, and up to the application developer to ensure, that units be consistent. For example, if one
decides to switch length units from meters to centimeters (a common choice), then all units involving length will have
to be scaled appropriately. For example, density, whose fundamental units are m/d>, where m is mass and d is distance,
needs to be scaled by 1/ 1003, or 0.000001, when converting from meters to centimeters.

Table 4.1 lists a number of common physical quantities used in ArtiSynth, along with their associated fundamental units.

4.2.1 Scaling units
For convenience, many ArtiSynth components, including MechModel, implement the interface ScalableUnits, which
provides the following methods for scaling mass and distance units:

scaleDistance (s); // scale distance units by s
scaleMass (s); // scale mass units by s

A call to one of these methods should cause all physical quantities within the component (and its descendants) to be
scaled as required by the fundamental unit relationships as shown in Table 4.1.

Converting a MechModel from meters to centimeters can therefore be easily done by calling

mech.scaleDistance (100);

As an example, adding the following code to the end of the build () method in RigidBodySpring (Section 3.2.2)
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unit fundamental units
time t
distance d
mass m
velocity d/t
acceleration d/t?
force md /t?
work/energy md?/t?
torque md? /t? same as energy (somewhat counter intuitive)
angular velocity 1/t
angular acceleration  1/¢?
rotational inertia md?
pressure m/(dt?)
Young’s modulus m/(dt?)
Poisson’s ratio 1 no units; it is a ratio
density m/d?
linear stiffness m/t?
linear damping m/t
rotary stiffness md?/t? same as torque
rotary damping md> /t
mass damping 1/t used in FemModel
stiffness damping t used in FemModel

Table 4.1: Physical quantities and their representation in terms of the fundamental units of mass (m), distance (d), and

time (t).

System. (
System. (
System. (
mech.scaleDistance (
System.out.println ("");
System. (
System. (

(

System.

out .println
out.println
out.println

out.println
out .println
out.println

"length=" + spring.getLength());
"density=" + box.getDensity ());
"gravity=" + mech.getGravity());

)i

"scaled length=" + spring.getLength());
"scaled density=" + box.getDensity ());
"scaled gravity=" + mech.getGravity());

will scale the distance units by 100 and print the values of various quantities before and after scaling. The resulting

output is:

length=

0.5

density=20.0
gravity=0.0 0.0 -9.8

scaled
scaled
scaled

length=50.0
density=2.0E-5
gravity=0.0 0.0

-980.0

It is important not to confuse scaling units with scaling the actual geometry or mass. Scaling units should change
all physical quantities so that the simulated behavior of the model remains unchanged. If the distance-scaled
version of RigidBodySpring shown above is run, it should behave exactly the same as the non-scaled version.

4.3 Render properties

All ArtiSynth components that are renderable maintain a property renderProps, which stores a RenderProps object that
contains a number of subproperties used to control an object’s rendered appearance.

In code, the renderProps property for an object can be set or queried using the methods
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property purpose usual default value
visible whether or not the component is visible true
alpha transparency for diffuse colors (range O to 1) 1 (opaque)
shading shading style: (FLAT, SMOOTH, METAL, NONE) FLAT
shininess shininess parameter (range O to 128) 32
specular specular color components null
faceStyle which polygonal faces are drawn (FRONT, BACK, FRONT_AND_BACK, NONE) ~ FRONT
faceColor diffuse color for drawing faces GRAY
backColor diffuse color used for the backs of faces. If null, faceColor is used. null
drawEdges  hint that polygon edges should be drawn explicitly false
colorMap color mapping properties (see Section 4.3.3) null
normalMap  normal mapping properties (see Section 4.3.3) null
bumpMap bump mapping properties (see Section 4.3.3) null
edgeColor diffuse color for edges null
edgeWidth  edge width in pixels 1
lineStyle: how lines are drawn (CYLINDER, LINE, or SPINDLE) LINE
lineColor diffuse color for lines GRAY
lineWidth width in pixels when LINE style is selected 1
lineRadius radius when CYLINDER or SPINDLE style is selected 1
pointStyle how points are drawn (SPHERE or POINT) POINT
pointColor  diffuse color for points GRAY
pointSize point size in pixels when POINT style is selected 1
pointRadius  sphere radius when SPHERE style is selected 1

Table 4.2: Render properties and their default values.

setRenderProps (RenderProps props);
RenderProps getRenderProps () ;

// set render properties

// get render properties (read-only)

Render properties can also be set in the GUI by selecting one or more components and the choosing Set render props ...
in the right-click context menu. More details on setting render properties through the GUI can be found in the section
“Render properties” in the ArtiSynth User Interface Guide.

For many components, the default value of renderProps is null;i.e., no RenderProps object is assigned by default
and render properties are instead inherited from ancestor components further up the hierarchy. The reason for this is
because RenderProps objects are fairly large (many kilobytes), and so assigning a unique one to every component
could consume too much memory. Even when a RenderProps object is assigned, most of its properties are inherited by
default, and so only those properties which are explicitly set will differ from those specified in ancestor components.

4.3.1 Render property taxonomy

In general, the properties in RenderProps are used to control the color, size, and style of the three primary rendering
primitives: faces, lines, and points. Table 4.2 contains a complete list. Values for the shading, faceStyle, lineStyle
and pointStyle properties are defined using the following enumerated types: Renderer.Shading, Renderer.FaceStyle,
Renderer.PointStyle, and Renderer.LineStyle. Colors are specified using java.awt.Color.

To increase and improve their visibility, both the line and point primitives are associated with styles (CYLINDER,
SPINDLE, and SPHERE) that allow them to be rendered using 3D surface geometry.

Exactly how a component interprets its render properties is up to the component (and more specifically, up to the
rendering method for that component). Not all render properties are relevant to all components, particularly if the
rendering does not use all of the rendering primitives. For example, Particle components use only the point primi-
tives and AxialSpring components use only the line primitives. For this reason, some components use subclasses of
RenderProps, such as PointRenderProps and LineRenderProps, that expose only a subset of the available render prop-
erties. All renderable components provide the method createRenderProps() that will create and return a RenderProps
object suitable for that component.



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/Renderer.Shading.html
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4.3.2 Setting render properties

When setting render properties, it is important to note that the value returned by getRenderProps() should be treated as
read-only and should not be used to set property values. For example, applications should not do the following:

particle.getRenderProps () .setPointColor (Color.BLUE);

This can cause problems for two reasons. First, getRenderProps () will return null if the object does not currently
have a RenderProps object. Second, because RenderProps objects are large, ArtiSynth may try to share them between
components, and so by setting them for one component, the application my inadvertently set them for other components
as well.

Instead, RenderProps provides a static method for each property that can be used to set that property’s value for a
specific component. For example, the correct way to set pointColor is

RenderProps.setPointColor (particle, Color.BLUE);

One can also set render properties by calling setRenderProps() with a predefined RenderProps object as an argument.
This is useful for setting a large number of properties at once:

RenderProps props = new RenderProps ();
props.setPointColor (Color.BLUE);
props.setPointRadius (2);

props.setPointStyle (RenderProps.PointStyle.SPHERE);

particle.setRenderProps (props);

For setting each of the color properties within RenderProps, one can use either Color objects or float [] arrays of
length 3 giving the RGB values. Specifically, there are methods of the form

props.setXXXColor (Color color)
props.setXXXColor (float[] rgb)

as well as the static methods

RenderProps.setXXXColor (Renderable r, Color color)
RenderProps.setXXXColor (Renderable r, float[] rgb)

where XXX corresponds to Point, Line, Face, Edge, and Back. For Edge and Back, both color and rgb can be given as
null to clear the indicated color. For the specular color, the associated methods are

props.setSpecular (Color color)
props.setSpecular (float[] rgb)
RenderProps.setSpecular (Renderable r, Color color)
RenderProps.setSpecular (Renderable r, float[] rgb)

Note that even though components may use a subclass of RenderProps internally, one can always use the base
RenderProps class to set values; properties which are not relevant to the component will simply be ignored.

Finally, as mentioned above, render properties are inherited. Values set high in the component hierarchy will be
inherited by descendant components, unless those descendants (or intermediate components) explicitly set overriding
values. For example, a MechModel maintains its own RenderProps (and which is never null). Setting its pointColor
property to RED will cause all point-related components within that MechModel to be rendered as red except for
components that set their pointColor to a different property.

There are typically three levels in a MechModel component hierarchy at which render properties can be set:

¢ The MechModel itself;

e Lists containing components;
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* Individual components.

For example, consider the following code:

MechModel mech = new MechModel ("mech");

Particle pl = new Particle (/*name=*/null, 2, 0, 0, 0);
Particle p2 = new Particle (/*name=*/null, 2, 1, 0, 0);
Particle p3 = new Particle (/*name=*/null, 2, 1, 1, 0);

mech.addParticle (pl);
mech.addParticle (p2);
mech.addParticle (p3);

RenderProps.setPointColor (mech, Color.BLUE) ;
RenderProps.setPointColor (mech.particles (), Color.GREEN);
RenderProps.setPointColor (p3, Color.RED);

Setting the MechModel render property pointColor to BLUE will cause all point-related items to be rendered blue by
default. Setting the pointColor render property for the particle list (returned by mech.particles ()) will override this
and cause all particles in the list to be rendered green by default. Lastly, setting pointColor for p3 will cause it to be
rendered as red.

4.3.3 Texture mapping

Render properties can also be set to apply texture mapping to objects containing polygonal meshes in which texture
coordinates have been set. Supported is provided for color, normal and bump mapping, although normal and bump
mapping are only available under the OpenGL 3 version of the ArtiSynth renderer.

Texture mapping is controlled through the colorMap, normalMap, and bumpMap properties of RenderProps. These
are composite properties with a default value of null, but applications can set them to instances of ColorMapProps,
NormalMapProps, and BumpMapProps, respectively, to provide the source images and parameters for the associated
mapping. The two most important properties exported by all of these MapProps objects are:

enabled

A boolean indicating whether or not the mapping is enabled.

fileName

A string giving the file name of the supporting source image.

NormalMapProps and BumpMapProps also export scaling, which scales the x-y components of the normal map or the
depth of the bump map. Other exported properties control mixing with underlying colors, and how texture coordinates
are both filtered and managed when they fall outside the canonical range [0, 1]. Full details on texture mapping and its
support by the ArtiSynth renderer are given in the “Rendering” section of the Maspack Reference Manual.

To set up a texture map, one creates an instance of the appropriate MapProps object and uses this to set either the
colorMap, normalMap, or bumpMap property of RenderProps. For a specific renderable, the map properties can be set
using the static methods

void RenderProps.setColorMap (Renderable r, ColorMapProps tprops);
void RenderProps.setNormalMap (Renderable r, NormalMapProps tprops);
void RenderProps.setBumpMap (Renderable r, BumpMapProps tprops);

When initializing the PropMaps object, it is often sufficient to just set enabled to t rue and fileName to the full path
name of the source image. Normal and bump maps also often require adjustment of their scaling properties. The
following static methods are available for setting the enabled and fileName subproperties within a renderable:

void RenderProps.setColorMapEnabled (Renderable r, boolean enabled);
void RenderProps.setColorMapFileName (Renderable r, String fileName);

void RenderProps.setNormalMapEnabled (Renderable r, boolean enabled);



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/ColorMapProps.html
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https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/BumpMapProps.html
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void RenderProps.setNormalMapFileName (Renderable r, String fileName);

void RenderProps.setBumpMapEnabled (Renderable r, boolean enabled);
void RenderProps.setBumpMapFileName (Renderable r, String fileName) ;

Normal and bump mapping only work under the OpenGL 3 version of the ArtiSynth viewer, and also do not work
if the shading property of RenderProps is set to NONE or FLAT.

Texture mapping properties can be set within ancestor nodes of the component hierarchy, to allow file names
and other parameters to be propagated throughout the hierarchy. However, when this is done, it is still necessary
to ensure that the corresponding mapping properties for the relevant descendants are non-null. That’s because
mapping properties themselves are not inherited; only their subproperties are. If a mapping property for any
given object is null, the associated mapping will be disabled. A non-null mapping property for an object will
be created automatically by calling one of the setXXXEnabled () methods listed above. So when setting up
ancestor-controlled mapping, one may use a construction like this:

RenderProps.setColorMap (ancestor, tprops);
RenderProps.setColorMapEnabled (descendant0O, true);
RenderProps.setColorMapEnabled (descendantl, true);

Then colorMap sub-properties set within ancestor will be inherited by descendant0 and descendant1.

As indicated above, texture mapping will only be applied to components containing rendered polygonal meshes for
which appropriate texture coordinates have been set. Determining such texture coordinates that produce appropriate
results for a given source image is often non-trivial; this so-called “‘u-v mapping problem” is difficult in general and is
highly dependent on the mesh geometry. ArtiSynth users can handle the problem of assigning texture coordinates in
several ways:

Use meshes which already have appropriate texture coordinates defined for a given source image. This generally
means that mesh is specified by a file that contains the required texture coordinates. The mesh should then be

read from this file (Section 2.5.5) and then used in the construction of the relevant components. For example, the
application can read in a mesh containing texture coordinates and then use it to create a RigidBody via the method
RigidBody.createFromMesh().

Use a simple mesh object with predefined texture coordinates. The class MeshFactory provides the methods

PolygonalMesh createRectangle (width, height, xdivs, ydivs, addTextureCoords);

PolygonalMesh createSphere (radius, nslices, nlevels, addTextureCoords)

which create rectangular and spherical meshes, along with canonical canonical texture coordinates if addTextureCoords
is true. Coordinates generated by createSphere () are defined so that (0,0) and (1, 1) map to the spherical coordi-
nates (—7, 1) (at the south pole) and (7,0) (at the north pole). Source images can be relatively easy to find for objects
with canonical coordinates.

Compute custom texture coordinates and set them within the mesh using setTextureCoords().

An example where texture mapping is applied to spherical meshes to make them appear like tennis balls is defined in

artisynth.demos.tutorial.SphericalTextureMapping

and listing for this is given below:

1

-

3

4

package artisynth.demos.tutorial;

import java.awt.Color;

s import maspack.geometry.*;
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Figure 4.1: Color and bump mapping applied to spherical meshes. Left: color mapping only. Middle: bump mapping
only. Right: combined color and bump mapping.

import maspack.matrix.RigidTransform3d;
import maspack.render.*;

import maspack.render.Renderer.ColorMixing;
import maspack.render.Renderer.Shading;
import maspack.util.PathFinder;

import maspack.spatialmotion.Spatiallnertia;
import artisynth.core.mechmodels.*;

import artisynth.core.workspace.RootModel;

/*x
* Simple demo showing color and bump mapping applied to spheres to make them
* look like tennis balls.
*/

public class SphericalTextureMapping extends RootModel {

RigidBody createBall (

MechModel mech, String name, PolygonalMesh mesh, double xpos) {

double density = 500;

RigidBody ball
RigidBody.createFromMesh (name, mesh.clone (), density, /*scale=*/1);

ball.setPose (new RigidTransform3d (/*x,y,z=*/xpos, 0, 0));

mech.addRigidBody (ball);

return ball;

public void build (String[] args) {

// create MechModel and add to RootModel
MechModel mech = new MechModel ("mech");
addModel (mech);

double radius = 0.0686;

// create the balls

PolygonalMesh mesh = MeshFactory.createSphere (
radius, 20, 10, /*texture=*/true);

RigidBody ball0 = createBall (mech, "ballO", mesh, -2.5*radius);
RigidBody balll = createBall (mech, "balll", mesh, 0);
RigidBody ball2 = createBall (mech, "ball2", mesh, 2.5*radius);

// set up the basic render props: no shininess, smooth shading to enable
// bump mapping, and an underlying diffuse color of white to combine with
// the color map

RenderProps.setSpecular (mech, Color.BLACK);

RenderProps.setShading (mech, Shading.SMOOTH) ;
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51 RenderProps.setFaceColor (mech, Color.WHITE);

52 // create and add the texture maps (provided free courtesy of
53 // www.robinwood.com) .

54 String dataFolder = PathFinder.expand (

55 "S$S{srcdir SphericalTextureMapping}/data");

56

57 ColorMapProps cprops = new ColorMapProps () ;

58 cprops.setEnabled (true);

59 // no specular coloring since ball should be matt

60 cprops.setSpecularColoring (false);
61 cprops.setFileName (dataFolder + "/TennisBallColorMap.jpg");

63 BumpMapProps bprops = new BumpMapProps ();

64 bprops.setEnabled (true);

65 bprops.setScaling ((float)radius/10);

66 bprops.setFileName (dataFolder + "/TennisBallBumpMap.jpg");

68 // apply color map to balls 0 and 2. Can do this by setting color map

69 // properties in the MechModel, so that properties are controlled in one
70 // place - but we must then also explicitly enable color mapping in

71 // the surface mesh components for balls 0 and 2.

72 RenderProps.setColorMap (mech, cprops);

73 RenderProps.setColorMapEnabled (ball0.getSurfaceMeshComp (), true);

74 RenderProps.setColorMapEnabled (ball2.getSurfaceMeshComp (), true);

76 // apply bump map to balls 1 and 2. Again, we do this by setting
77 // the render properties for their surface mesh components

78 RenderProps.setBumpMap (balll.getSurfaceMeshComp (), bprops);

79 RenderProps.setBumpMap (ball2.getSurfaceMeshComp (), bprops);

The build () method uses the internal method createBall () to generate three rigid bodies, each defined using a spher-
ical mesh that has been created with MeshFactory.createSphere() with addTextureCoords set to t rue. The remainder
of the build () method sets up the render properties and the texture mappings. Two texture mappings are defined: a
color mapping and bump mapping, based on the images TennisBallColorMap. jpg and TennisBallBumpMap. jpg
(Figure 4.2), both located in the subdirectory data relative to the demo source file. PathFinder.expand() is used to
determine the full data folder name relative to the source directory. For the bump map, it is important to set the scaling
property to adjust the depth amplitude to relative to the sphere radius.

Color mapping is applied to balls 0 and 2, and bump mapping to balls 1 and 2. This is done by setting color map and/or
bump map render properties in the components holding the actual meshes, which in this case is the mesh components
for the balls’ surfaces meshes, obtained using get SurfaceMeshComp (). As mentioned above, it is also possible to

set these render properties in an ancestor component, and that is done here by setting the colorMap render property of
the MechModel, but then it is also necessary to enable color mapping within the individual mesh components, using
RenderProps.setColorMapEnabled ().

To run this example in ArtiSynth, select All demos > tutorial > SphericalTextureMapping from the Models menu. The
model should load and initially appear as in Figure 4.1. Note that if ArtiSynth is run with the legacy OpenGL 2 viewer
(command line option ~GLVersion 2), bump mapping will not be supported and will not appear.

4.4 Point-to-point muscles

Point-to-point muscles are a simple type of component in biomechanical models that provide muscle-activated forces
acting along a line between two points. ArtiSynth provides this through Muscle, which is a subclass of AxialSpring that
generates an active muscle force in response to its excitation property. The excitation property can be set and queried
using the methods

setExcitation (double a);
double getExcitation ();
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Figure 4.2: Color and bump map images used in the texture mapping example. These map to spherical coordinates on
the mesh.

4.4.1 Muscle materials

As with AxialSprings, Muscle components use an AxialMaterial to compute the applied force f(,[,a) in response to
the muscle’s length /, length velocity /, and excitation signal a. Usually the force is the sum of a passive component plus
an active component that arises in response to the excitation signal.

The default AxialMaterial for a Muscle is SimpleAxialMuscle, which is essentially an activated version of
LinearAxialMaterial and which computes a simple force according to

FLD) =k(I—1lo) +di+mya 4.1)

where k and d are stiffness and damping terms, a is the excitation value, and m; is the maximum excitation force. k, d
and m; are exposed through the properties stiffness, damping, and maxForce.

More complex muscle materials are typically used for biomechanical modeling applications, generally with nonlinear
passive terms and active terms that depend on the muscle length /. Some of those available in ArtiSynth include
ConstantAxialMuscle, BlemkerAxialMuscle, MasoudMillardLAM, and PeckAxialMuscle.

ConstantAxialMuscle

This is a simple muscle material that has a contractile force proportional to its activation, a constant passive tension, and
linear damping, as follows:

f(l) = afmax +fpassivefmax+di (4.2)
The parameters for this material include:
Property Description
fmax maxForce the maximum contractile force
Spassive | passiveFraction the proportion of f,,,, to apply as passive tension
d damping damping
a Muscle:excitation | the Muscle’s activation

LinearAxialMuscle

This is a simple muscle material that has a linear relationship between length and tension, as well as linear damping, as
follows:
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[— 10171

! = ,with 0 <[’ < 1 enforced (4.3)
lmax —lopt
f(L l) = afmaxl/ + fpassivefmaxll + dl (44’)
The parameters for this material include:
Property Description

Linax maxLength the length at which maximum force is generated
Lopt optLength the length at which zero active force is generate
Sinax maxForce the maximum contractile force
Spassive | passiveFraction the proportion of f,,,x to apply as passive tension
d damping damping
a Muscle:excitation | the Muscle’s activation

BlemkerAxialMuscle

This muscle material generates a force as described in [2]. It is the axial muscle equivalent to the constitutive equation
along the muscle fiber direction specified in the BlemkerMuscle FEM material.

PeckAxialMuscle
This muscle material generates a force as described in [14]. It has a typical Hill-type active force-length relationship

(modeled as a cosine), but the passive force-length properties are linear. This muscle model was empirically verified for
jaw muscles during wide jaw opening [14].

MasoudMillardLAM

This muscle material generates a force as described in [11] for the rigid tendon case.

4.4.2 Example: Muscle attached to a rigid body

Figure 4.3: SimpleMuscle model loaded into ArtiSynth.

A simple model showing a single muscle connected to a rigid body is defined in

artisynth.demos.tutorial.SimpleMuscle
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This model is identical to RigidBodySpring described in Section 3.2.2, except that the code to create the spring is
replaced with code to create a muscle with a SimpleAxialMuscle material:

// create the muscle:
muscle = new Muscle ("mus", /*restLength=%*/0);
muscle.setPoints (pl, mkr);
muscle.setMaterial (
new SimpleAxialMuscle (/*stiffness=*/20, /*damping=*/10, /*maxf=*/10));

Also, so that the muscle renders differently, the rendering style for lines is set to SPINDLE using the convenience method

RenderProps.setSpindlelLines (muscle, 0.02, Color.RED);

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscle from the Models menu. The model should
load and initially appear as in Figure 4.3. Running the model (Section 1.5.3) will cause the box to fall and sway under
gravity. To see the effect of the excitation property, select the muscle in the viewer and then choose Edit properties
... from the right-click context menu. This will open an editing panel that allows the muscle’s properties to be adjusted
interactively. Adjusting the excitation property using the adjacent slider will cause the muscle force to vary.

4.5 Collision Handling

Collision handling in ArtiSynth is implemented by a collision handling mechanism build into MechModel. Collisions are
disabled by default, but can be enabled between rigid and deformable bodies (finite element models in particular), and
more generally between any body that implements the interface Collidable.

It is important to understand that collision handling is both computationally expensive and, due to it’s discontinuous
nature, less accurate than other aspects of the simulation. ArtiSynth therefore provides a number of ways to selectively
control collision handling between different pairs of bodies.

Collision handling is also challenging because if collisions are enabled among n objects, then one needs to be able to
easily specify the characteristics of up to O(n?) collision interactions, while also managing the fact that these interac-
tions are highly transient. In ArtiSynth, collision handling is done by a CollisionManager that is a sub-component of
each MechModel. The collision manager maintains default collision behaviors among certain groups of collidable ob-
jects, while also allowing the user to override the default behaviors by setting override behaviors for specific component
pairings.

4.5.1 Enabling collisions in code

Collisions can be enabled as either a default behavior between all bodies, a default behavior between certain groups of
bodies, or a specific override behavior between individual pairs of bodies.

This section describes how to enable collisions in code. However, it is also possible to set some aspects
of collision behavior interactively within the ArtiSynth GUI. See the section “Collision handling” in the
ArtiSynth User Interface Guide.

The default collision behavior between all collidables can be controlled using the method

setDefaultCollisionBehavior (enabled, mu);

where enabled is true or false depending on whether collisions are enabled, and mu is the coefficient of Coulomb (or
dry) friction. The mu value is ignored if enabled is false. mu can also be left undefined by specifying a value less than
0, in which case the friction coefficient is inherited from the global friction value accessed by the methods

setFriction (mu);
double getFriction ();
The default collision behavior can also be controlled using the method

setDefaultCollisionBehavior (behavior);
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where behavior is a CollisionBehavior object that specifies both enabled and mu, along with other, more detailed
collision properties (see Section 4.5.3).

In addition, a default collision behavior can be set for generic groups of collidables using

setDefaultCollisionBehavior (group0O, groupl, enabled, mu);
setDefaultCollisionBehavior (group0O, groupl, behavior);

where group0 and groupl are static instances of the special Collidable subclass Collidable.Group that represents the
groups described in Table 4.3. The groups Collidable.Rigid and Collidable.Deformable denote collidables that
are rigid (such as RigidBody) or deformable (such as FEM models like FemModel3d). (If a collidable is deformable,
then its isDeformable() method returns t rue.) The group Collidable.Al1Bodies denotes both rigid and deformable
bodies, and Collidable.Self is used to enabled self-collision. which is described in greater detail in Section 4.5.4. mu
again is ignored if enabled is false, and if mu is less than zero, the friction is undefined and inherited from the global
value accessed using setFriction (mu) and getFriction ().

Collidable group description

Collidable.Rigid rigid collidables (e.g., rigid bodies)

Collidable.Deformable  deformable collidables (e.g, FEM models)
Collidable.AllBodies rigid and deformable collidables

Collidable.Self enables self-intersection for composite deformable collidables
Collidable.All rigid and deformable collidables and self-intersection

Table 4.3: Collision group types.

A call to one of the setDefaultCollisionBehavior () methods will override the effects of previous calls. So for
instance, the code sequence

setDefaultCollisionBehavior (true, 0);
setDefaultCollisionBehavior (Collidable.Deformable, Collidable.Rigid, false, 0);
setDefaultCollisionBehavior (true, 0.2);

will initially enable collisions between all bodies with a friction coefficient of 0, then disable collisions between
deformable and rigid bodies, and finally re-enable collisions between all bodies with a friction coefficient of 0.2.

The default collision behavior between any pair of collidable groups can be queried using

CollisionBehavior getDefaultCollisionBehavior (group0O, groupl);

For this call, group0 and groupl are restricted to the primary groups Collidable.Rigid, Collidable.Deformable,
and Collidabe.Self, since individual behaviors are not maintained for the composite groups Collidable.Al1lBodies
and Collidable.All.

In addition to default behaviors, overriding behaviors for individual collidables or pairs of collidables can be controlled
using

setCollisionBehavior (collidableO, collidablel, enabled, mu);
setCollisionBehavior (collidable(O, collidablel, behavior);

where collidable0 is an individual collidable component (such as a rigid body or FEM model), and collidablel
is either another individual component, or one of the groups of Table 4.3. As with default behaviors, mu is ignored if
enabled is false, and if mu is less than zero, the friction is undefined and inherited from the global value accessed
using setFriction (mu) and getFriction().

As an example of setting individual collision behaviors, the calls

RigidBody bodA;
FemModel3d femB;

setCollisionBehavior (bodA, Collidable.Deformable, true, 0.1);
setCollisionBehavior (femB, Collidable.AllBodies, true, 0.0);
setCollisionBehavior (bodA, femB, false, 0.0);
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will enable collisions between bodA and all deformable collidables (with friction 0.1), as well as femB and all de-
formable and rigid collidables (with friction 0.0), while specifically disabling collisions between bod2 and femB.

The setCollisionBehavior () methods work by adding a CollisionBehavior object (Section4.5.3) to the collision
manager as a sub-component. With setCollisionBehavior (collidable(,collidablel,behavior), the behavior
object is created and supplied by the application. With setCollisionBehavior (enable, mu), the behavior object is
created automatically and returned by the method. Once an override behavior has been specified, then it can be queried
using

getCollisionBehavior (collidableO, collidablel);

This method will return null if no override behavior for the pair in questions has been previously set using one of the
setCollisionBehavior () methods.

Because behaviors are proper components, it is not permissible to add them to the collision manager twice.
Specifically, the following will produce an error:

CollisionBehavior behav = new CollisionBehavior();
behav.setDrawIntersectionContours (true);
mesh.setCollisionBehavior (colO, coll, behav);
mesh.setCollisionBehavior (col2, col3, behav); // ERROR

However, if desired, a new behavior can be created from an existing one:

CollisionBehavior behav = new CollisionBehavior();
behav.setDrawIntersectionContours (true);
mesh.setCollisionBehavior (colO, coll, behav);

behav = new CollisionBehavior (behav);
mesh.setCollisionBehavior (col2, col3, behav); // OK

To determine the collision behavior (default or override) that actually controls a specific pair of collidables, one may use
the method

getActingCollisionBehavior (collidable(, collidablel);

where collidable0 and collidablel must both be specific collidable components and cannot be a group (such as
Collidable.Rigid or Collidable.All). If one of the collidables is a compound collidable (Section 4.5.4), or has a
collidability setting (Section 4.5.5) that prevents collisions, there may be no consistent acting behavior, in which case the
method returns null.

Collision behaviors take priority over each other in the following order:

1. behaviors specified using setCollisionBehavior () involving two specific collidables.

2. behaviors specified using setCollisionBehavior () involving one specific collidable and a group of collidables
(indicated by a Collidable.Group), with later specifications taking priority over earlier ones.

3. default behaviors specified using setDefaultCollisionBehavior ().

An override behavior specified with setCollisionBehavior () can later be removed using

clearCollisionBehavior (collidable(O, collidablel);

and all override behaviors in a MechModel can be removed with

clearCollisionBehaviors ();

Note that this latter call does not remove default behaviors specified with setDefaultCollisionBehavior ().
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Note: It is usually necessary to ensure that collisions are disabled between adjacent bodies connected by joints,
since otherwise these would be forced into a state of permanent collision.

4.5.2 Example: Collision with a plane

Figure 4.4: JointedCollide model loaded into ArtiSynth.

A simple model illustrating collision between two jointed rigid bodies and a plane is defined in
artisynth.demos.tutorial.JointedCollide

This model is simply a subclass of RigidBodyJoint that overrides the build () method to add an inclined plane and
enable collisions between it and the two connected bodies:

public void build (String[] args) {
super.build (args);

bodyB.setDynamic (true); // allow bodyB to fall freely
// create and add the inclined plane
RigidBody base = RigidBody.createBox ("base", 25, 25, 2, 0.2);
base.setPose (new RigidTransform3d (5, 0, 0, 0, 1, 0, -Math.PI/8));
10 base.setDynamic (false);
1 mech.addRigidBody (base);

13 // turn on collisions
14 mech.setDefaultCollisionBehavior (true, 0.20);
15 mech.setCollisionBehavior (bodyA, bodyB, false);

The superclass build () method called at line 3 creates everything contained in RigidBodyJoint. The remaining code
then alters that model: bodyB is set to be dynamic (line 5) so that it will fall freely, and an inclined plane is created from
a thin box that is translated and rotated and then set to be be non-dynamic (lines 8-11). Finally, collisions are enabled
by setting the default collision behavior (line 14), and then specifically disabling collisions between bodyA and bodyB
(line 15). As indicated above, the latter step is necessary because the joint would otherwise keep the two bodies in a
permanent state of collision.

To run this example in ArtiSynth, select All demos > tutorial > JointedCollide from the Models menu. The model should
load and initially appear as in Figure 4.4. Running the model (Section 1.5.3) will cause the jointed assembly to collide
with and slide off the inclined plane.




4.5.3 Collision behaviors

As mentioned above, the CollisionBehavior objects described above can be used to control other aspects of the contact
and collision beyond friction and enabling. In particular, a CollisionBehavior exports the following properties:

enabled

A boolean that determines if collisions are enabled.

friction
A double giving the coefficient of Coulomb friction, typically in the range [0,0.5]. The default value is 0. Setting
friction to a non-zero value increases the simulation time, since extra constraints must be added to the system to
accommodate the friction.

penetrationTol
A double controlling the amount of interpenetration that is permitted in order to ensure contact stability (see
Section 4.6.4). If not specified, the system will inherit this property from the MechModel, which computes a
default penetration tolerance based on the overall size of the model.

compliance
A double which adds a compliance (inverse stiffness) to the collision behavior, so that the contact has a “springi-
ness”. The default value for this is O (no compliance). See Section 4.6.3.

damping

A double which, if compliance is non-zero, specifies a damping to accompany the compliant behavior. The default
value is 0. When compliance is specified, it is usually necessary to set the damping to a non-zero value to prevent
bouncing. See Section 4.6.3.

collisionPointTol

A double which, for contacts between rigid bodies, specifies a minimum distance between contact points that is
used to reduce the number of contacts. If not explicitly specified, the system computes a default value for this
based on the overall size of the model.

reduceConstraints

A boolean which, if t rue, indicates that the system should try to reduce the number of contacts between de-
formable bodies with limited degrees of freedom, so that the resulting contact problem is not ill-conditioned. The
default value is false. See Section 4.6.3.

method

An instance of CollisionBehavior.Method that controls how the contact constraints for the collision response are
generated. There are several methods available, and some are experimental. The more standard methods are:

Method Constraint generation

VERTEX_PENETRATION  constraints generated from interpenetrating vertices
CONTOUR_REGION constraints generated from planes fit to each mesh contact region
INACTIVE no constraints generated

These are described in more detail in Section 4.6.1.

collider Type

An instance of CollisionManager.ColliderType that specifies the underlying mechanism used to determine the
collision information between two meshes. The choice of collider may restrict which collision methods (described
above) are allowed. Collider types available at present include:

Type Description

AJL_CONTOUR uses mesh intersection contour to find penetrating regions and vertices
TRI_INTERSECTION uses triangle intersections to find penetrating regions and vertices
SIGNED_DISTANCE uses a signed distance field to find penetrating vertices

These are described in more detail in Section 4.6.1.
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In addition to the above, CollisionBehavior exports other properties that control the rendering of collisions (Section
4.6.5).

It should be noted that most collision behavior properties are also properties of the MechModel’s collision manager,
which can be accessed in code using getCollisionManager() (or graphically via the navigation panel). Since collision
behaviors are sub-components of the collision manager, properties set in the collision manager will be inherited by any
behaviors for which they have not been explicitly set. This is the easiest way to specify behavior properties generally, as
for example:

CollisionManager cm = mech.getCollisionManager () ;
cm.setReduceConstraints (true);

Some other properties, like penetrationTol, are properties not of the collision manager, but of the MechModel, and so can
be set globally there.

To set collision properties in a more fine-grained manner, one can either call setDefaultCollisionBehavior () or
setCollisionBehavior () with an appropriately set CollisionBehavior object:

RigidBody bodA;

CollisionBehavior behav = new CollisionBehavior (enabled, mu);
behav.setPenetrationTol (0.001);
setDefaultCollisionBehavior (Collidable.Deformable, Collidable.Rigid, behav);

behav.setPenetrationTol (0.003);
setCollisionBehavior (bodA, Collidable.Rigid, behav);

For behaviors that are already set, one may use getDefaultCollisionBehavior () or getCollisionBehavior () to
obtain the behavior and then set the desired properties directly:

RigidBody bodA;
CollisionBehavior behav;

behav = getDefaultCollisionBehavior (Collidable.Deformable, Collidable.Rigid);
behav.setPenetrationTol (0.001);

behav = getCollisionBehavior (bodA, Collidable.Rigid);

behav.setPenetrationTol (0.003);

Note however that getDefaultCollisionBehavior () only works for Collidable.Rigid, Collidable.Deformable,
and Collidable.Self, and that getCollisionBehavior () only works for a collidable pair that has been previously
specified with setCollisionBehavior (). One may also use getActingCollisionBehavior () (described above) to
obtain the behavior (default or otherwise) responsible for a specific pair of collidables, although in some instances no
such single behavior exists and the method will then return null.

There are two constructors for CollisionBehavior:

CollisionBehavior () ;
CollisionBehavior (boolean enable, double mu);

The first creates a behavior with the enabled property set to false and the other properties set to their default (generally
inherited) values. The second creates a behavior with the enabled and friction properties explicitly specified by enabled
and mu, and other properties set to their default values. If mu is less than zero or enabled is false, then the friction
property is set to be inherited so that its value is controlled by the global friction property in the collision manager (and
accessed using the MechModel methods setFriction (mu) and getFriction()).

4.5.4 Self-collision and collidable hierarchies

At present, Art iSynth does not support the detection or handling of self-collision within single meshes. However,
self-collision can still be effected by allowing a collidable to have multiple sub-collidables and then enabling collisions
between some or all of these.

Any descendant component of a Collidable A which is itself Collidable is considered to be a sub-collidable of A.
Certain types of components maintain sub-collidables by default. For example, some components (such as finite element
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models; Section 6) maintain a list of meshes in a child component list named meshes; these can be used to implement
self-collision as described below. A collidable that contains sub-collidables is known as a compound collidable, and its
isCompound() method will return true. Likewise, if a component is a sub-collidable, then its getCollidable Ancestor())
method will return its nearest collidable ancestor.

A collidable does not need to be an immediate child component of a collidable A in order to be a sub-collidable of
A; it need only be a descendant of A.

At present, collidable hierarchies are assumed to have a depth no greater than one (i.e., no sub-collidable is itself
a compound collidable), and also sub-collidables are assumed to have the same type (rigid or deformable) as the
ancestor.

Figure 4.5: A collection of collidable components, where A possesses sub-collidables A1, A2, and A3, B is solitary, and
C possesses sub-collidables C1 and C2. Internal collisions are enabled among those sub-collidables which are shaded

gray.

In general, an ArtiSynth model will contain a collection of collidables, some of which are compound and others which
are solitary (Figure 4.5). Within a collection of collidables:

* Actual collisions happen only between leaf collidables; compound collidables are used only for grouping purposes.

* Leaf collidables are also instances of the sub-interface CollidableBody, which provides the additional information
needed to actually determine collisions and compute the response (Section 4.6).

* By default, the sub-collidables of a compound component A will only collide among themselves if self-collision is
specified for A (via either a default or override collision behavior). If self-collision is specified for A, then collisions
may occur only among those sub-collidables for which internal collisions are enabled. Internal collisions are enabled
for a collidable if its collidable property (Section 4.5.5) is set to either ALL or INTERNAL.

 Self-collision is also only possible among the sub-collidables of A if A is itself deformable; i.e., its isDeformable()
method returns true.

* Sub-collidables may collide with collidables outside their hierarchy if their collidable property is set to either ALL or
EXTERNAL.

 Collision among specific pairs of sub-collidables may also be explicitly enabled or disabled with an override behavior
set using one of the setCollisionBehavior () methods.

» Specifying a collision behavior among two compound collidables A and B which are not within the same hierarchy
will cause that behavior to be specified among all sub-collidables of A and B whose collidable property enables the
collision.

Subject to the above conditions, self-collisions can be enabled among the sub-collidables of all deformable collidables
by calling

setDefaultCollisionBehavior (Collidable.DEFORMABLE, Collidable.SELF, true, mu);

or, for a specific collidable C, by calling either
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setDefaultCollisionBehavior (C, Collidable.SELF, true, mu);
OR

setDefaultCollisionBehavior (C, C, true, mu);

For a more complete example, refer to Figure 4.5, assume that components A, B and C are deformable, and that
self-collision is allowed among those sub-collidables which are shaded gray (Al and A2 for A, B1 and B2 for B). Then:

// Set default collision among deformable components with friction = 0.2:
setDefaultCollisionBehavior (
Collidable .DEFORMABLE, Collidable.DEFORMABLE, true, 0.2);
// Collisions are now enabled between Al, A2, and A3 and each of B, Cl, and
// C2, and between B and Cl and C2, but not among Al, A2, and A3 or Cl and C2.

// Enable self-collision between Al and A2 and Bl and B2 with friction = 0:
setDefaultCollisionBehavior (Collidable.DEFORMABLE, Collidable.SELF, true, 0);

// Specifically disable collision between B and A3:
setCollisionBehavior (B, A3, false);

// Specifically enable collision between A3 and C with friction = 0.3:
setCollisionBehavior (A3, C, true, 0.3);
// This behavior will be applied between A3 and each of Cl and C2.

// Disable self-collision within A:
setCollisionBehavior (A, A, false);
// This will disable all self-collisions among Al, A2 and A3.

4.5.5 Collidability

Each collidable component maintains a collidable property (which can be queried using getCollidable()) which
specifically enables or disables the ability of that collidable to collide with other collidables.

The collidable property value is of the enumerated type Collidable.Collidability, which has four possible settings:

OFF
All collisions disabled: the collidable will not collide with anything.

INTERNAL

Internal (self) collisions enabled: the collidable may only collide with other Collidables with which it shares a
common ancestor.

EXTERNAL

External collisions enabled: the collidable may only collide with other Collidables with which it does not share a
common ancestor.

ALL
All collisions (both self and external) enabled: the collidable may collide with any other Collidable.

Note that collidability only enables collisions. In order for collisions to actually occur between two collidables, a default
or override collision behavior must also be specified for them in the MechModel.

4.5.6 Collision response

Sometimes, an application may wish to know details about the collision interactions between a specific collidable

and one or more other collidables. These details may include items such as contact forces or the penetration regions
between the opposing meshes. Applications can track this information by creating CollisionResponse components for
the collidables in question and adding them to the MechModel using setCollisionResponse():
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CollisionResponse resp = new CollisionResponse ();
mech.setCollisionResponse (collidable0O, collidablel, resp);

An alternate version of setCollisionResponse () creates the response component internally and returns it:

CollisionResponse resp = mech.setCollisionResponse (collidableO, collidablel);

During every simulation step, the MechModel will update its response components to reflect the current collision
conditions between the associated collidables.

The first collidable specified for a collision response must be a specific collidable component, while the second may be
either another collidable or a group of collidables represented by a Collidable.Group:

CollisionResponse r0, rl, r2;
RigidBody bodA;
FemModel3d femB;

// collision information between bodA and femB only:

r0 = setCollisionResponse (bodA, femB);

// collision information between femB and all rigid bodies:

rl = setCollisionResponse (femB, Collidable.Rigid);

// collision information between femB and all bodies and self-collisions:
r2 = setCollisionResponse (femB, Collidable.All);

When a compound collidable is specified, the response component will collect collision information for all its sub-
collidables.

If desired, applications can also instantiate responses themselves and add them to the collision manager:

CollisionResponse resp = new CollisionResponse ();
mech.setCollisionResponse (femA, femB, resp);

However, as with behaviors, the same response cannot be added to an application twice:

CollisionResponse resp = new CollisionResponse ();
mech.setCollisionResponse (femA, femB, resp);
mech.setCollisionResponse (femC, femD, resp); // ERROR

The complete set of methods for managing collision responses are similar to those for behaviors,

setCollisionResponse (collidableO, collidablel, response);
setCollisionResponse (collidableO, collidablel);
getCollisionResponse (collidable0O, collidablel);
clearCollisionResponse (collidable(O, collidablel);
clearCollisionResponses () ;

where getCollisionResponse() and clearCollisionResponse() respectively return and clear response components that
have been previously set using one of the setCollisionResponse () methods.

Information that can be queried by a CollisionResponse component includes whether or not the collidable is in collision,
contact forces acting on the vertices of the colliding meshes, the penetration regions of each mesh associated with the
collision, and the underlying CollisionHandler objects that maintain the contact constraints between each colliding
mesh. This information may be queried with the following methods:

// Queries if the collidables associated with this response are in contact
boolean inContact () ;

// Returns a map specifying the vertex-specific contact forces acting on all
// the deformable bodies associated with the first or second collidable, as
// specified by cidx=0 or cidx=1.

Map<Vertex3d,Vector3d> getContactForces (int cidx);

// Returns a map specifying the vertex-specific contact pressures acting on all
// the deformable bodies associated with the first or second collidable, as
// specified by cidx=0 or cidx=1.
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Map<Vertex3d, Vector3d> getContactForces (int cidx);

// Returns a list of all the penetration regions on either the first
// or second collidable, as specified by cidx=0 or cidx=1. Penetration
// regions are available only if the collision manager’s collider

// type is set to AJL_CONTOUR.

ArrayList<PenetrationRegion> getPenetrationRegions (int cidx);

// Returns the CollisionHandlers for all currently active collisions
// associated with the collidables of this response. Note that the
// body ordering in the handlers may be reversed.
ArrayList<CollisionHandler > getHandlers ();

A typical usage scenario for collision responses is to create them before the simulation is run, possibly in the root model
build() method, and then query them when the simulation is running, such from the apply () method of a Monitor (
Section 5.3). For example, in the root model build () method, the response could be created with the call

CollisionResponse resp = mech.setCollisionResponse (femA, femB);

and then used in some runtime code as follows:

Map<Vertex3d,Vector3d> collMap = resp.getContactForces (0);

If for some reason it is difficult to store a reference to the response between its construction and its use, then
getCollisionResponse () can be used to retrieve it:

CollisionResponse resp = mech.getCollisionResponse (femA, femB);
Map<Vertex3d,Vector3d> collMap = resp.getContactForces (0);

4.5.7 Nested MechModels

It is possible in ArtiSynth for one MechModel to contain other nested MechModels within its component hierarchy. This
raises the question of how collisions within the nested models are controlled. The general rule for this is the following:

The collision behavior for two collidables colA and colB is determined by whatever behavior (either default or
override) is specified by the lowest MechModel in the component hierarchy that contains both colA and colB.

Figure 4.6: A MechModel containing collidables B1 and B2, nested within another containing collidables A1 and A2.

For example, consider Figure 4.6 where we have a MechModel (mechB) containing collidables B1 and B2, nested within
another MechModel (mechR) containing collidables A1 and A2. Then consider the following code fragment:




mechB.setDefaultCollisionBehavior (true, 0.2);
mechA.setCollisionBehavior (B1l, Collidable.AllBodies, true, 0.0);
mechA.setCollisionBehavior (Bl1, Al, false);
mechA.setCollisionBehavior (B1, B2, false); // Error!

The first line enables default collisions within mechB (with yu = 0), controlling the interaction between B1 and B2.
However, collisions are still disabled within mechA, meaning A1 and A2 will not collide either with each other or with B1
or B2. The second line enables collisions between B1 and any other body within mechA (i.e., A1 and A2), while the third
line disables collisions between B1 and Al. Finally, the fourth line results in an error, since B1 and B2 are both contained
within mechB and so their collision behavior cannot be controlled from mechA.

While it is not legal to specify a specific behavior for collidables contained a MechModel from a higher level MechModel,
it is legal to create collision response components for the same pair within both models. So the following code fragment
would be allowed and would create response components in both mechA and mechB:

mechB.setCollisionResponse (Bl, B2);
mechA.setCollisionResponse (Bl, B2);

4.6 Collision Implementation and Rendering

As mentioned in Section 4.5.4, the leaf collidables which actually provide collision interaction are also instances of
CollidableBody, which provides methods returning the information needed to compute collisions and their response.
Some of these methods include:

PolygonalMesh getCollisionMesh () ;
boolean hasDistanceGrid () ;

DistanceGridComp getDistanceGridComp () ;

getCollisionMesh() returns the surface mesh which is used as the basis for collision. If hasDistanceGrid() returns true,
then the body also maintains a signed distance grid for the mesh, which can be obtained using getDistanceGridComp()
and is used by the collider type SIGNED_DISTANCE (Section 4.6.1).

4.6.1 Collision methods and collider types

The ArtiSynth collision mechanism works by using a collider (described further below) to find the intersections between
the surface meshes of each collidable object. Information provided by the collider is then used to generate contact
constraints, according to a collision method, that prevent further collision and resolve any existing interpenetration.

Collision methods are specified by collision behavior’s method property, which is an instance of CollisionBehavior.Method,
as mentioned in Section 4.5.3. Some of the standard methods are:

VERTEX_ PENETRATION

A contact constraint is generated for each mesh vertex that interpenetrates the other mesh, with the normal
direction determined by finding the nearest point on the opposing mesh. This method is the default for collisions
involving deformable bodies which have enough degrees of freedom (DOF) that the resulting number of contacts
does not overconstrain the system. Using this method for collisions between rigid bodies, or low DOF deformable
bodies, will generally result in an overconstrained system unless the constraints are either regularized using
compliance or constraint reduction is enabled (see Section 4.6.3).

CONTOUR_REGION

Contact constraints are generated by fitting a plane to each mesh contact region and then projecting the region
onto that plane. Constraints are then created from points on the perimeter of this projection, with the normal
direction being given by the plane normal. This is the default method for collision between rigid bodies or low
DOF deformable bodies. Trying to use this method for FEM-based deformable bodies will result in an error.
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DEFAULT

Selects the method most appropriate depending on the DOFs of the colliding bodies and whether they are rigid or
deformable . This is the default setting.

INACTIVE

No constraints are generated. This will result in no collision response.

The contact information used by the collision method is generated by a collider. Colliders are described by instances

of CollisionManager.ColliderType and can be specified by the colliderType property in either the collision manager (as
the default), or in the collision behavior for a specific pair of collidables. Since different colliders may provide different
collision information, some colliders may restrict the type of collision method that may be used.

Three collider types are presently supported:

AJL_CONTOUR

A bounding-box hierarchy is used to locate all triangle intersections between the two surface meshes, and the
intersection points are then connected to find the (piecewise linear) intersection contours. The surface meshes
must (at present) be triangular, closed, and manifold. The contours are then used to identity the contact regions
on each surface mesh, which can be used to determine interpenetrating vertices and contact area. Intersection
contours and the contact constraints generated from them are shown in Figure 4.7.

TRI_INTERSECTION

A legacy method which also uses a bounding-box hierarchy to locate all triangle intersections between the two
surface meshes. However, contours are not generated. Instead, contact regions are estimated by grouping the
intersection points together, and penetrating vertices are computed separately using point-mesh distance queries
based on the bounding-box hierarchy. This latter step requires iterating over all mesh vertices, which may be slow
for large meshes.

SIGNED_DISTANCE

Uses a grid-based signed distance field on one mesh to quickly determine the penetrating vertices of the opposite
mesh, along with the penetration distance and normals. This is only available for collidable pairs where at

least one of the bodies maintains a signed distance grid which can be obtained using getDistanceGridComp().
Advantages include speed (often an order of magnitude faster that the colliders based on triangle intersection)

and the fact that the opposite mesh does not have to be triangular, closed, or manifold. However, signed distance
fields can (at present) only be computed for fixed meshes, and so at least one colliding body must be rigid. The
signed distance field also does not yet yield contact region information, and so the collision method is restricted to
VERTEX_PENETRATION. Contacts generated from a signed distance field are illustrated in Figure Figure 4.8.

Because the SIGNED_DISTANCE collider type currently supports only the VERTEX_PENETRATION method, its

use between rigid bodies, or low DOF deformable bodies, will generally result in an overconstrained system
unless the constraints are either regularized using compliance or constraint reduction is enabled. See Section
4.6.3.

4.6.2 Collision meshes and signed distance grids

As mentioned above, collidable bodies declare the method getCollisionMesh(), which returns a mesh defining the
collision surface. This is either used directly, or, for STGNED_DISTANCE collision handling, to compute a signed distance
grid which is in turn used to handle collisions.

For RigidBody objects, the mesh returned by getCollisionMesh () is typically the same as the surface mesh. However,
it is possible to change this, by adding additional meshes to the body and modifying mesh collidability (see Section
3.2.8). The collision mesh is then formed as the sum of all polygonal meshes in the body’s meshes list whose collidable
property is true.

The sum operation used to create the RigidBody collision mesh uses addMesh(), which simply adds all vertices
and faces together. While the result works correctly for collisions, it does not represent a proper CSG union
operation (such as that described in Section 2.5.7) and may contain interpenetrating and overlapping features.
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t=0s t=0.25s t=0.5s

Figure 4.7: Time sequence of contact handling between two deformable models falling under gravity, showing the
intersection contours (yellow) and the contact normals (green lines).

Collidable bodies also declare the methods hasDistanceGrid() and getDistanceGridComp(). If the former returns true,
then the body has a distance grid and the latter returns a DistanceGridComp containing it. A distance grid is a regular
3D grid, with uniformly arranged vertices and cells, that is used to represent a scalar distance field, with distance values
stored implicitly at each vertex and interpolated within cells. Distance grids are used for SIGNED_DISTANCE collision
handling, and by default are generated on-demand, using an automatically chosen resolution and the mesh returned by
getCollisionMesh() as the surface against which distances are computed.

When used for collision handling, values within a distance grid are interpolated trilinearly within each cell. This means
that the effective collision surface is actually the trilinearly interpolated isosurface corresponding to a distance of 0. This
surface will differ somewhat from the original surface returned by getCollisionMesh (), in a manner that depends

on the grid resolution. Consequently, when using SIGNED_DISTANCE collision handling, it is important to be able to
visualize the trilinear isosurface, and possibly modify it by adjusting the grid resolution. The DistanceGridComp
returned by getDistanceGridComp () exports properties to facilitate both of these requirements, as described in detail
in Section 4.7.

4.6.3 Overconstrained contact and regularization

An issue that can arise with the VERTEX_PENETRATION collision method (Section 4.6.1), which by default is employed
for deformable bodies but can also be set for rigid bodies, is the problem of overconstrained contact, in which the
number of contact constraints exceeds the number of degrees of freedom (DOF) available amongst the dynamic
components for handling the contact. When this occurs, an error message will typically appear in the application’s
terminal output, such as

Pardiso: num perturbed pivots=12

and the simulation itself may go unstable.

Overconstrained contact does not typically occur with regular FEM models because the number of contact constraints
does not usually exceed the number of FEM nodes impacted by the collision. However, it can occur for collisions
involving embedded meshes (Section 6.3.2) when the mesh has a finer resolution than the embedding FEM, or skinned
meshes (Chapter 8) when the number of contacts exceeds the available DOF of the underlying master bodies.

At present there are two general ways to handle overconstrained contact:

1. Contact constraint reduction
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Figure 4.8: Contacts generated by a signed distance field. A deformable ellipsoid (red, top) is colliding with a solid
prism (cyan, bottom). A signed distance field for the prism (the grid points and normals of which are shown partially
by the dark cyan arrows) is used to locate penetrating vertices of the ellipsoid and hence generate contact constraints
(yellow lines).

2. Contact regularization

Constraint reduction involves having the collision manager explicitly try to reduce the number of collision constraints to
match the available DOFs, and is enabled by setting the reduceConstraints property for either the collision manager or
the CollisionBehavior for a particular collision pair to true. The default value of reduceConstraints is false. As with
all properties, it can be set interactively in the GUI, or in code using the property’s accessor methods,

boolean getReduceContraints ()
void setReduceContraints (boolean enable)

as illustrated by the following code fragments:

MechModel mech;

// enable constraint reduction for all collisions:
mech.getCollisionManager () .setReduceContraints (true);
// enable constraint reduction for collisions between bodyA and bodyB:

CollisionBehavior behav =
mech.setCollisionBehavior (bodyA, bodyB, true);
behav.setReduceContraints (true);

Contact regularization is a different technique in which contact constraints are made “soft” by adding compliance and
damping terms. This means that they no longer remove DOFs from the system, and so overconstraining cannot occur,
but contact penetration is no longer strictly enforced and the overall computation time can be increased.

The regularization described here is analogous to that used for joints and connectors, discussed in Section 3.3.7.

Regularization can be enabled by setting the compliance and damping properties for either the collision manager or the
CollisionBehavior for a particular collision pair. Compliance is the inverse of stiffness, and so a value of 0 (the default)
implies “infinitely” stiff contact constraints. Regularization is enabled whenever the compliance is set to a value greater
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than 0, with stiffness decreasing as compliance increases. While it is not required to set the damping property, it is
usually desirable to set it to a value that approximates critical damping in order to prevent “bouncing” contact behavior.
Compliance and damping can be set in the GUI by editing the properties of either the collision manager or a specific
collision behavior, or set in code using the accessor methods

double getCompliance ()
void setCompliance (double c)

double getDamping ()
void setDamping (double d)

as is illustrated by the following code fragments:

MechModel mech;
double compliance;
double damping;

determine compliance and damping values

// set damping and compliance for all collisions:
mech.getCollisionManager () .setCompliance (compliance);
mech.getCollisionManager () .setDamping (damping) ;

// enable compliance and damping between bodyA and bodyB:
CollisionBehavior behav =

mech.setCollisionBehavior (bodyA, bodyB, true);
behav.setCompliance (compliance);
behav.setDamping (damping) ;

An important question is what values to choose for compliance and damping. At present, there is no automatic way
to determine these, and so some experimental parameter tuning is often necessary. Compliance introduces an approx-
imately linear stiffness into each contact constraint, with a stiffness constant K that results in a force acting along the
constraint direction (i.e., the contact normal) with a magnitude f is given by

f=Kd 4.5)

where d is the contact penetration depth. Appropriate values of K will depend on the desired maximum penetration
depth and other loadings acting on the body. The mass of the collidable bodies may also be relevant if one wants

to control how fast the contact stabilizes. (The mass of every CollidableBody can be determined by its getMass ()
method.) Since K acts on a per-contact basis, the resulting total force will increase with the number of contacts.

Once K is determined, the compliance value C is simply the inverse: C = 1/K. Furthermore, the damping D can then be
estimated based on the desired damping ratio §, using the formula

D =2{VKM (4.6)

where M is the combined mass of the collidable bodies (or the mass of one body if the other is non-dynamic). Typically,
the desired damping will be close to critical damping, for which § = 1.

An example that allows a user to play with contact regularization is given in Section 4.6.6.

4.6.4 Penetration tolerance and limitations

ArtiSynth’s attempt to separate colliding bodies at the end of each time step may cause a jittering behavior around the
colliding area, as the surface collides, separates, and re-collides. This can usually be stabilized by maintaining a certain
interpenetration distance during contact. This distance is controlled by the MechModel property penetrationTol.
ArtiSynth attempts to compute a suitable default value for this property, but for some applications it may be necessary to
control the value explicitly using the MechModel methods

setPenetrationTol (double dist);
double getPenetrationTol () ;
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Another issue is that because ArtiSynth currently uses static collision detection, it is possible for objects that are fast
enough or thin enough to completely pass through each other in one simulation step. This means that for thin objects, it
is important to keep the step size small enough to prevent such undetected interpenetration.

ArtiSynth also uses a “box” friction approximation [7] to compute dry friction, instead of the polyhedralized fric-
tion cones common in the multibody dynamics literature [1, 15]. This allows for a less expensive and more robust
computation at the expense of some accuracy.

4.6.5 Contact rendering

As mentioned above, CollisionBehavior also contains properties that can enable and control the rendering of artifacts
associated with the contact. These include intersection contours and contact points and normals, as described below.
Colors, line widths, and other graphical details are controlled by the generic render properties (Section 4.3) of the
collision manager, or by render properties which can be set individually within the behavior components.

By default, contact rendering is disabled. To enable it, one must set the collision manager to be visible, which can be
done using a code fragment like the following:

RenderProps.setVisible (mechModel.getCollisionManager (), true);

Specific properties of CollisionBehavior that control contract rendering include:

drawlIntersectionContours

Boolean value requesting drawing of the intersection contours between collidable meshes, using the edgeWidth
and edgeColor render properties.

drawlntersectionPoints

Boolean value requesting drawing of the interpenetrating vertices on each collidable mesh, using the pointStyle,
pointSize, pointRadius, and pointColor render properties.

drawContactNormals

Boolean value requesting drawing of the normals associated with each contact constraint, using the lineStyle,
lineRadius, lineWidth, and lineColor render properties. The length of the normals is controlled by the contactNor-
malLen property of the collision manager, which will be set to an appropriate default value if not set explicitly.

drawContactForces

Boolean value requesting drawing of the forces associated with each contact constraint, using the lineStyle,
lineRadius, edgeWidth, and edgeColor (or lineColor if edgeColor is null) render properties. The forces are drawn
as line segments starting at each contact point and running parallel to the contact normal, with a length given

by the current contact impulse value multiplied by the contactForcelLenScale property of the collision manager
(which has a default value of 1). The reason for using edgeWidth and edgeColor instead of lineWidth and lineColor
is to allow the application to set the render properties such that both normals and forces can be visible if both are
being rendered at the same time.

drawColorMap

An enum of type CollisionBehavior.ColorMapType requesting that a color map be drawn over the contact regions
showing a scalar value such as penetration depth or contact force pressure. The collidable (0 or 1) onto which

the color map is drawn is controlled by the colorMapCollidable property (described below). The range of values
used for generating the map is controlled by the colorMapRange property of either the collision manager or the
behavior, as described below. The values are mapped onto colors using the colorMap property of the collision
manager.

Values of CollisionBehavior.ColorMapType include:

NONE
The color map is disabled. This is the default.

PENETRATION_DEPTH
The color map shows penetration depth of one collidable mesh with respect to the other. If one or both
collidable meshes are open, then the penetration computation works more reliably if the colliderType
property is set to AJL_CONTOUR (Section 4.5.3).
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CONTACT_PRESSURE

The color map shows the contact pressures over the contact region. Contact pressures are determined by
examining the forces at the contact constraints and then distributing these over the surrounding faces.

The color map itself is drawn as a patch formed from the collidable’s collision mesh, using faces and vertices
associated with the collision region. The vertices of the patch are set to colors corresponding to the associated
value (e.g., penetration depth or pressure) at that vertex, and the surrounding faces are colored appropriately. The
resolution of the color map is thus determined by the resolution of the collision mesh, and so the application must
ensure this is high enough to ensure proper results. If the mesh has only a few triangles (e.g., a rectangle with two
triangles per face), the color interpolation may be spread over an unreasonably large area. Examples of color map
usage are given in Sections 4.6.7 and 6.12.2.

colorMapCollidable Integer value of either O or 1 specifying the collidable onto which color maps should be drawn
when the drawColorMap property is set to a value other than NONE. O or 1 selects either the first or second
collidable associated with the collision behavior.

colorMapRange

Composite property of the type ScalarRange that controls the range of values used for color map rendering. Sub
properties include interval, which gives the value range itself, and updating, which specifies how this interval
should be updated: FIXED (no updating), AUTO_EXPAND (interval is expanded as values increase or decrease), and
AUTO_FIT (interval is reset to fit the values at every render step).

When the colorMapRange value for a CollisionBehavior is set to null (which is the default), the col-
orMapRange of the CollisionManager is used instead. This has the advantage of ensuring that the same
color map range will be used across all collision interactions.

colorMapInterpolation

An enum of type Renderer.ColorInterpolation that explicitly specifies how colors in any rendered color map
should be interpolated. RGB and HSV (the default) specify interpolation in RGB and HSV space, respectively. HSV
interpolation is the default as it is generally better suited to rendering maps that are purely color-based.

Most of the above properties are also present in the CollisionManager, from which they are inherited by all behaviors
that do not set them explicitly.

Generic render properties within the collision manager can be set in the same way as the visibility, using the RenderProps
methods presented in Section 4.3.2:

Renderable cm = mechModel.getCollisionManager () ;
RenderProps.setEdgeWidth (cm, 2);
RenderProps.setEdgeColor (cm, Color.Red);

As mentioned above, generic render properties can also be set individually for specific behaviors. This can be done
using code fragments like this:

CollisionBehavior behav = mechModel.getCollisionBehavior (bodA, bodB);
RenderProps.setlLineWidth (behav, 2);
RenderProps.setLineColor (behav, Color.Blue);

To access these properties on a read-only basis, one can do

RenderProps props = mechModel.getCollisionManager () .getRenderProps () ;
OR
RenderProps props = behav.getRenderProps () ;

4.6.6 Example: Rendering normals and contours
A simple model illustrating contact rendering is defined in

artisynth.demos.tutorial.BallPlateCollide
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Figure 4.9: BallPlateCollide showing contact normals (red) and collision contour (blue) of the ball colliding with the

plate.

This shows a ball colliding with a plate, while rendering the resulting contact normals in red and the intersection
contours in blue. This demo also allows the user to experiment with contact regularization (Section 4.6.3) by setting

compliance and damping properties in a control panel.

The complete source code is shown below:

I package artisynth.demos.tutorial;

%)

3 import

5 import
6 import
7 import
s import
9 import
10 import
11 import
2 import

14 public

java.awt.Color;

artisynth.core.gui.ControlPanel;
artisynth.core.mechmodels.CollisionManager ;
artisynth.core.mechmodels.MechModel;
artisynth.core.mechmodels.RigidBody;
artisynth.core.workspace.RootModel;
maspack.matrix.RigidTransform3d;
maspack.render.RenderProps;
maspack.render.Renderer;

class BallPlateCollide extends RootModel {

16 public void build (String[] args) {

// create MechModel and add to RootModel
MechModel mech = new MechModel ("mech");
addModel (mech);

// create and add the ball and plate

RigidBody ball = RigidBody.createIcosahedralSphere ("ball", 0.8, 0.1,
ball.setPose (new RigidTransform3d (0, 0, 2, 0.4, 0.1, 0.1));
mech.addRigidBody (ball);

RigidBody plate = RigidBody.createBox ("plate", 5, 5, 0.4, 1);
plate.setDynamic (false);

mech.addRigidBody (plate);

// turn on collisions
mech.setDefaultCollisionBehavior (true, 0.20);

// make ball transparent so that contacts can be seen more clearly
RenderProps.setFaceStyle (ball, Renderer.FaceStyle.NONE) ;
RenderProps.setShading (ball, Renderer.Shading.NONE) ;




36 RenderProps.setDrawEdges (ball, true);
37 RenderProps.setEdgeColor (ball, Color.WHITE);

39 // enable rendering of contacts normals and contours

40 CollisionManager cm = mech.getCollisionManager () ;

41 RenderProps.setVisible (cm, true);

) RenderProps.setLineWidth (cm, 3);

43 RenderProps.setLineColor (cm, Color.RED);

44 RenderProps.setEdgeWidth (cm, 3);

45 RenderProps.setEdgeColor (cm, Color.BLUE);

46 cm.setDrawContactNormals (true);

47 cm.setDrawIntersectionContours (true);

48

49 // create a control panel to allow contact regularization to be set
50 ControlPanel panel = new ControlPanel ();

51 panel.addWidget (mech.getCollisionManager (), "compliance");
52 panel.addWidget (mech.getCollisionManager (), "damping");

addControlPanel (panel);

The build () method starts by creating and adding a MechModel in the usual way (lines 19-20). The ball and plate are
both created as rigid bodies (lines 22-28), with the ball pose set so that its origin is above the plate at (0, 0, 2) and its
orientation is perturbed so that it will not land on the plate symmetrically (line 24). Collisions between the ball and plate
are enabled at line 31, with a friction coefficient of 0.2. To allow better visualization of the contacts, the ball is made
transparent by disabling the drawing of faces, and instead enabling the drawing of edges in white with no shading (lines
33-37).

Rendering of contacts and normals is established by setting the render properties of the collision manager (lines 39-47).
First, the collision manager is set visible (which it is not by default). Then lines (used to render the contact normals)
and edges (used to render to intersection contour) are set to red and blue, each with a pixel width of 3. Drawing of the
normals and contour is enabled at lines 46-47.

Lastly, for interactively controlling registration, a control panel is built to allow users to adjust the collision manager’s
compliance and damping properties (lines 49-53).

To run this example in ArtiSynth, select All demos > tutorial > BallPlateCollide from the Models menu. When run, the
ball will collide with the plate and the contact normals and collision contours will be drawn as shown in Figure 4.9.

To enable contact regularization, set the compliance to a non-zero value. A value of 0.001 (which corresponds to

a contact stiffness of 1000) causes the ball to bounce considerably when it lands. To counteract this bouncing, the
damping should be set to a non-zero value. Since the ball has a mass of 0.21, formula (4.6) suggests that critical
damping (for which { = 1) can be achieved with D = 30. This does in fact stop the bouncing. Increasing the compliance
to 0.01 results in the ball penetrating the plate by a noticeable amount.

4.6.7 Example: Rendering a color map

As described above, it is possible to use the drawColorMap property of the collision behavior to render a color map
over the contact area showing a scalar value such as penetration depth or contact pressure. A simple example of this is
defined in

artisynth.demos.tutorial.PenetrationRender

which sets drawColorMap to PENETRATION_DEPTH in order to display the penetration depth of one hemispherical mesh
with respect to another.

The code to render contact pressure is very similar, with drawColorMap instead set to CONTACT_PRESSURE. An
example for finite elements models is shown in Section 6.12.2.




ArtiSynth Modeling Guide 103

As mentioned above, proper results require that the collision mesh for the collidable on which the map is being
drawn has a sufficiently high resolution.

Figure 4.10: PenetrationRender showing the penetration depth of the bottom mesh with respect to the top, with red
indicating greater depth. A translation dragger fixture at the top is being used to move the top mesh around, while the
penetration range and associated colors are displayed on the color bar at the right.

The complete source code is shown below:

I package artisynth.demos.tutorial;

3 import java.awt.Color;

import maspack.geometry.PolygonalMesh;
¢ ilmport maspack.geometry.MeshFactory;
7 import maspack.matrix.RigidTransform3d;
s import maspack.render.*;
9 import maspack.render.Renderer.FaceStyle;
0 import maspack.render.Renderer.Shading;
11 import artisynth.core.mechmodels.*;
2 import artisynth.core.mechmodels.CollisionManager .ColliderType;
3 import artisynth.core.mechmodels.CollisionBehavior.ColorMapType;
4 import artisynth.core.util.ScalarRange;
15 import artisynth.core.workspace.RootModel;
16 import artisynth.core.renderables.ColorBar;
17 import maspack.render.color.JetColorMap;

v public class PenetrationRender extends RootModel ({

21 // Convenience method for creating colors from [0-255] RGB values
2 private static Color createColor (int r, int g, int Db) {
return new Color (r/255.0f, g/255.0f, b/255.0f);

2% private static Color CREAM = createColor (255, 255, 200);
private static Color GOLD = createColor (255, 150, 0);

29 // Creates and returns a rigid body built from a hemispherical mesh. The
// body is centered at the origin, has a radius of ’'rad’, and the z axis 1is
31 // scaled by ’zscale’.
RigidBody createHemiBody (
MechModel mech, String name, double rad, double zscale, boolean flipMesh) {




35 PolygonalMesh mesh = MeshFactory.createHemisphere (
36 rad, /*slices=*/20, /*levels=*/10);

37 mesh.scale (1, 1, zscale); // scale mesh in the z direction

38 if (flipMesh) {

39 // flip upside down is requested

40 mesh.transform (new RigidTransform3d (0, 0, 0, 0, 0, Math.PI));
41 }

@ RigidBody body = RigidBody.createFromMesh (

43 name, mesh, /*density=*/1000, /*scale=*/1.0);

44 mech.addRigidBody (body);

45 body.setDynamic (false); // body is only parametrically controlled
46 return body;

47 }

48

49 // Creates and returns a ColorBar renderable object

50 public ColorBar createColorBar () {

51 ColorBar cbar = new ColorBar () ;

52 cbar.setName ("colorBar");

53 cbar.setNumberFormat ("%.2f"); // 2 decimal places

54 cbar.populatelLabels (0.0, 1.0, 10); // Start with range [0,1], 10 ticks
55 cbar.setLocation (-100, 0.1, 20, 0.8);

56 cbar.setTextColor (Color.WHITE);

57 addRenderable (cbar) ; // add to root model’s renderables
58 return cbar;

61 public void build (String[] args) {
62 MechModel mech = new MechModel ("mech");
63 addModel (mech);

65 // create first body and set its rendering properties
66 RigidBody body0 = createHemiBody (mech, "bodyO", 2, -0.5, false);
67 RenderProps.setFaceStyle (body0, FaceStyle.FRONT_AND_BACK) ;

68 RenderProps.setFaceColor (body0, CREAM);

69

70 // create second body and set its pose and rendering properties
71 RigidBody bodyl = createHemiBody (mech, "bodyl", 1, 2.0, true);
7 bodyl.setPose (new RigidTransform3d (0, 0, 0.75));

73 RenderProps.setFaceStyle (bodyl, FaceStyle.NONE); // set up

74 RenderProps.setShading (bodyl, Shading.NONE) ; // wireframe
75 RenderProps.setDrawEdges (bodyl, true); // rendering

76 RenderProps.setEdgeColor (bodyl, GOLD);

78 // create and set a collision behavior between body0 and bodyl, and make
79 // collisions INACTIVE since we only care about graphical display
80 CollisionBehavior behav = new CollisionBehavior (true, 0);

81 behav.setMethod (CollisionBehavior .Method.INACTIVE) ;

82 behav.setDrawColorMap (ColorMapType .PENETRATION_DEPTH) ;

83 behav.setColorMapCollidable (1); // show penetration of mesh 0

84 mech.setCollisionBehavior (body0, bodyl, behav);

85

86 CollisionManager cm = mech.getCollisionManager () ;

87 // works better with open meshes if AJL_CONTOUR is selected

88 cm.setColliderType (ColliderType.AJL_CONTOUR) ;

89 // set other rendering properities in the collision manager:

90 RenderProps.setVisible (cm, true); // enable collision rendering
91 cm.setDrawIntersectionContours (true); // draw contours

9 RenderProps.setEdgeWidth (cm, 3); // with a line width of 3

93 RenderProps.setEdgeColor (cm, Color.BLUE); // and a blue color

94 // create a custom color map for rendering the penetration depth

95 JetColorMap map = new JetColorMap () ;

96 map.setColorArray (

97 new Color[] {

98 CREAM, // no penetration
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99 createColor (255, 204, 153),

100 createColor (255, 153, 102),

101 createColor (255, 102, 51),

102 createColor (255, 51, 0),

103 createColor (204, 0, 0), // most penetration
104 b)) g

105 cm.setColorMap (map);

106 // set color map range to "auto fit".
107 cm.setColorMapRange (new ScalarRange (ScalarRange.Updating.AUTO_FIT));

109 // create a separate color bar to show depth values associated with the
10 // color map

11 ColorBar cbar = createColorBar () ;

112 cbar.setColorMap (map);

115 public void prerender (RenderList 1list) {
116 super.prerender (list); // call the regular prerender method first

18 // Update the color bar labels based on the collison manager’s

119 // color map range that was updated in super.prerender ().

120 //

121 // Object references are obtained by name using ’findComponent’. This is
122 // more robust than using class member variables, since the latter will
123 // be lost if we save and restore this model from a file.

124 ColorBar cbar = (ColorBar) (renderables () .get ("colorBar"));

125 MechModel mech = (MechModel) findComponent ("models/mech");

126 RigidBody body0 = (RigidBody)mech.findComponent ("rigidBodies/body0");
127 RigidBody bodyl = (RigidBody)mech.findComponent ("rigidBodies/bodyl");
128

129 CollisionManager cm = mech.getCollisionManager ();

130 ScalarRange range = cm.getColorMapRange () ;

131 cbar.updatelLabels (0, 1000*range.getUpperBound ());

To improve visibility, the example uses two rigid bodies, each created from an open hemispherical mesh using the
method createHemiBody () (lines 32-47). Because this example is strictly graphical, the bodies are set to be non-
dynamic so that they can be moved around using the viewer’s graphical dragger fixtures (see the section “Transformer
Tools” in the ArtiSynth User Interface Guide). Rendering properties for each body are set at lines 67-68 and 73-76, with
the top body being rendered as a wireframe to improve visibility.

Lines 80-84 create and set a collision behavior between the two bodies with the drawColorMap property set to
PENETRATION_DEPTH. Because for this example we want to show only the penetration and don’t want a collision
response, we set the collision method to be Method. INACTIVE. At line 88, the collider type used by the collision man-
ager is set to ColliderType.AJL_CONTOUR, since this provides more reliable penetration calculations for open meshes.
Other rendering properties are set for the collision manager at lines 90-107, including a custom color map that varies
between CREAM (the color of the mesh) for no penetration and dark red for maximum penetration. The updating of the
color map range in the collision manager is set to AUTO_FIT so that it will be recomputed at every time step. (Since the
collision manager’s color map range is set to “auto fit” by default, this is shown for illustrative purposes only. It is also
possible to override the collision manager’s color map range by setting the colorMapRange property in specific collision
behaviors.)

Atline 111, a color bar is created and added to the scene, using the method createColorBar () (lines 50-59), to ex-
plicitly show the depth that corresponds to the different colors. The color bar is given the same color map that is used to
render the depth. Since the depth range is updated every time step, it is also necessary to update the corresponding labels
in the color bar. This is done by overriding the root model’s prerender () method (lines 115-132), where we obtain the
color map range for the collision manager and use it to update the color bar labels. (Note that super.prerender (1ist)
is called first, since the color map ranges are updated there.) References to the color bar, MechModel, and bodies are
obtained using the CompositeComponent methods get() and findComponent(). This is more robust that storing these
references in member variables, since the latter would be lost if the model is saved to and reloaded from a file.

To run this example in ArtiSynth, select All demos > tutorial > PenetrationRender from the Models menu. When run, the
meshes will collide and render the penetration depth of the bottom mesh, as shown in Figure 4.10.
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When defining the color map for rendering (lines 99-108 in the example), it is recommended that the color
corresponding to zero be set to the face color of the collidable mesh. This will allow the color map to blend
properly to the regular mesh color.

4.7 Distance Grids and Components

Distance grids, implemented by the class DistanceGrid, are currently used in ArtiSynth for both collision handling
(Section 4.6.1) and spring and muscle wrapping around general surfaces (Section 7.3). A distance grid is a regular three
dimensional grid that is used to interpolate a scalar distance field and its associated normals. For collision handling and
wrapping purposes, this distance function is assumed to be signed and is used to estimate the penetration depth and
associated normal direction of a point within some 3D object.

A distance grid consists of n, X ny X n, evenly spaced vertices partitioning a volume into 7, X ry X r, cuboid cells, with
r=ny—1, rp=n,—-1, r,=n,—1.

The grid has overall widths wy, wy, w; along each axis, so that the widths of each cell are wy/ry, wy/ry, w; /1.

Scalar distances and normal vectors are stored at each vertex, and interpolated at points within each cell using trilinear
interpolation. Distance values (although not normals) can also be interpolated quadratically over a composite quadratic
cell composed of 2 x 2 x 2 regular cells. This provides a smoother result than trilinear interpolation and is currently used
for muscle wrapping. To ensure that all points within the grid can be assigned a unique quadratic cell, the grid resolution
is restricted so that ry, ry, r, are always even. Distance grids are typically generated automatically from mesh data. More
details on the actual functionality of distance grids is contained in the DistanceGrid API documentation.

When used within ArtiSynth, distance grids are generally contained within an encapsulating DistanceGridComp
component, which maintains a mesh (or list of meshes) used to generate the grid, and exports properties for controlling
its resolution, mesh fit, and visualization. For any object that implements CollidableBody (which includes RigidBody),
its distance grid component can be obtained using the method

DistanceGridComp getDistanceGridComp () ;

A distance grid maintains its own local coordinate system, which is related to world coordinates by a local-to-world
transform that can be queried and set via the component methods setLocalToWorld() and getLocalToWorld(). For grids
associated with a rigid body, the local coordinate system is synchronized with the rigid body’s coordinate system (which
is queried and set via setPose() and getPose()). The grid’s axes are nominally aligned with the local coordinate system,
although they can be subject to an additional orientation offset (e.g., see the description of the property fitWithOBB
below).

By default, a DistanceGridComp generates its grid automatically from its mesh data, within an axis-aligned bounding
volume with the resolutions ry, ry, , chosen automatically. However, in some cases it may be necessary to control the
resolution explicitly. DistanceGridComp exports the following properties to control both the grid’s resolution and how
it is fit around the mesh data:

resolution A vector of 3 integers that specifies the resolutions ry, ry, 7. If any value in this vector is set < 0, then all
values are set to zero and the maxResolution property is used to determine the grid divisions instead.

maxResolution Sets the default maximum cell resolution that should be used when constructing the grid. This is the
number of cells that should be used along the longest bounding volume axis, with the cell counts along the other
axes adjusted to maintain a uniform cell size. If all three values of resolution are > 0, those will be used to specify
the cell resolutions instead.

fitWithOBB If true, offsets the orientation of the grid’s X, y, and z axes (with respect to local coordinates) to align
with an oriented bounding box fit to the mesh. Otherwise, the grid axes are aligned with those of the local
coordinate frame.

marginFraction Specifies the fractional amount by which the mesh should be extended with respect to a bounding box
fit around the mesh(es). The default value is 0. 1.
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As with all properties, these can be set either interactively (either using a custom control panel or by selecting the
component and then choosing Edit properties ... from the right-click context menu), or through their set/get accessor
methods. For example, resolution and maxResolution can be set and queried via the methods:

void setResolution (Vector3i res)
Vector3i getResolution ()

void setMaxResolution (int max)
int getMaxResolution ()

When used for either collisions or wrapping, the distance values interpolated by a distance grid are used to determine
whether a point is inside or outside some 3D object, with the inside/outside boundary being the isosurface surface
corresponding to a distance value of 0. This isosurface surface (which differs depending on whether trilinear or
quadratic distance interpolation is used) therefore represents the effective collision boundary, and it may be somewhat
different from the mesh surface used to generate it. It may be smoother, or may have discretization artifacts, depending
on both the smoothness and complexity of the mesh and the grid’s resolution (Figure 4.11). It is therefore important to
be able to visualize both the trilinear and quadratic isosurfaces. DistanceGridComp provides a number of properties to
control this along with other aspects of grid visualization:

renderProps Render properties that control the colors, styles, and sizes (or widths) used to render faces, lines and
points (Section 4.3). Point, line and edge properties are used for rendering grid vertices, normals, and cell edges,
while face properties are used for rendering the isosurface. One can select which components are visible by
zeroing appropriate render properties: zeroing pointRadius (or pointSize, if the pointStyle is POINT)
disables drawing of the vertices; zeroing 1ineRadius (or lineWidth, if the 1ineStyle is LINE) disables drawing
of the normals; and zeroing edgeWidth disables drawing of the cell edges. For an illustration, see Figure 4.12.

renderGrid If set to true, causes the grid’s vertices, normals and cell edges to be rendered, using the render properties
as described above.

renderRanges Can be used to restrict which part of the distance grid is drawn. The value is a string which specifies
the vertex ranges along the x, y, and z axes. In general, the grid will have n, x n, x n; vertices along the x, y,
and z axes, where ny, ny, and n; are each one greater than the cell resolutions ry, ry, and r,. The range string
should contain three range specifications, one for each axis, where each specification is either * (all vertices), n:m
(vertices in the index range n to m, inclusive), or n (vertices only at index n). A range specification of "* * *" (or
"+") means draw all vertices, which is the default behavior. Other examples include:

xR all vertices along x and z, and those at index 7 along y
"0 2 3" a single vertex at indices (0, 2, 3)
"0:3 4:5 *" all vertices between 0 and 3 along x, and 4 and 5 along y

For an illustration, see Figure 4.12.

renderSurface If set to true, renders the grid’s isosurface, as determined by the surfaceType property. See Figure 4.11,
right.

surfaceType Controls the interpolation used to form the isosurface rendered in response to the renderSurface property.
QUADRATIC (the default) specifies a quadratic isosurface, while TRILINEAR specifies a trilinear isosurface.

surfaceDistance Controls the level set value used to determine the isosurface. To render the isosurface used for
collision handling or muscle wrapping, this value should be 0.

When visualizing the isosurface for a distance grid, it is generally convenient to also turn off visualization for the meshes
used to generate the grid. For RigidBody objects, this can be accomplished easily using the convenience property
gridSurfaceRendering. If set true, it will cause the isosurface to be rendered instead of its mesh components. The
isosurface type will be that indicated by the grid component’s surfaceType property, and the rendering will occur
independently of the visibility settings for the meshes or the grid component.

4.8 Transforming geometry

Certain ArtiSynth components, including MechModel, implement the interface TransformableGeometry, which allows
the geometric transformation of the component’s attributes (such as meshes, points, frame locations, etc.), along with its
descendant components. The interface provides the method
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Figure 4.11: A mesh used to generate a distance grid, (left), along with a visualization of the grid itself (middle) and the
corresponding quadratic isosurface (right). Notice how in this case the quadratic isosurface is smoother than the coarser
features of the original mesh.

Figure 4.12: Rendering a subportion of a distance grid restricted along the x axis by setting renderRangesto "9:12 *
*"_with render properties set to show the grid cells (left), and the vertices and normals (right).

public void transformGeometry (AffineTransform3dBase X);

where X is an AffineTransform3dBase that may be either a RigidTransform3d or a more general AffineTransform3d
(Section 2.2).

transformGeometry(X) can be used to translate, rotate, shear or scale components. It can be applied to an entire model
or individual components. Unlike scaleDistance(), it actually changes the physical geometry and so may change the
simulation behavior. For example, applying transformGeometry () to a RigidBody will cause the shape of its mesh
to change, which will change its mass if its inertiaMethod property is set to DENSITY. Figure 4.13 shows a simplified
illustration of both rigid and affine transformations being applied to a model.

The example below shows how to apply a transformation to a model in code. In it, a MechModel is first scaled by the
factors 1.5, 2, and 3 along the x, y, and z axes, and then flipped upside down using a RigidTransform3d that rotates it
by 180 degrees about the x axis:

MechModel mech;

build mech model
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Figure 4.13: Simple illustration of a model (left) undergoing a rigid transformation (middle) and an affine transforma-
tion (right).

AffineTransform3d X = new AffineTransform3d () ;
X.applyScaling (1.5, 2, 3);
mech.transformGeometry (X);

RigidTransform3d T =
new RigidTransform3d (/*x,y,z=*/0, 0, 0, /*r,p,y=*/0, 0, Math.PI);
mech.transformGeometry (T);

4.8.1 Nonlinear transformations

The TransformableGeometry interface also supports general, nonlinear geometric transforms. This can be done
using a Geometry Transformer, which is an abstract class for performing general transformations. To apply such
a transformation to a component, one can create and initialize an appropriate subclass of GeometryTransformer
to perform the desired transformation, and then apply it using the static transform method of the utility class
TransformGeometryContext:

ModelComponent comp; // component to be transformed
GeometryTransformer gtr; // transformer to do the transforming

instantiate and initialize the transformer

TransformGeometryContext .transform (comp, gtr, /*flags=*/0);
At present, the following subclasses of GeometryTransformer are available:

RigidTransformer

Implements rigid 3D transformations.

AffineTransformer

Implements affine 3D transformations.

FemGeometryTransformer

Implements a general transformation, using the deformation field induced by a finite element model.

TransformGeometryContext also supplies the following convenience methods to apply transformations to components
or collections of components:

void transform (Iterable<TransformableGeometry >, GeometryTransformer, int);
void transform (TransformableGeometry[], GeometryTransformer, int);
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void transform (TransformableGeometry, AffineTransform3dBase, int);
void transform (Iterable<TransformableGeometry>, AffineTransform3dBase, int);
void transform (TransformableGeometry|[], AffineTransform3dBase, int);

The last three of these methods create an instance of either RigidTransformer or AffineTransformer for the supplied
AffineTransform3dBase. In fact, most TransformableGeometry components implement their transformGeometry(X)
method as follows:

public void transformGeometry (AffineTransform3dBase X) {
TransformGeometryContext .transform (this, X, 0);

The FemGeometryTransformer class is derived from the class DeformationTransformer, which uses the single method
getDeformation() to obtain deformation field information at a specified reference position:

void getDeformation (Vector3d p, Matrix3d F, Vector3d r)

If the deformation field is described by X' = f(x), then for a given reference position r (in undeformed coordinates), this
method should return the deformed position p = f(r) and the deformation gradient
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== %)

evaluated at r.

FemGeometryTransformer obtains f(x) and F from a FemModel3d (see Section 6) whose elemental rest positions en-
close the components to be transformed, using the fact that a finite element model creates an implied piecewise-smooth
deformation field as it deviates from its rest position. For each reference point r needed by the transformation process,
FemGeometryTransformer finds the FEM element whose rest volume encloses r, and then uses the corresponding
shape function coordinates to compute f(x) and F from the element’s deformation. If the FEM model does not enclose
r, the nearest element is used to determine the shape function coordinates (however, this calculation becomes less accu-
rate and meaningful the farther r is from the FEM model). Transformations based on FEM models are further illustrated
in Section 4.8.2, and by Figure 4.15. Full details on ArtiSynth finite element models are given in Section 6.

Besides FEM models, there are numerous other ways to create deformation fields, such as radial basis functions, thin
plate splines, etc. Some of these may be more appropriate for a particular application and can provide deformations
that are globally smooth (as opposed to piecewise smooth). It should be relatively easy for an application to create
its own subclass of DeformationTransformer to implement the deformation of choice by overriding the single
getDeformation() method.

4.8.2 Example: the FemModelDeformer class

An FEM-based geometric transformation of a MechModel is facilitated by the class FemModelDeformer, which one
can add to an existing RootModel to transform the geometry of a MechModel already located within that RootModel.
FemModelDeformer subclasses FemModel3d to include a FemGeometryTransformer, and provides some utility
methods to support the transformation process.

A FemModelDeformer can be added to a RootModel by adding the following code fragment to the end of the build ()
method:

public void build (String[] args) {
build the model

FemModelDeformer deformer =

new FemModelDeformer ("deformer", this, /*maxn=*/10);
addModel (deformer);
// add a control panel (this is optional)
addControlPanel (deformer.createControlPanel ());

When the deformer is created, its constructor searches the specified RootModel to locate the first top-level MechModel.
It then creates a hexahedral FEM grid around this model, with maxn specifying the number of cells along the maximum
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dimension. Material and mass properties of the model are computed automatically from the underlying MechModel
dimensions (but can be altered if necessary after construction). When added to the RootModel, the deformer becomes
another top-level model that can be deformed independently of the MechModel to create the required deformation
field, as described below. It also supplies application-defined menu items that appear under the Application menu

in the ArtiSynth menu bar (see Section 5.5). The deformer’s createControlPanel () can also be used to create a
ControlPanel (Section 5.1) that controls the visibility of the FEM model and the dynamic behavior of both it and the
MechModel.

An example is defined in
artisynth.demos.tutorial.DeformedJointedCollide

where the JointedCollide example of Section 4.5.2 is extended to include a FemModelDeformer using the code
described above.
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Figure 4.14: The DeformedJointedCollide example initially loaded into ArtiSynth.

To load this example in ArtiSynth, select All demos > tutorial > DeformeddJointedCollide from the Models menu. The
model should load and initially appear as in Figure 4.14, where the control panel appears on the right.

The underlying MechModel (or "model") can now be transformed by first deforming the FEM model (or "grid") and then
using the resulting deformation field to effect the transformation:

1. Make the model non-dynamic and the grid dynamic by unchecking model dynamic and checking grid dynamic
in the control panel. This means that when simulation is run, the model will be inert while the grid will respond
physically.

2. Deform the grid using simulation. One easy way to do this is to fix certain nodes, generally on or near the grid
boundary, and then move some of these using the translation or transrotator tool while simulation is running. To
fix a set of nodes, select them in the viewer, choose Edit properties ... from the right-click context menu, and then
uncheck their dynamic property. To easily select a large number of nodes without also selecting model compo-
nents or grid elements, one can specify FemNode in the selection filter widget. (See the sections “Transformer
Tools” and “Selection filtering” in the ArtiSynth User Interface Guide.)

3. After the grid has been deformed, choose deform from the Application menu in the ArtiSynth toolbar to transform
the model. Afterwards, the transformation can be undone by choosing undo, and the grid can be reset by choosing
reset grid.

4. To run the deformed model after the transformation, it should again be made dynamic by checking model dynamic
in the control panel. The itself grid can be made non-dynamic, and it and/or its nodes can be made invisible by
unchecking grid visible and/or grid nodes visible in the control panel.



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

Figure 4.15: Deformation achieved in DeformedJointedCollide, showing both the model and grid (using an ortho-
graphic view) before and after the deformation.

The result of a possible deformation is shown in Figure 4.15.

Note: FemModelDeformer is not intended to provide a general purpose solution to nonlinear geometric
transformations. Rather, it is mainly intended to illustrate the capabilities of GeometryTransformer and the
TransformableGeometry interface.

4.8.3 Implementation and behavior

As indicated above, the management of transforming the geometry for one or more components is handled by the
TransformGeometryContext class. The transform operations themselves are carried out by this class’s apply() method,
which (a) assembles all the components that need to be transformed, (b) performs the actual transform operations, (c)
invokes any required updating actions on other components, and finally (d) notifies parent components of the change
using a GeometryChangeEvent.

To support this, ArtiSynth components which implement TransformableGeometry must also supply the methods

public void addTransformableDependencies (
TransformGeometryContext context, int flags);

public void transformGeometry (
GeometryTransformer gtr, TransformGeometryContext context, int flags);

The first method, addTransformableDependencies(context,flags), is called in step (a) to add to the context any additional
components which should be transformed along with this component. This includes any descendants which should be
transformed, since the transformation of these should not generally be done within

transformGeometry (gtr, context, flags).

The second method, transformGeometry(gtr,context,flags), is called in step (b) to perform the actual transformation on
this component. It should use the supplied geometry transformer gt r to transform its attributes, as well as context to
query what other components are also being transformed and to request any needed updating actions to be called in step
(c). The flags argument specifies conditions associated with the transformation, which at the moment may currently
include:

TG_SIMULATING

The system is currently simulating, and therefore it may not be desirable to transform all attributes;

TG_ARTICULATED

Rigid body articulation constraints should be enforced as the transform proceeds.
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Full details for all this are given in the documentation for TransformGeometryContext.

The transforming behavior of a component is up to its implementing method, but the following rules are generally
observed:

1. Transformable descendants are also transformed, by using addTransformableDependencies () to add them to
the context as described above;

2. When the nodes of an FEM model (Section 6) are transformed, the rest positions are also transformed if the
system is not simulating (i.e., if the TG_SIMULATING flag is not set). This also causes the mass of the adjacent
nodes to be recomputed from the densities of the adjacent elements;

3. When dynamic components are transformed, any attachments and constraints associated with them are updated
appropriately, but only if the system is not simulating. Non-transforming dynamic components that are attached to
transforming components as slaves are generally updated so as to follow the transforming components to which
they are attached.

4.8.4 Use in model registration

Transforming model geometry can obviously be used as part of the process of creating subject-specific biomechanical
and anatomical models. However, registration will generally require more that geometric transformation, since other
properties, such as material stiffnesses, densities, and maximum forces will generally need to be adjusted as well.

As a specific example, when applying a geometric transform to a model containing AxialSprings, the restLength
properties of the springs will be unchanged, whereas the initial lengths may be, resulting in a different applied forces
and physical behavior.

4.9 General component arrangements

As discussed in Section 1.1.5 and elsewhere, a MechModel provides a number of predefined child components for
storing particles, rigid bodies, springs, constraints, and other components. However, applications are not required to
store their components in these containers, and may instead create any sort of component arrangement desired.

For example, suppose that one wishes to create a biomechanical model of both the right and left human arms, consisting
of bones, point-to-point muscles, and joints. The standard containers supplied by MechModel would require that all the
components be placed within the following containers:

rigidBodies // all bones
axialSprings // all point-to-point muscles
connectors // all joints

Instead of this, one may wish to set up a more appropriate component hierarchy, such as

leftArm // left-arm components
bones // left bones
muscles // left muscles
joints // left joints

rightArm // right-arm components
bones // right bones
muscles // right muscles
joints // right joints

To do this, the application build () method can create the necessary hierarchy and then populate it with whatever
components are desired. Before simulation begins (or whenever the model structure is changed), the MechModel will
recursively traverse the component hierarchy and update whatever internal structures are needed to run the simulation.

4.9.1 Container components

The generic class ComponentList can be used as a container for model components of a specific type. It can be created
using a declaration of the form
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ComponentList<Particle> list = new ComponentList<Type> (Type.class, name);

where Type is the class type of the components and name is the name for the container. Once the container is created, it
should be added to the MechModel (or another internal container) and populated with child components of the specified
type. For example,

MechModel mech;

ComponentList<Particle> parts =

new ComponentList<Particle> (Particle.class, "parts");
ComponentlList<Frame> frames =
new ComponentList<Frame> (Frame.class, "frames");

// add containers to the mech model
mech.add (parts);
mech.add (frames);

creates two containers named "parts" and "frames" for storing components of type Particle and Frame, respec-
tively, and adds them to a MechModel referenced by mech.

In addition to ComponentList, applications may use several "specialty" container types which are subclasses of
ComponentList:

RenderableComponentList

A subclass of ComponentList, that has its own set of render properties which can be inherited by its children.
This can be useful for compartmentalizing render behavior. Note that it is nof necessary to store renderable
components in a RenderableComponentList; components stored in a ComponentList will be rendered too.

PointList

A RenderableComponentList that is optimized for rendering points, and also contains its own pointDamping
property that can be inherited by its children.

PointSpringList

A RenderableComponentList designed for storing point-based springs. It contains a material property that
specifies a default axial material that can be used by its children.

AxialSpringList

A PointSpringList that is optimized for rendering two-point axial springs.

If necessary, it is relatively easy to define one’s own customized list by subclassing one of the other list types. One of the
main reasons for doing so, as suggested above, is to supply default properties to be inherited by the list’s descendants.

A component list which declares ModelComponent as its type can be used to store any type of component, including
other component lists. This allows the creation of arbitrary component hierarchies. Generally either
ComponentList<ModelComponent> or RenderableComponentList<ModelComponent> are best suited to implement
hierarchical groupings.

4.9.2 Example: a net formed from balls and springs
A simple example showing an arrangement of balls and springs formed into a net is defined in
artisynth.demos.tutorial.NetDemo

The build () method and some of the supporting definitions for this example are shown below.

i protected double stiffness = 1000.0; // spring stiffness
2 protected double damping = 10.0; // spring damping
3 protected double maxForce = 5000.0; // max force with excitation = 1
4 protected double mass = 1.0; // mass of each ball
protected double widthx = 20.0; // width of the net along x
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Figure 4.16: NetDemo model loaded into ArtiSynth.

6 protected double widthy = 20.0; // width of the net along vy
7 protected int numx = 8§; // num balls along x
8 protected int numy = 8; // num balls along y

10 // custom component containers

B protected MechModel mech;

12 protected PointList<Particle> balls;

13 protected ComponentList<ModelComponent> springs;

14 protected RenderableComponentList <AxialSpring> greenSprings;
15 protected RenderableComponentList <AxialSpring> blueSprings;

I private AxialSpring createSpring (

18 PointList<Particle> parts, int idx0, int idx1l) {

19 // create a "muscle" spring connecting particles indexed by ’‘idx0’ and
// "idxl’ in the list ’parts’

21 Muscle spr = new Muscle (parts.get (idx0), parts.get (idxl));
spr.setMaterial (new SimpleAxialMuscle (stiffness, damping, maxForce));
return spr;

26 public void build (String[] args) {

28 // create MechModel and add to RootModel
29 mech = new MechModel ("mech");
30 mech.setGravity (0, 0, -980.0);
31 mech.setPointDamping (1.0);
addModel (mech);

int nump = (numx+l)*(numy+1l); // nump = total number of balls

36 // create custom containers:
balls = new PointList<Particle> (Particle.class, "balls");
38 springs = new ComponentList<ModelComponent >(ModelComponent .class,"springs");
39 greenSprings = new RenderableComponentList <AxialSpring> (
AxialSpring.class, "greenSprings");
i blueSprings = new RenderableComponentList <AxialSpring> (
42 AxialSpring.class, "blueSprings");

14 // create balls in a grid pattern and add to the list ’balls’




45 for (int 1=0; i<=numx; 1i++) {

46 for (int Jj=0; j<=numy; j++) {

47 double x = widthx*(-0.5+i/(double) numx) ;

48 double y = widthy*(-0.5+7j/(double)numy) ;

49 Particle p = new Particle (mass, x, y, /*z=*/0);
50 balls.add (p);

51 // fix balls along the edges parallel to y
52 if (i == 0 || i == numx) {

53 p.setDynamic (false);

54 }

55 }

56 }

58 // connect balls by green springs parallel to y
59 for (int 1=0; i<=numx; 1i++) {

60 for (int j=0; Jj<numy; Jj++) {
61 greenSprings.add (
62 createSpring (balls, i*(numy+1)+j, i*(numy+1)+3+1));

64 }

65 // connect balls by blue springs parallel to x

66 for (int j=0; j<=numy; Jj++) {

67 for (int i=0; i<numx; 1i++) {

68 blueSprings.add (

69 createSpring (balls, i*(numy+1l)+3j, (i+1l)*(numy+1)+3j));

7 // add containers to the mechModel
74 springs.add (greenSprings);

75 springs.add (blueSprings);

76 mech.add (balls);

7 mech.add (springs);

79 // set render properties for the components

80 RenderProps.setlineColor (greenSprings, new Color (0f, 0.5f, 0f));
81 RenderProps.setlLineColor (blueSprings, Color.BLUE);

82 RenderProps.setSphericalPoints (mech, widthx/50.0, Color.RED);

83 RenderProps.setCylindricallines (mech, widthx/100.0, Color.BLUE) ;

The build () method begins by creating a MechModel in the usual way (lines 29-30). It then creates a net composed of
a set of balls arranged as a uniform grid in the x-y plane, connected by a set of green colored springs running parallel to
the y axis and a set of blue colored springs running parallel to the x axis. These are arranged into a component hierarchy
of the form

balls

springs
greenSprings
blueSprings

using containers created at lines 37-42. The balls are then created and added to balls (lines 45-56), the springs are
created and added to greenSprings and blueSprings (lines 59-71), and the containers are added to the MechModel at
lines 74-77. The balls along the edges parallel to the y axis are fixed. Render properties are set at lines 80-83, with the
colors for greenSprings and blueSprings being explicitly set to dark green and blue.

MechModel, along with other classes derived from Mode1Base, enforces reference containment. That means that all
components referenced by components within a MechModel must themselves be contained within the MechModel.
This condition is checked whenever a component is added directly to a MechModel or one of its ancestors. This
means that the components must be added to the MechModel in an order that ensures any referenced components
are already present. For example, in the NetDemo example above, adding the particle list after the spring list would
generate an error.
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To run this example in ArtiSynth, select All demos > tutorial > NetDemo from the Models menu. The model should load
and initially appear as in Figure 4.16. Running the model will cause the net to fall and sway under gravity. When the
ArtiSynth navigation panel is opened and expanded, the component hierarchy will appear as in Figure 4.17. While the
standard MechModel containers are still present, they are not displayed by default because they are empty.

[ NetDemao
¥ | models
¥ [ mech
» [ collisionManager
» | balls
v & springs
» [ greenSprings
b [ blueSprings

Figure 4.17: NetDemo components displayed in the ArtiSynth navigation panel.

4.9.3 Adding containers to other models

In addition to MechModel, application-defined containers can be added to any model that inherits from ModelBase.
This includes RootModel and FemModel. However, at the present time, components added to such containers won’t do
anything, other than be rendered in the viewer if they are Renderable.

4.10 Custom Joints

If desired, it is also possible for applications to create their own custom joints. This involves creating two custom
classes: a coupling class that does the constraint computations, and a joint class that wraps around it and allows it to
connect connectable bodies. Details on how to create these classes are given in Sections 4.10.3 and 4.10.4, after some
explanation of the constraint mechanism that underlies joint operation.

This section assumes that the reader is highly familiar with spatial kinematics and dynamics.

4.10.1 Joint constraints

To create a custom joint, it is necessary to understand how joints are implemented. The basic function of a joint is to
constraint the set of poses allowed by the joint transform T¢p that relates frame C to D. To do this, the joint imposes
restrictions on the six-dimensional spatial velocity V¢p that describes how frame C is moving with respect to D. This
restriction is done using a set of bilateral constraints G and (in some cases) unilateral constraints N;, each of which is a
1 x 6 matrix that acts to restrict a single degree of freedom in V¢p (see Section A.5 for a review of spatial velocities and
forces). Bilateral constraints take the form of an equality,

G Vep =0, (4.8)
while unilateral constraints take the form of an inequality:
N;Vep > 0. 4.9

These constraints are defined with respect to frame C, and their total number equals the number of DOFs that the joint
removes. A joint’s main computational task is to specify these constraints. ArtiSynth then uses its own knowledge of
how frames C and D are connected to bodies A and B (or ground, if there is no body B) to map the individual G; and
N; onto the joint’s full bilateral and unilateral constraint matrices Gy and Nj (see (3.9) and (3.10)) that restrict the body
velocities.

As a simple example, consider a cylindrical joint, in which C is free to rotate about and translate along the z axis of D
but other motions are restricted. Letting v and @ denote the translational and rotational components of ¥¢p, such that

N \4
Yecp = o)’
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we see that the constraints must enforce
Vy =V = 0y = 0y = 0. (4.10)

This can be accomplished using four constraints defined as follows:

Go =(1,0,0,0,0,0)
G =(0,1,0,0,0,0)
G, =(0,0,0,1,0,0)
G; =(0,0,0,0,1,0).

Constraining velocities is a necessary but insufficient condition for constraint enforcement. Because of numerical errors,
as well as the fact that constraints are often nonlinear, the joint transform T¢p will tend to drift away from the joint
restrictions as the simulation proceeds, leading to the error T, described at the end of Section 3.3.1. These errors are
corrected during a position correction at the end of every simulation time step: the joint first projects Tcp onto the
nearest valid constraint surface to form T¢p, and T, is then computed from

T =Teg = Tall)TCD- (4.11)

Because T,,, is (usually) small, we can approximate it as a twist Sm representing a small displacement from frame G
(which lies on the constraint surface) to frame C. During the position correction, ArtiSynth adjusts the pose of C relative
to D in order to try and bring &, to zero. To do this, it uses an estimate of the distance d along each constraint to the
constraint surface, which it computes from the dot product of G, and Sm:

dy = Gy 8,y (4.12)

ArtiSynth assembles these distances into a composite distance vector d, for all bilateral constraints, and then uses the
system solver to find a displacement 8q of the system coordinates that satisfies

Adding dq to the system coordinates q then reduces the constraint errors. While for nonlinear constraints several steps
may be required to bring the error to 0, the process usually converges quickly.

Unlike bilateral constraints, unilateral constraints are one-sided, and take effect, or are engaged, only when T¢p
encounters an inadmissible region. The constraint then acts to prevent further penetration into the region, via the
velocity restriction (4.9), and also to push T¢p out of the inadmissible region, using a position correction analogous to
that used for bilateral constraints.

Whether or not a unilateral constraint is engaged is determined by its engaged value E;, which takes one of the three
values: {0, 1,—1}, and is updated by the joint implementation as the simulation proceeds. A value of 0 means that the
constraint is not engaged, and will not be included in the joint’s unilateral constraint matrix Nj. Otherwise, if E; is 1

or —1, then the constraint is engaged and will be included in Ny, using N; if E; = 1, or its negative —N; if E; = —1. E;
therefore defines a sign for the constraint. General details on how unilateral constraints should be engaged or disengaged
are discussed in Section 4.10.2.

A common use of unilateral constraints is to implement limits on joint coordinate values; this also illustrates the utility
of E;. For example, the cylindrical joint mentioned above may have two coordinates, z and 6, describing the translation
and rotation along and about the D frame’s z axis. Now suppose we wish to bound z, such that

Zmin < Z < Zmax- (4.13)

When these limits are violated, a unilateral constraint can be engaged to limit motion along the z axis. A constraint N,
that will do this is

N. = (0,0,1,0,0,0).

Whenever z < zmin, using N in (4.9) will ensure that Z > 0 and hence z will not fall further below the lower bound. On
the other hand, when z > znax, we want to employ —N; in (4.9) to ensure that z < 0. In other words, lower bounds can
be enforced by engaging N; with E; = 1, while upper bounds can be enforced with E; = —1.

As with bilateral constraints, constraining velocities is not sufficient; it is also necessary to correct position errors,
particularly as unilateral constraints are typically not engaged until the inadmissible region is violated. The position
correction procedure is the same: for each engaged unilateral constraint, find a distance d; along its constraint direction
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that indicates the distance to the inadmissible region boundary. ArtiSynth will then assemble these d; into a composite
distance vector d,, for all unilataral constraints, and solve for a system coordinate displacement §q that satisfies

N(q)q > —d,. (4.14)

Because of the inequality direction in (4.14), distances d; representing penetration into a inadmissible region must be
negative. For coordinate bounds such as (4.13), we need to use d; = zZ — Zmin for the lower bound and d; = zmax — z for
the upper bound. Alternatively, if the unilateral constraint has been included into the projection of C onto G and hence
into the error term Serr, d; can be computed from

A

d; =EN, ... (4.15)

Note that unilateral constraints for coordinate limits are not usually incorporated into the G projection; more on this
details are given in Section 4.10.4.

As simulation proceeds, the velocity limits imposed by (4.8) and (4.9) are enforced by bilateral and unilateral constraint
forces f}, and f; whose magnitudes are given by

f, = Gl A, f, =N g, (4.16)

where Ay and 6; are the Lagrange multipliers computed by the mechanical system solver (and are components of A or
0 in (1.8) and (1.6)). f; and f; are 6 DOF spatial force vectors, or wrenches (Section A.5), which like G, and N; are
expressed in frame C. Because G,{ and N[T are proportional to spatial wrenches, they are often themselves referred to as
constraint wrenches, and within the ArtiSynth codebase are described by a Wrench object.

4.10.2 Unilateral constraint engagement

As mentioned above, joints which implement unilateral constraints must monitor T¢p and the joint coordinates as the
simulation proceeds and decide when to engage or disengage them.

Engagement is usually easy: a constraint is engaged whenever T¢p or a joint coordinate hits an inadmissible region. The
constraint N; is itself a spatial vector that is (locally) perpendicular to the inadmissible region boundary, and E; is chosen
to be either 1 or —1 so that E;N; is directed away from the inadmissible region. In the remainder of this section, we shall
assume E; = 1.

N, N,

< .
wd A

T~
I

Figure 4.18: Left: A joint configuration at A inside an inadmissible region (gray) is pushed further outside the region
than intended B, so that it reenters the region during the next simulation step, resulting in chattering. Right: a deadband
solution, in which the position correction is reduced sufficiently so that the joint configuration remains inside the region.

To disengage, we usually want to ensure that the joint configuration is out of the inadmissible region. If we have a
constraint N;, with a local distance d; defined such that ¢; < 0 implies the joint is inside the region, then we are out

of the region when d; > 0. However, if we use only this as the disengagement criterion, we may encounter a problem
known as chattering, illustrated in Figure 4.18 (left). An inadmissible region is shown in gray, with a unilateral
constraint Nj perpendicular to its boundary. As simulation proceeds, the joint lands inside the region at an initial point
A at the lower left, at a (negative) distance d; from the boundary. Ideally the position correction step will move the
configuration by —d; so that it lands right on the region boundary. However, numerical errors and nonlinearities may
mean that in fact it lands outside the region, at point B. Then on the next step it reenters the region, only to again be
pushed out, etc.
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Figure 4.19: Left: constraint oscillation, in which a joint configuration starting at A oscillates between two overlapping
inadmissible regions 1 and 2 whose boundaries are not perpendicular. Right: ensuring that constraints stay engaged for
more than one simulation step allows the solver to quickly determine a stable solution at F, where the region boundaries
intersect.

ArtiSynth implements two solutions to chattering. One is to implement a deadband, so that instead of correcting the
position by —dj, we correct it by —d| — pyo1, Where pyo is a penetration tolerance. This means that the correction

will try to leave the joint inside the region by a small amount (Figure 4.18, right) so that chattering is suppressed.

The penetration tolerance used depends on the constraint type. Those that are primarily linear use the value of the
penetrationTol property, while those that are primarily rotary use the value of the rotaryLimitTol property; both of these
are exported as inheritable properties by both MechModel and BodyConnector, with default values computed from the
model’s overall dimensions.

The second chattering solution is to disengage only when the joint is actively moving away from the region, as deter-
mined by d; > 0. The disengagement criteria then become

d;>0 and d;>0. 4.17)
d, is called the contact speed and can be computed from

d; =N;¥ep. (4.18)

Another problem, which we call constraint oscillation, can occur when we are near two or more overlapping inadmis-
sible regions whose boundaries are not perpendicular. See Figure 4.19 (left), which shows two overlapping regions

1 and 2. The joint starts at point A, inside region 1 but just outside region 2. Since only constraint 1 is engaged, the
position correction moves it toward the boundary of 1, overshooting and landing at point B outside of 1 but inside region
2. Constraint 2 now engages, moving the joint to C, where it is past the boundary of 2 but inside 1 again. While the
example in the figure converges to the corner where the boundaries of 1 and 2 meet, convergence may be slow and may
be prevented entirely by external forcing. While the mechanisms that prevent chattering may also prevent oscillation,
we find that an additional measure is useful, which is to simply require that a constraint must be engaged for at least
two simulation steps. The result is shown in Figure 4.19 (right), where after the joint arrives at B, constraint 1 remains
engaged along with constraint 2, and the subsequent solution takes the joint directly to point F at the corner where 1 and
2 meet.

4.10.3 Implementing a custom joint

All of the work of computing joint constraints and coordinates, as described in the previous sections, is done within

a “coupling” class which is a subclass of RigidBodyCoupling. An instance of this is then embedded within a “joint”
class (which is a subclass of JointBase) that supports connections with other bodies, provides rendering, exports various
properties, and allows the joint to be attached to a MechModel.

For purposes of this discussion, we will assume that these two custom classes are called CustomCoupling and
CustomJoint, respectively. The implementation of CustomJoint can be as simple as this:

import artisynth.core.mechmodels.ConnectableBody;
import artisynth.core.mechmodels.JointBase;
import maspack.matrix.RigidTransform3d;
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public class CustomJoint extends JointBase ({

public CustomJoint () {
setCoupling (new CustomCoupling ());

public CustomJoint (
ConnectableBody bodyA, ConnectableBody bodyB, RigidTransform3d TDW) {
this(); // call the default constructor
setBodies (bodyA, bodyB, TDW);

This creates an instance of CustomCoupling and sets it to the (inherited) myCoupling attribute inside the default
constructor (which is where this normally should be done). Another constructor is provided which uses setBodies () to
create a joint that is attached to two bodies with the D frame specified in world coordinates. In practice, a joint may also
export some properties (such as joint coordinates), provide additional constructors, and implement rendering; one should
examine the source code for some existing joints.

4.10.4 Implementing a custom coupling

Implementing a custom coupling constitutes most of the effort in creating a custom joint, since the coupling is responsi-
ble for maintaining the constraints Gy and N; that enforce the joint behavior.

Before proceeding, we discuss the coordinate frame in which these constraints are situated. It is often convenient to
describe joint constraints with respect to frame C, since rotations are frequently centered there. However, the joint
transform T¢p usually contains errors (Section 3.3.1) due to a combination of simulation error and possible joint
compliance. To determine these errors, we project C onto another frame G, defined to be the nearest to C that is
consistent with the bilateral (and possibly some unilateral) constraints. (This is done by the projectToConstraints ()
method, described below). The result is a joint transform Tgp that is “error free” with respect to bilateral constraints
and also consistent with the coordinates (if supported). This makes it convenient to formulate constraints with respect to
frame G instead of C, and so this is the convention ArtiSynth uses. In particular, the updateConstraints () method,
described below, uses T¢p, together with the spatial velocity Vgp describing the motion of G with respect to C.

An actual custom coupling implementation involves subclassing RigidBodyCoupling and then implementing five
abstract methods, the outline of which looks like this:

import maspack.matrix.*;

import maspack.spatialmotion.*;

import maspack.util.*;

class CustomCoupling extends RigidBodyCoupling {
public CustomCoupling () {

super () ;

// Initialize the constraints and coordinates.
public void initializeConstraints () {

// If coordinates are implemented, set TCD from the supplied coordinates.
public void coordinatesToTCD (RigidTransform3d TCD, VectorNd coords) {

// 1If coordinates are implemented, set their values from TCD.
public void TCDToCoordinates (VectorNd coords, RigidTransform3d TCD) {

// Project TCD to the nearest transform TGD admissible to the
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// bilateral constraints, and maybe some unilateral constraints.
public void projectToConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, boolean updateCoords) {

// Update the constraint wrenches, and maybe the engaged
// and distance settings for some unilateral constraints.
public void updateConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, Twist errC,
Twist velGD, boolean updateEngaged) {

The implementations of these methods are now described in detail.

initializeConstraints()

This method has the signature

public void initializeConstraints ()

and is called in the coupling’s superclass constructor (i.e., the constructor for RigidBodyCoupling). It is responsible for
initializing the coupling’s constraints and (if supported) coordinates.

Constraints are added using one of the two superclass methods:

RigidBodyConstraint addConstraint (int flags)

RigidBodyConstraint addConstraint (int flags, Wrench wrench)

Each creates a new RigidBodyConstraint and adds it to the coupling’s constraint list. flags is an or-ed combination of the
following flags defined in RigidBodyConstraint:

BILATERAL

Constraint is bilateral (i.e., an equality). If BILATERAL is not specified, the constraint is considered unilateral.

ROTARY

Constraint primarily restricts rotary motion. If it is unilateral, the joint’s rotaryLimitTol property is used for its
penetration tolerance.

LINEAR

Constraint primarily restricts translational motion. If it is unilateral, the joint’s penetrationTol property is used for
its penetration tolerance.

CONSTANT

Constraint is constant with respect to frame G. This flag is set automatically if the constraint is created using
addConstraint (flags,wrench).

LIMIT

Constraint is used to enforce limits for a coordinate. This flag is set automatically if the constraint is specified as
the limit constraint for a coordinate.

The method addConstraint (flags,wrench) takes an additional Wrench argument specifying the (presumed constant)
value of the constraint with respect to frame G, and sets the CONSTANT flag just described.
Coordinates are added similarly using using one of the two superclass methods:

CoordinateInfo addCoordinate ()

CoordinateInfo addCoordinate (
double min, double max, int flags, RigidBodyConstraint limCon)
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Each creates a new CoordinateInfo object (which is an inner class of RigidBodyCoupling), and adds it to the
coupling’s coordinate list. In the second method, min and max give the initial range limits, and 1imCon, if non-null,
specifies a unilateral constraint (previously created using addConstraint) for enforcing the limits and causes that
constraint’s LIMIT to be set. The argument flags is reserved for future use and should be set to 0. If not specified, the
default coordinate limits are (— inf, inf).

The implementation of initializeConstraints () for a coupling that implements a hinge type joint might look like
this:

public void initializeConstraints () {
addConstraint (BILATERAL|LINEAR, new Wrench (
addConstraint (BILATERAL|LINEAR, new Wrench (
addConstraint (BILATERAL|LINEAR, new Wrench (
addConstraint (BILATERAL|ROTARY, new Wrench (
( (
( 0
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addConstraint (BILATERAL|ROTARY, new Wrench
addConstraint (ROTARY, new Wrench (0, 0, O,
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addCoordinate (-Math.PI, Math.PI, 0, getConstraint (5));

Six constraints are specified, with the sixth being a unilateral constraint that enforces the limits on the single coordinate
describing the rotation angle. Each constraint and coordinate has an integer index giving the location in its list, in the
order it was added. This index can be used to later retrieve the RigidBodyConstraint or CoordinateInfo object for
the constraint or coordinate, using the methods getConstraint (idx) or getCoordinateInfo (idx).

Because initializeConstraints () is called in the superclass constructor, member attributes for the custom
coupling will not yet be initialized when it is first called. Therefore, the method should not depend on the initial
values of non-static member variables. initializeConstraints () can also be called later to rebuild the
constraints if some defining setting is changed.

coordinatesToTCD()

This method has the signature

public void coordinatesToTICD (RigidTransform3d TCD, VectorNd coords)

and is called when needed by the system. If coordinates are supported, then the transform T¢p should be set from the
coordinate values supplied in coords, and returned in the argument TCD. Otherwise, this method should do nothing.

TCDToCoordinates()

This method has the signature

public void TCDToCoordinates (VectorNd coords, RigidTransform3d TCD)

and is called when needed by the system. It is the inverse of coordinatesToTCD (): if coordinates are supported, then
their values should be set from the joint transform T¢p supplied by TCD and returned in coords. Otherwise, this method
should do nothing.

When calling this method, it is assumed that TCD is “legal” with respect to the joint’s constraints (as defined by
projectToConstraints (), described next). If this is not the case, then projectToConstraints () should be called
instead.

One issue that can arise is when a coordinate represents an angle ¢ that has a range greater than 27. In that case, a
common strategy is to compute a nominal value for ¢, and then add or subtract 27 from it until the resulting value is as
close as possible to the current value for the angular coordinate. This allows the angle to wrap through its entire range.
To implement this, one can use the method

double nearestAngle (double phi)
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in the coordinate’s CoordinateInfo object, which finds the angle equivalent to phi that is nearest to the current
coordinate value.

Coordinate values computed by this method should not be clipped to their ranges.

projectToConstraints()

This method has the signature

public void projectToConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, VectorNd coords)

and is called when needed by the system. It is responsible for projecting the joint transform T¢p (supplied by TCD)
onto the nearest transform T¢p that is valid for the bilateral constraints, and returning this in TGD. If coordinates are
supported and coords is non-null, then the coordinate values corresponding to Tp should also be computed and
returned in coords. The easiest way to do this is to simply call TCDToCoordinates (TGD, coords), although in some
cases it may be computationally cheaper to compute both the coordinates and the projection at the same time.

Optionally, the coupling may also extend the projection to include unilateral constraints that are not associated with
coordinate limits. In particular, this should be done for constraints for which is it desired to have the constraint error
included in T, and the corresponding argument errC that is passed to updateConstraints ().

updateConstraints()

This method has the signature

public void updateConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, Twist errC,
Twist velGD, boolean updateEngaged)

and is usually called once per simulation time step. It is responsible for:

* Updating the values of all non-constant constraint wrenches, along with their derivatives;
 If updateEngaged is true, updating the engaged and distance attributes for all unilateral constraints not associated
with a coordinate limit.

The method supplies several arguments:

* TGD, containing the idealized joint transform Tsp from frame G to D produced by calling projectToConstraints ().
* TCD, containing the joint transform T¢p from frame C to D and supplied for legacy reasons.
* errC, representing the (hopefully small) error transform T, from frame C to G as a spatial twist vector.

* velGD, giving the spatial velocity Vp of frame G with respect to D, as seen in G; this is needed to compute wrench
derivatives.

* updateEngaged, which requests the updating of unilateral engaged and distance attributes as describe above.

If the coupling supports coordinates, their values will be updated before the method is called so as to correspond to Tgp.
If needed, a coordinate’s value may be obtained from the value attribute of its CoordinateInfo object, which may in
turn be obtained using getCoordinateInfo (idx). Likewise, ConstraintInfo objects for each constraint may be
obtaining using getConstraint (idx).

Constraint wrenches correspond to Gy and N; in Section 4.10.1. These, along with their derivatives Gy and N, are
described by the wrenchG and dotWrenchG attributes of each constraint’s RigidBodyConstraint object, and may be
managed by a variety of methods:
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Wrench getWrenchG () // return the reference to wrenchG
volid setWrenchG (

double fx, double fy, double fx, double mx, double my, double mx)
void setWrenchG (Vector3d f, Vector3d m) // either f or m may be null
volid setWrenchG (Wrench wr)
void negateWrenchG ()
void zeroWrenchG ()

Wrench getDotWrenchG () // return the reference to dotWrenchG
void setDotWrenchG (

double fx, double fy, double fx, double mx, double my, double mx)
void setDotWrenchG (Vector3d f, Vector3d m) // either f or m may be null
void setDotWrenchG (Wrench wr)
void negateDotWrenchG ()
void zeroDotWrenchG ()

dotWrenchG is used in computing the time derivative terms g and n that appear in (3.8) and (1.6). While these
improve the computational accuracy of the simulation, their effect is often small, and so in practice one may be able
to omit computing dotWrenchG and instead leave its value as 0.

Wrench information must also be computed for unilateral constraints which implement coordinate limits. While it
is not necessary to compute the distance and engaged attributes for these constraints (this is done automatically), it
is necessary to ensure that the wrench’s magnitude is compatible with the coordinate’s speed. More precisely, if the
coordinate is given by ¢, then the limit wrench N; must have a magnitude such that

¢ =N;V6p. (4.19)

As mentioned above, if updateEngaged is true, the engaged and distance attributes for unilateral constraints not
associated with coordinate limits must be updated. These correspond to E; and d; in Section 4.10.1, and are contained in
the constraint’s RigidBodyConstraint object and may be queried using the methods

double getDistance ()
void setDistance (double d)

int getEngaged ()
void setEngaged (int engaged)

It is up to updateConstraints () to compute the distance, with a negative value denoting penetration into the inad-
missible region. If projectToConstraints () is implemented so as to account for the constraint, then Tgp will be
projected out of the inadmissible region and the distance will be implicitly present T,,, and so can be recovered by
taking the dot product of the constraint wrench and ve1GD:

RigidBodyConstraint cons = getConstraint (3); // assume constraint index is 3

double dist = cons.getWrench ().dot (velGD);

Otherwise, if the constraint is not accounted for in projectToConstraints (), the distance must be obtained by other
means.

To update engaged, one may use the general convenience method

void updateEngaged (
RigidBodyConstraint cons, double dist,
double dmin, double dmax, Twist velGD)

which sets engaged according to the rules of Section 4.10.2, for an inadmissible region corresponding to dist < dmin or
dist > dmax. The upper or lower bounds may be removed by setting dmin to -inf or max to inf, respectively.

4.10.5 Example: a simple custom joint

An simple model illustrating custom joint creation is provided by
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Figure 4.20: Coordinate frames for the CustomJoint (left) and the associated CustomJointDemo (right).

artisynth.demos.tutorial.CustomJointDemo

This implements a joint class defined by CustomJoint (also in the package artisynth.demos.tutorial), whichis
actually just a simple implementation of SlottedHingeJoint (Section 3.4.4). Certain details are omitted, such as exporting
coordinate values and ranges as properties, and other things are simplified, such as the rendering code. One may consult
the source code for SlottedHingeJoint to obtain a more complete example.

This section will focus on the implementation of the joint coupling, which is created as an inner class of CustomJoint
called CustomCoupling and which (like all couplings) extends RigidBodyCoupling. The joint itself creates an instance
of the coupling in its default constructor, exactly as described in Section 4.10.3.

The coupling allows two DOFs (Figure 4.20, left): translation along the x axis of D (described by the coordinate x),
and rotation about the z axis of D (described by the coordinate 0), with T¢p related to the coordinates by (3.24). It
implements initializeConstraints () as follows:

public void initializeConstraints () {
addConstraint (BILATERAL|LINEAR);
addConstraint (BILATERAL|LINEAR, new Wrench(0, O, 1, 0, 0, 0));
addConstraint (BILATERAL|ROTARY, new Wrench (O, 0, 0, 1, 0, 0));
addConstraint (BILATERAL|ROTARY, new Wrench(0, 0, 0, 0, 1, 0));
(LINEAR) ;
(ROTARY, new Wrench(0O, 0, 0, 0, 0, 1));

addConstraint
addConstraint

addCoordinate (-1, 1, 0, getConstraint (4)); // x
addCoordinate (-2*Math.PI, 2*Math.PI, 0, getConstraint (5)); // theta

Six constraints are added using addConstraint (): two linear bilaterals to restrict translation along the y and z axes
of D, two rotary bilaterals to restrict rotation about the x and y axes of D, and two unilaterals to enforce limits on x and
0. Four of the constraints are constant in frame G, and so are initialized with a wrench value. The other two are not
constant in G and so will need to be updated in updateConstraints (). The coordinates for x and 6 are added at the
end, using addCoordinate (), with default joint limits and a reference to the constraint that will enforce the limit.

The implementations for coordinatesToTCD () and TCDToCoordinates () simply use (3.24) to compute T¢p from the
coordinates, or vice versa:

public void coordinatesToTCD (RigidTransform3d TCD, VectorNd coords) {
double x = coords.get (X_IDX);
double theta = coords.get (THETA_IDX);
TCD.setIdentity () ;
TCD.p.x = X;
double ¢ = Math.cos (theta);
double s = Math.sin (theta);
TCD.R.m00 = c;

TCD.R.mll = ¢c;
TCD.R.m01 = -s;
TCD.R.ml10 = s;
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public void TCDToCoordinates (VectorNd coords, RigidTransform3d TGD) {
coords.set (X_IDX, TGD.p.x);
double theta = Math.atan2 (TGD.R.ml0, TGD.R.m0O0);
coords.set (THETA_IDX, getCoordinateInfo (THETA_IDX) .nearestAngle (theta));

X_IDX and THETA_IDX are constants defining the coordinate indices for x and 8. In TCDToCoordinates (), note the use
of the CoordinateInfo method nearestAngle (), as discussed in Section 4.10.4.

Projecting T¢p onto the error-free Tgp is done by projectToConstraints (), implemented as follows:

public void projectToConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, VectorNd coords) {
TGD.R.set (TCD.R);
TGD.R.rotateZDirection (Vector3d.Z_UNIT);
TGD.p.x = TCD.p.x;
TGD.p.y = 0;
IGD.p.z = 0;
if (coords != null) {
TCDToCoordinates (coords, TIGD);

The translational projection is easy - the y and z components of the translation vector p are simply zeroed out. To project
the rotation R, we use its rotatezDirection () method, which applies the shortest rotation aligning its z axis with
(0,0,1). The residual rotation will be a rotation in the x-y plane. If coords is non-null and needs to be computed, we
simply call TCDToCoordinates ().

Lastly, the implementation for projectToConstraints () is as follows:

public void updateConstraints (
RigidTransform3d TGD, RigidTransform3d TCD, Twist errC,
Twist velGD, boolean updateEngaged) {
RigidBodyConstraint cons = getConstraint (0); // constraint along y
double s = TGD.R.ml0; // sin (theta)
double ¢ = TGD.R.m00; // cos (theta)
// constraint wrench along y is constant in D but needs to be
// transformed to G
cons.setWrenchG (s, ¢, 0, 0, 0, 0);
// derivative term:
double dotTheta = velGD.w.z;
cons.setDotWrenchG (c*dotTheta, -s*dotTheta, 0, 0, 0, 0);

// update x limit constraint if necessary

cons = getConstraint (4);

if (cons.getEngaged () != 0) {
// constraint wrench along x, transformed to G, is (-c, s, 0)
cons.setWrenchG (¢, -s, 0, 0, 0, 0);

cons.setDotWrenchG (-s*dotTheta, -c*dotTheta, 0, 0, 0, 0);

// theta limit constraint is constant; no need to do anything

Only constraints 0 and 4 need to have their wrenches updated, since the rest are constant, and we obtain their constraint
objects using getConstraint (idx). Constraint O restricts motion along the y axis in D, and while this is constant in

D, it is not constant in G, which is where the wrench must be situated. The y axis of D as seen in G is the given by the
second row of the rotation matrix of Tgp, which from (3.24) we see is (s,¢,0)”, where s = sin(8) and ¢ = cos(0). We
obtain s and c¢ directly from TGD, since this has been projected to lie on the constraint surface; alternatively, we could
compute them from 6. To obtain the wrench derivative, we note that § = c6 and ¢ = —c#, and that 8 is simply the z
component of the angular velocity of G with respect to D, or velGD.w.z. The wrench and its derivative are set using the
constraint’s setWrenchG () and setDotWrenchG () methods.

The other non-constant constraint is the limit constraint for the x coordinate, which is the x axis of D as seen in G. This
is updated similarly, although we only need to do so if the limit constraint is engaged. Since all unilateral constraints
are coordinate limits, there is no need to update their distance or engaged attributes as this is done automatically by the
system.
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Chapter 5

Simulation Control

This section describes different devices which an application may use to control the simulation. These include control
panels to allow for the interactive adjustment of properties, as well as agents which are applied every time step. Agents
include controllers and input probes to supply and modify input parameters at the beginning of each time step, and
monitors and output probes to observe and record simulation results at the end of each time step.

5.1 Control Panels

A control panel is an editing panel that allows for the interactive adjustment of component properties.

It is always possible to adjust component properties through the GUI by selecting one or more components and then
choosing Edit properties ... in the right-click context menu. However, it may be tedious to repeatedly select the required
components, and the resulting panels present the user with all properties common to the selection. A control panel
allows an application to provide a customized editing panel for selected properties.

5.1.1 General principles

Control panels are implemented by the ControlPanel model component. They can be set up within a model’s build ()
method by creating an instance of ControlPanel, populating it with widgets for editing the desired properties, and then
adding it to the root model using the latter’s addControlPanel() method.

One of the most commonly used means of adding widgets to a control panel is the method addWidget(comp,propertyPath),
which creates a widget for a property specified by propertyPath with respect to the component comp. Property paths

are discussed in the Section 1.4.2, and can consist solely of a property name, or, for properties located in descendant
components, a component path followed by a colon ‘:” and the property name.

Other flavors of addWidget () also exist, as described in the API documentation for ControlPanel. In addition to
property widgets, any type of Swing or awt component can be added using the method addWidget(awtcomp).

Control panels can also be created interactively using the GUI; see the section “Control Panels” in the
ArtiSynth User Interface Guide.

5.1.2 Example: Creating a simple control panel

An application model showing a control panel is defined in
artisynth.demos.tutorial.SimpleMuscleWithPanel

This model simply extends SimpleMuscle (Section 4.4.2) to provide a control panel for adjusting gravity, the mass and
color of the box, and the muscle excitation. The class definition, excluding include statements, is shown below:
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Figure 5.1: Control panel created by the model SimpleMuscleWithPanel.

I public class SimpleMuscleWithPanel extends SimpleMuscle {
ControlPanel panel;

4 public void build (String[] args) throws IOException {

6 super.build (args);

8 // add control panel for gravity, rigid body mass and color, and excitation
9 panel = new ControlPanel ("controls");

10 panel.addWidget (mech, "gravity");

1 panel.addWidget (mech, "rigidBodies/box:mass");

12 panel.addWidget (mech, "rigidBodies/box:renderProps.faceColor");

13 panel.addWidget (new JSeparator ());

14 panel.addWidget (muscle, "excitation");

16 addControlPanel (panel);

The build () method calls super.build() to create the model used by SimpleMuscle. It then proceeds to create

a ControlPanel, populate it with widgets, and add it to the root model (lines 8-15). The panel is given the name
"controls" in the constructor (line 8); this is its component name and is also used as the title for the panel’s window
frame. A control panel does not need to be named, but if it is, then that name must be unique among the control panels.

Lines 9-11 create widgets for three properties located relative to the MechModel referenced by mech. The first is the
MechModel’s gravity. The second is the mass of the box, which is a component located relative to mech by the path
name (Section 1.1.3) "rigidBodies/box". The third is the box’s face color, which is the sub-property faceColor of
the box’s renderProps property.

Line 12 adds a JSeparator to the panel, using the addWidget () method that accepts general components, and line 13
adds a widget to control the excitation property for muscle.

It should be noted that there are different ways to specify target properties in addWidget (). First, compo-

nent paths may contain numbers instead of names, and so the box’s mass property could be specified using
"rigidBodies/0:mass" instead of "rigidBodies/box:mass" since the box’s number is 0. Second, if a reference
to a sub-component is available, one can specify properties directly with respect to that, instead of indicating the
sub-component in the property path. For example, if the box was referenced by a variable body, then one could use
the construction

panel.addWidget (body, "mass");
in place of

panel.addWidget (mech, "rigidBodies/box:mass");

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithPanel from the Models menu. The
properties shown in the panel can be adjusted interactively by the user, while the model is either stationary or running.
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5.2 Custom properties

Because of the usefulness of properties in creating control panels and probes (Sections 5.1) and Section 5.4), model
developers may wish to add their own properties, either to the root model, or to a custom component.

This section provides only a brief summary of how to define properties. Full details are available in the “Properties”
section of the Maspack Reference Manual.

5.2.1 Adding properties to a component

As mentioned in Section 1.4, properties are class-specific, and are exported by a class through code contained in the
class’s definition. Often, it is convenient to add properties to the RootModel subclass that defines the application model.
In more advanced applications, developers may want to add properties to a custom component.

The property definition steps are:

Declare the property list:

The class exporting the properties creates its own static instance of a PropertyList, using a declaration like

static PropertylList myProps = new PropertyList (MyClass.class, MyParent.class <«
)i

@Override
public PropertylList getAllPropertyInfo () {
return myProps;

}

where MyClass and MyParent specify the class types of the exporting class and its parent class. The PropertyList
declaration creates a new property list, with a copy of all the properties contained in the parent class. If one does
not want the parent class properties, or if the parent class does not have properties, then one would use the con-
structor PropertyList(MyClass.class) instead. If the parent class is an ArtiSynth model component (including the
RootModel), then it will always have its own properties. The declaration of the method getAl1PropertyInfo ()
exposes the property list to other classes.

Add properties to the list:
Properties can then be added to the property list, by calling the PropertyList’s add() method:
PropertyDesc add (String name, String description, Object defaultValue);

where name contains the name of the property, description is a comment describing the property, and
defaultValue is an object containing the property’s default value. This is done inside a static code block:

static {
myProps.add ("stiffness", "spring stiffness", /*defaultValue=*/1);
myProps.add ("damping", "spring damping", /*defaultValue=*/0);

Variations on the add () method exist for adding read-only or inheritable properties, or for setting various
property options. Other methods allow the property list to be edited.

Declare property accessor functions:

For each property propXxX added to the property list, accessor methods of the form
void setPropXXX (TypeX value) {
}
TypeX getPropXXX () {

TypeX value =
return value;
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must be declared, where TypeX is the value associated with the property.

It is possible to specify different names for the accessor functions in the string argument name supplied to the
add () method. Read-only properties only require a get accessor.

5.2.2 Example: a visibility property

An model illustrating the exporting of properties is defined in
artisynth.demos.tutorial.SimpleMuscleWithProperties
This model extends SimpleMuscleWithPanel (Section 4.4.2) to provide a custom property boxVisible that is added

to the control panel. The class definition, excluding include statements, is shown below:

i public class SimpleMuscleWithProperties extends SimpleMuscleWithPanel {

3 // internal property list; inherits properties from SimpleMuscleWithPanel
4 static Propertylist myProps =

5 new PropertyList (

6 SimpleMuscleWithProperties.class, SimpleMuscleWithPanel.class);

8 // override getAllPropertyInfo () to return property list for this class

9 public PropertyList getAllPropertyInfo () {
10 return myProps;

13 // add new properties to the list

14 static {

15 myProps.add ("boxVisible", "box is visible", false);
16 }

5

18 // declare property accessors

19 public boolean getBoxVisible () {

20 return box.getRenderProps () .isVisible () ;

I }

23 public void setBoxVisible (boolean visible) {

24 RenderProps.setVisible (box, visible);

27 public void build (String[] args) throws IOException ({
29 super.build (args);

31 panel.addWidget (this, "boxVisible");
panel.pack () ;

First, a property list is created for the application class SimpleMuscleWithProperties.class which contains a
copy of all the properties from the parent class SimpleMuscleWithPanel.class (lines 4-6). This property list is
made visible by overriding getAl1PropertyInfo () (lines 9-11). The boxVisible property itself is then added to the
property list (line 15), and accessor functions for it are declared (lines 19-25).

The build () method calls super.build() to perform all the model creation required by the super class, and then adds
an additional widget for the boxVisible property to the control panel.

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithProperties from the Models menu. The
control panel will now contain an additional widget for the property boxVisible as shown in Figure 5.2. Toggling this
property will make the box visible or invisible in the viewer.
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Figure 5.2: Control panel created by the model SimpleMuscleWithProperties, showing the newly defined property
boxVisible.

5.3 Controllers and monitors

Application models can define custom controllers and monitors to control input values and monitor output values

as a simulation progresses. Controllers are called every time step immediately before the advance () method, and
monitors are called immediately after (Section 1.1.4). An example of controller usage is provided by ArtiSynth’s inverse
modeling feature, which uses an internal controller to estimate the actuation signals required to follow a specified
motion trajectory.

More precise details about controllers and monitors and how they interact with model advancement are given in the
ArtiSynth Reference Manual.

5.3.1 Implementation

Applications may declare whatever controllers or monitors they require and then add them to the root model using the
methods addController() and addMonitor(). They can be any type of ModelComponent that implements the Controller
or Monitor interfaces. For convenience, most applications simply subclass the default implementations ControllerBase
or MonitorBase and then override the necessary methods.

The primary methods associated with both controllers and monitors are:

public void initialize (double t0);
public void apply (double t0, double t1l);

public boolean isActive();

apply (£t0, t1) isthe “business” method and is called once per time step, with t0 and t1 indicating the start and end
times 7 and #; associated with the step. initialize (t0) is called whenever an application model’s state is set (or reset)
at a particular time fy. This occurs when a simulation is first started or after it is reset (with 7o = 0), and also when the
state is reset at a waypoint or during adaptive stepping.

isActive () controls whether a controller or monitor is active; if isActive () returns false then the apply () method
will not be called. The default implementations ControllerBase and MonitorBase, via their superclass ModelAgentBase,
also provide a setActive () method to control this setting, and export it as the property active. This allows controller
and monitor activity to be controlled at run time.

To enable or disable a controller or monitor at run time, locate it in the navigation panel (under the RootModel’s
controllers or monitors list), chose Edit properties ... from the right-click context menu, and set the active property
as desired.

Controllers and monitors may be associated with a particular model (among the list of models owned by the root model).
This model may be set or queried using

void setModel (Model m);

Model getModel () ;

If associated with a model, apply () will be called immediately before (for controllers) or after (for monitors) the
model’s advance () method. If not associated with a model, then apply () will be called before or after the advance of
all the models owned by the root model.



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html#addController-artisynth.core.modelbase.Controller-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html#addMonitor-artisynth.core.modelbase.Monitor-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Controller.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Monitor.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ControllerBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/MonitorBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ControllerBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/MonitorBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelAgentBase.html

Controllers and monitors may also contain state, in which case they should implement the relevant methods from the
HasState interface.

Typical actions for a controller include setting input forces or excitation values on components, or specifying the motion
trajectory of parametric components (Section 3.1.3). Typical actions for a monitor include observing or recording the
motion profiles or constraint forces that arise from the simulation.

When setting the position and/or velocity of a dynamic component that has been set to be parametric (Section 3.1.3), a
controller should not set its position or velocity directly, but should instead set its target position and/or target velocity,
since this allows the solver to properly interpolate the position and velocity during the time step. The methods to set or
query target positions and velocities for Point-based components are

setTargetPosition (Point3d pos);
Point3d getTargetPosition (); // read-only

setTargetVelocity (Vector3d vel);
Vector3d getTargetVelocity (); // read-only

while for Frame-based components they are

setTargetPosition (Point3d pos);
setTargetOrientation (AxisAngle axisAng);
setTargetPose (RigidTransform3d TFW);

Point3d getTargetPosition (); // read-only
AxisAngle getTargetOrientation (); // read-only
RigidTransform3d getTargetPose () ; // read-only

setTargetVelocity (Twist vel);
Twist getTargetVelocity (); // read-only

5.3.2 Example: A controller to move a point
A model showing an application-defined controller is defined in
artisynth.demos.tutorial.SimpleMuscleWithController

This simply extends SimpleMuscle (Section 4.4.2) and adds a controller which moves the fixed particle p1 along a
circular path. The complete class definition is shown below:

I package artisynth.demos.tutorial;

)

3 import java.io.IOException;
4+ import maspack.matrix.*;

6 import artisynth.core.modelbase.*;
7 import artisynth.core.mechmodels.*;
s import artisynth.core.gui.*;

0 public class SimpleMuscleWithController extends SimpleMuscleWithPanel
i {

12 private class PointMover extends ControllerBase {

14 Point myPnt; // point to be moved
15 Point3d myPos0; // initial point position

17 public PointMover (Point pnt) {
18 myPnt = pnt;
19 myPos0 = new Point3d (pnt.getPosition());

22 public void apply (double t0, double tl) ({
23 double ang = Math.PI*tl/2; // angle associated with time tl
24 Point3d pos = new Point3d (myPos0);
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25 pos.x += 0.5*Math.sin (ang); // compute position for tl
26 pos.z += 0.5*(1-Math.cos (ang));
27 myPnt.setTargetPosition (pos); // ... and the set point’s target

31 public void build (String[] args) throws IOException ({
super.build (args);

34 addController (new PointMover (pl));
// increase model bounding box for the viewer
36 mech.setBounds (-1, 0, -1, 1, 0, 1);

3}

A controller called PointMover is defined by extending ControllerBase and overriding the apply () method. It stores
the point to be moved in myPnt, and the initial position in myPos0. The apply () method computes a target position for
the point that starts at myPos0 and then moves in a circle in the x — z plane with an angular velocity of /2 rad/sec (lines
22-28).

The build () method calls super.build() to create the model used by SimpleMuscle, and then creates an instance
of PointMover to move particle p1 and adds it to the root model (line 34). The viewer bounds are updated to make the
circular motion more visible (line 36).

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithController from the Models menu.
When the model is run, the fixed particle pl will trace out a circular path in the x — z plane.

5.4 Probes

In addition to controllers and monitors, applications can also attach streams of data, known as probes, to input and
output values associated with the simulation. Probes derive from the same base class ModelAgentBase as controllers
and monitors, but differ in that

1. They are associated with an explicit time interval during which they are applied;
2. They can have an attached file for supplying input data or recording output data;

3. They are displayable in the ArtiSynth fimeline panel.

A probe is applied (by calling its apply () method) only for time steps that fall within its time interval. This interval can
be set and queried using the following methods:

setStartTime (double t0);
setStopTime (double tl);
setInterval (double t0, double t1l);

double getStartTime () ;
double getStopTime () ;

The probe’s attached file can be set and queried using:

setAttachedFileName (String fileName) ;
String getAttachedFileName () ;

where fileName is a string giving the file’s path name.

Details about the timeline display can be found in the section “The Timeline” in the ArtiSynth User Interface Guide.

There are two types of probe: input probes, which are applied at the beginning of each simulation step before the
controllers, and output probes, which are applied at the end of the step after the monitors.
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While applications are free to construct any type of probe by subclassing either InputProbe or OutputProbe, most
applications utilize either NumericInputProbe or NumericOutputProbe, which explicitly implement streams of numeric
data which are connected to properties of various model components. The remainder of this section will focus on
numeric probes.

As with controllers and monitors, probes also implement a 1sActive () method that indicates whether or not the probe
is active. Probes that are not active are not invoked. Probes also provide a setActive () method to control this setting,
and export it as the property active. This allows probe activity to be controlled at run time.

To enable or disable a probe at run time, locate it in the navigation panel (under the RootModel’s inputProbes or
outputProbes list), chose Edit properties ... from the right-click context menu, and set the active property as desired.

Probes can also be enabled or disabled in the timeline, by either selecting the probe and invoking activate or
deactivate from the right-click context menu, or by clicking the track mute button (which activates or deactivates all
probes on that track).

5.4.1 Numeric probe structure

Numeric probes are associated with:

* A vector of temporally-interpolated numeric data;

* One or more properties to which the probe is bound and which are either set by the numeric data (input probes), or
used to set the numeric data (output probes).

The numeric data is implemented internally by a NumericList, which stores the data as a series of vector-valued knot
points at prescribed times #; and then interpolates the data for an arbitrary time ¢ using an interpolation scheme provided
by Interpolation.

Some of the numeric probe methods associated with the interpolated data include:

int getVsize () ; // returns the size of the data vector
setInterpolationOrder (Order order); // sets the interpolation scheme
Order getInterpolationOrder (); // returns the interpolation scheme
VectorNd getData (double t); // interpolates data for time t
NumericList getNumericList (); // returns the underlying NumericList

Interpolation schemes are described by the enumerated type Interpolation.Order and presently include:

Step

Values at time 7 are set to the values of the closest knot point k such that 7, <t.

Linear

Values at time 7 are set by linear interpolation of the knot points (k,k+ 1) such that #;, <7 <t .

Parabolic

Values at time 7 are set by quadratic interpolation of the knots (k — 1,k,k+ 1) such that 7, <7 <#;4;.

Cubic
Values at time 7 are set by cubic Catmull interpolation of the knots (k—1,...,k+2) such thatz; <t <fg .

Each property bound to a numeric probe must have a value that can be mapped onto a scalar or vector value. Such
properties are know as numeric properties, and whether or not a value is numeric can be tested using
NumericConverter.isNumeric(value).

By default, the total number of scalar and vector values associated with all the properties should equal the size of the
interpolated vector (as returned by getVsize()). However, it is possible to establish more complex mappings between the
property values and the interpolated vector. These mappings are beyond the scope of this document, but are discussed in
the sections “General input probes” and “General output probes” of the ArtiSynth User Interface Guide.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/InputProbe.html
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https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericOutputProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/interpolation/NumericList.html
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https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/properties/NumericConverter.html#isNumeric-java.lang.Object-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericProbeBase.html#getVsize--
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
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5.4.2 Creating probes in code
This section discusses how to create numeric probes in code. They can also be created and added to a model graphically,
as described in the section “Adding and Editing Numeric Probes” in the ArtiSynth User Interface Guide.

Numeric probes have a number of constructors and methods that make it relatively easy to create instances of them in
code. For NumericInputProbe, there is the constructor

NumericInputProbe (ModelComponent c¢, String propPath, String filePath);

which creates a NumericInputProbe, binds it to a property located relative to the component ¢ by propPath, and then
attaches it to the file indicated by filePath and loads data from this file (see Section 5.4.4). The probe’s start and stop
times are specified in the file, and its vector size is set to match the size of the scalar or vector value associated with the

property.
To create a probe attached to multiple properties, one may use the constructor

NumericInputProbe (ModelComponent c¢, String propPaths[], String filePath);

which binds the probe to multiple properties specified relative to ¢ by propPaths. The probe’s vector size is set to the
sum of the sizes of the scalar or vector values associated with these properties.

For NumericOutputProbe, one may use the constructor

NumericOutputProbe (ModelComponent c, String propPath, String filePath, double <+
sample) ;

which creates a NumericOutputProbe, binds it to the property propPath located relative to c, and then attaches it to
the file indicated by filePath. The argument sample indicates the sample time associated with the probe, in seconds;
a value of 0.01 means that data will be added to the probe every 0.01 seconds. If sample is specified as -1, then the
sample time will default to the maximum step size associated with the root model.

To create an output probe attached to multiple properties, one may use the constructor

NumericOutputProbe (
ModelComponent c, String propPaths[], String filePath, double sample);

As the simulation proceeds, an output probe will accumulate data, but this data will not be saved to any attached file
until the probe’s save () method is called. This can be requested in the GUI for all probes by clicking on the Save
button in the timeline toolbar, or for specific probes by selecting them in the navigation panel (or the timeline) and
then choosing Save data in the right-click context menu.

Output probes created with the above constructors have a default interval of [0, 1]. A different interval may be set using
setInterval (), setStartTime (), or setStopTime ().

5.4.3 Example: probes connected to SimpleMuscle
A model showing a simple application of probes is defined in
artisynth.demos.tutorial.SimpleMuscleWithProbes

This extends SimpleMuscle (Section 4.4.2) to add an input probe to move particle p1 along a defined path, along with
an output probe to record the velocity of the frame marker. The complete class definition is shown below:

i package artisynth.demos.tutorial;
3 import java.io.IOException;
4+ import maspack.matrix.*;

s import maspack.util.PathFinder;

7 import artisynth.core.modelbase.*;



https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
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s import artisynth.core.mechmodels.*;
9 import artisynth.core.probes.*;

11 public class SimpleMuscleWithProbes extends SimpleMuscleWithPanel

A

13 public void createInputProbe () throws IOException {

14 NumericInputProbe plprobe =

15 new NumericInputProbe (

16 mech, "particles/pl:targetPosition",

17 PathFinder.getSourceRelativePath (this, "simpleMusclePlPos.txt"));
18 plprobe.setName ("Particle Position");

19 addInputProbe (plprobe);

2 public void createOutputProbe () throws IOException {
3 NumericOutputProbe mkrProbe =
24 new NumericOutputProbe (

mech, "frameMarkers/0O:velocity",

26 PathFinder.getSourceRelativePath (this, "simpleMuscleMkrVel .txt"),
27 0.01);

28 mkrProbe.setName ("FrameMarker Velocity");

29 mkrProbe.setDefaultDisplayRange (-4, 4);

30 mkrProbe.setStopTime (10);

31 addOutputProbe (mkrProbe);

34 public void build (String[] args) throws IOException ({
35 super.build (args);

36

37 createlInputProbe ();

38 createOutputProbe () ;

r
39 mech.setBounds (-1, 0, -1, 1, 0, 1);

The input and output probes are added using the custom methods createInputProbe () and createOutputProbe ().
Atline 14, createInputProbe () creates a new input probe bound to the targetPosition property for the component
particles/pl located relative to the MechModel mech. The same constructor attaches the probe to the file
simpleMuscleP1Pos.txt, which is read to load the probe data. The format of this and other probe data files is
described in Section 5.4.4. The method PathFinder.getSourceRelativePath() is used to locate the file relative to the
source directory for the application model (see Section 2.6). The probe is then given the name "Particle Position"
(line 18) and added to the root model (line 19).

Similarly, createOutputProbe () creates a new output probe which is bound to the velocity property for the
component particles/0 located relative to mech, is attached to the file simpleMuscleMkrVel.txt located in
the application model source directory, and is assigned a sample time of 0.01 seconds. This probe is then named
"FrameMarker Velocity" and added to the root model.

The build () method calls super.build() to create everything required for SimpleMuscle, calls createInputProbe ()
and createOutputProbe () to add the probes, and adjusts the MechModel viewer bounds to make the resulting probe
motion more visible.

To run this example in ArtiSynth, select All demos > tutorial > SimpleMuscleWithProbes from the Models menu. After
the model is loaded, the input and output probes should appear on the timeline (Figure 5.3). Expanding the probes
should display their numeric contents, with the knot points for the input probe clearly visible. Running the model will
cause particle p1 to trace the trajectory specified by the input probe, while the velocity of the marker is recorded in the
output probe. Figure 5.4 shows an expanded view of both probes after the simulation has run for about six seconds.

5.4.4 Data file format

The data files associated with numeric probes are ASCII files containing two lines of header information followed by
a set of knot points, one per line, defining the numeric data. The time value (relative to the probe’s start time) for each
knot point can be specified explicitly at the start of the each line, in which case the file takes the following format:
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Figure 5.3: Timeline view of the probes created by SimpleMuscleWithProbes.
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Figure 5.4: Expanded view of the probes after SimpleMuscleWithProbes has run for about 6 seconds, showing the data
accumulated in the output probe "FrameMarker Velocity".

startTime stopTime scale
interpolation vsize explicit
t0 val00 valOl val02

tl vall0 valll vall2

t0 val20 val2l val22

Knot point information begins on line 3, with each line being a sequence of numbers giving the knot’s time followed by
n values, where 7 is the vector size of the probe (i.e., the value returned by getVsize ()).

Alternatively, time values can be implicitly specified starting at O (relative to the probe’s start time) and incrementing by
a uniform timeStep, in which case the file assumes a second format:

startTime stopTime scale
interpolation vsize timeStep
val00 valO0l val02

vall0 valll vall?2

val20 val2l val22

For both formats, startTime, startTime, and scale are numbers giving the probe’s start and stop time in seconds
and scale gives the scale factor (which is typically 1.0). interpolation is a word describing how the data should be
interpolated between knot points and is the string value of Interpolation.Order as described in Section 5.4.1 (and
which is typically Linear, Parabolic, or Cubic). vsize is an integer giving the probe’s vector size.

The last entry on the second line is either a number specifying a (uniform) time step for the knot points, in which case
the file assumes the second format, or the keyword explicit, in which case the file assumes the first format.




As an example, the file used to specify data for the input probe in the example of Section 5.4.3 looks like the following:

0 4.0 1.0

Linear 3 explicit
0.0 0.0 0.0 0.0
1.0 0.5 0.0 0.5
2.0 0.0 0.0 1.0
3.0 -0.5 0.0 0.5
4.0 0.0 0.0 0.0

Since the data is uniformly spaced beginning at 0, it would also be possible to specify this using the second file format:

0 4.0 1.0
Linear
0.0

o
oo w;

o o o o o
coooow
o o o o
cubwouoo

5.4.5 Adding probe data in-line

It is also possible to specify input probe data directly in code, instead of reading it from a file. For this, one would use
the constructor

NumericInputProbe (ModelComponent c¢, String propPath, double t0, double tl);

which creates a NumericInputProbe with the specified property and with start and stop times indicated by t0 and t1.
Data can then be added to this probe using the method

addData (double[] data, double timeStep);

where data is an array of knot point data. This contains the same knot point information as provided by a file (Section
5.4.4), arranged in row-major order. Times values for the knots are either implicitly specified, starting at O (relative to
the probe’s start time) and increasing uniformly by the amount specified by t imeStep, or are explicitly specified at the
beginning of each knot if t imeStep is set to the built-in constant NumericInputProbe.EXPLICIT_TIME. The size of
the data array should then be either n  m (implicit time values) or (n+ 1) * m (explicit time values), where n is the
probe’s vector size and m is the number of knots.

As an example, the data for the input probe in Section 5.4.3 could have been specified using the following code:

NumericInputProbe plprobe =
new NumericInputProbe (
mech, "particles/pl:targetPosition", 0, 5);
plprobe.addData (

new double[] {
0.0, 0.0, 0.0, 0.0,
1.0, 0.5, 0.0, 0.5,
2.0, 0.0, 0.0, 1.0,
3.0, -0.5, 0.0, 0.5,
4.0, 0.0, 0.0, 0.0 },
NumericInputProbe .EXPLICIT_TIME) ;

When specifying data in code, the interpolation defaults to Linear unless explicitly specified using
setInterpolationOrder (), as in, for example:

probe.setInterpolationOrder (Order.Cubic);
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5.4.6 Numeric monitor probes

In some cases, it may be useful for an application to deploy an output probe in which the data, instead of being collected
from various component properties, is generated by a function within the probe itself. This ability is provided by a
NumericMonitorProbe, which generates data using its generateData(vec,t,trel) method. This evaluates a vector-valued
function of time at either the absolute time t or the probe-relative time trel and stores the result in the vector vec,
whose size equals the vector size of the probe (as returned by getVsize()). The probe-relative time trel is determined
by

trel = (t — tstart) /scale (5.1)

where tstart and scale are the probe’s start time and scale factors as returned by getStartTime() and getScale().

As described further below, applications have several ways to control how a NumericMonitorProbe creates data:

* Provide the probe with a DataFunction using the setDataFunction(func) method;
* Override the generateData(vec,t,trel) method;

* Override the apply(t) method.

The application is free to generate data in any desired way, and so in this sense a NumericMonitorProbe can be used
similarly to a Monitor, with one of the main differences being that the data generated by a NumericMonitorProbe can
be automatically displayed in the ArtiSynth GUI or written to a file.

The DataFunction interface declares an eval () method,
void eval (VectorNd vec, double t, double trel)

that for NumericMonitorProbes evaluates a vector-valued function of time, where the arguments take the same role
as for the monitor’s generateData() method. Applications can declare an appropriate DataFunction and set or query it
within the probe using the methods

void setDataFunction (DataFunction func);

DataFunction getDataFunction ();

The default implementation generateData () checks to see if a data function has been specified, and if so, uses that to
generate the probe data. Otherwise, if the probe’s data function is null, the data is simply set to zero.

To create a NumericMonitorProbe using a supplied DataFunction, an application will create a generic probe instance,
using one of its constructors such as

NumericMonitorProbe (vsize, fileName, startTime, stopTime, interval);

and then define and instantiate a DataFunction and pass it to the probe using setDataFunction (). It is not necessary
to supply a file name (i.e., fileName can be null), but if one is provided, then the probe’s data can be saved to that file.

A complete example of this is defined in
artisynth.demos.tutorial.SinCosMonitorProbe

the listing for which is:

i package artisynth.demos.tutorial;

)

import maspack.matrix.*;
4+ import maspack.util.Clonable;

¢ import artisynth.core.workspace.RootModel;
7 import artisynth.core.probes.NumericMonitorProbe;
s import artisynth.core.probes.DataFunction;

0 /%%

1 * Simple demo using a NumericMonitorProbe to generate sine and cosine waves.
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2 */

3 public class SinCosMonitorProbe extends RootModel ({

15 // Define the DataFunction that generates a sine and a cosine wave
16 class SinCosFunction implements DataFunction, Clonable {

18 public void eval (VectorNd vec, double t, double trel) {
19 // vec should have size == 2, one for each wave

20 vec.set (0, Math.sin (t));

21 vec.set (1, Math.cos (t));

24 public Object clone() throws CloneNotSupportedException ({
25 return (SinCosFunction) super.clone();

29 public void build (String[] args) {

31 // Create a NumericMonitorProbe with size 2, file name "sinCos.dat", start
32 // time 0, stop time 10, and a sample interval of 0.0l seconds:

33 NumericMonitorProbe sinCosProbe =

34 new NumericMonitorProbe (/*vsize=*/2, "sinCos.dat", 0, 10, 0.01);

36 // then set the data function:
37 sinCosProbe.setDataFunction (new SinCosFunction ());
38 addOutputProbe (sinCosProbe);

In this example, the DataFunction is implemented using the class SinCosFunction, which also implements Clonable
and the associated clone () method. This means that the resulting probe will also be duplicatable within the GUI.
Alternatively, one could implement SinCosFunction by extending DataFunctionBase, which implements Clonable by
default. Probes containing DataFunctions which are not Clonable will not be duplicatable.

When the example is run, the resulting probe output is shown in the timeline image of Figure 5.5.
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Figure 5.5: Output from a NumericMonitorProbe which generates sine and cosine waves.

As an alternative to supplying a DataFunction to a generic NumericMonitorProbe, an application can instead subclass
NumericMonitorProbe and override either its generateData(vec,t,trel) or apply(t) methods. As an example of the
former, one could create a subclass as follows:

class SinCosProbe extends NumericMonitorProbe {

public SinCosProbe (
String fileName, double startTime, double stopTime, double interval) {
super (2, fileName, startTime, stopTime, interval);

public void generateData (VectorNd vec, double t, double trel) {
vec.set (0, Math.sin (t));
vec.set (1, Math.cos (t));
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Note that when subclassing, one must also create constructor(s) for that subclass. Also, NumericMonitorProbes which
don’t have a DataFunction set are considered to be clonable by default, which means that the clone () method may
also need to be overridden if cloning requires any special handling.

5.4.7 Numeric control probes

In other cases, it may be useful for an application to deploy an input probe which takes numeric data, and instead

of using it to modify various component properties, instead calls an internal method to directly modify the simula-
tion in any way desired. This ability is provided by a NumericControlProbe, which applies its numeric data using its
applyData(vec,t,trel) method. This receives the numeric input data via the vector vec and uses it to modify the simula-
tion for either the absolute time t or probe-relative time trel. The size of vec equals the vector size of the probe (as
returned by getVsize()), and the probe-relative time trel is determined as described in Section 5.4.6.

A NumericControlProbe is the Controller equivalent of a NumericMonitorProbe, as described in Section 5.4.6.
Applications have several ways to control how they apply their data:

* Provide the probe with a DataFunction using the setDataFunction(func) method;

* Override the applyData(vec,t,trel) method;

* Override the apply(t) method.

The application is free to apply data in any desired way, and so in this sense a NumericControlProbe can be used

similarly to a Controller, with one of the main differences being that the numeric data used can be automatically
displayed in the ArtiSynth GUI or read from a file.

The DataFunction interface declares an eval () method,
void eval (VectorNd vec, double t, double trel)

that for NumericControlProbes applies the numeric data, where the arguments take the same role as for the monitor’s
applyData() method. Applications can declare an appropriate DataFunction and set or query it within the probe using
the methods

void setDataFunction (DataFunction func);

DataFunction getDataFunction ();

The default implementation applyData () checks to see if a data function has been specified, and if so, uses that to
apply the probe data. Otherwise, if the probe’s data function is null, the data is simply ignored and the probe does
nothing.

To create a NumericControlProbe using a supplied DataFunction, an application will create a generic probe instance,
using one of its constructors such as

NumericControlProbe (vsize, data, startTime, stopTime, timeStep);

NumericControlProbe (fileName) ;

and then define and instantiate a DataFunction and pass it to the probe using setDataFunction (). The latter
constructor creates the probe and reads in both the data and timing information from the specified file.

A complete example of this is defined in
artisynth.demos.tutorial.SpinControlProbe

the listing for which is:
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package artisynth.demos.tutorial;

3 import

import
import
import

import
import
import
import
import

3 import

/**

maspack.matrix.RigidTransform3d;
maspack.matrix.VectorNd;
maspack.util.Clonable;
maspack.interpolation.Interpolation;

artisynth.core.mechmodels.MechModel;
artisynth.core.mechmodels.RigidBody;
artisynth.core.mechmodels.Frame;
artisynth.core.workspace.RootModel;
artisynth.core.probes.NumericControlProbe;
artisynth.core.probes.DataFunction;

* Simple demo using a NumericControlProbe to spin a Frame about the z

* axis.

*/

public class SpinControlProbe extends RootModel {

/1

Define the DataFunction that spins the body

class SpinFunction implements DataFunction, Clonable {

Frame myFrame;
RigidTransform3d myTFW0; // initial frame to world transform

SpinFunction (Frame frame) {
myFrame = frame;
myTFW0 = new RigidTransform3d (frame.getPose());

public void eval (VectorNd vec, double t, double trel) {
// vec should have size == 1, giving the current spin angle
double ang = Math.toRadians (vec.get (0));
RigidTransform3d TFW = new RigidTransform3d () ;
TFW.R.mulRpy (ang, 0, 0);
myFrame.setPose (TFEW);

public Object clone() throws CloneNotSupportedException ({
return super.clone () ;

public void build (String[] args) {

MechModel mech = new MechModel ("mech");
addModel (mech);

// Create a parametrically controlled rigid body to spin:

RigidBody body = RigidBody.createBox ("box", 1.0, 1.0, 0.5, 1000.

mech.addRigidBody (body);
body.setDynamic (false);

// Create a NumericControlProbe with size 1, initial spin data
// with time step 2.0, start time 0, and stop time 8.
NumericControlProbe spinProbe =
new NumericControlProbe (

/*vsize=*/1,

new double[] { 0.0, 90.0, 0.0, -90.0, 0.0 },

2.0, 0.0, 8.0);
// set cubic interpolation for a smoother result
spinProbe.setInterpolationOrder (Interpolation.Order.Cubic);
// then set the data function:

0);
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65 spinProbe.setDataFunction (new SpinFunction (body));
66 addInputProbe (spinProbe);

This example creates a simple box and then uses a NumericControlProbe to spin it about the z axis, using a
DataFunction implementation called SpinFunction. A clone method is also implemented to ensure that the probe
will be duplicatable in the GUI, as described in Section 5.4.6. A single channel of data is used to control the orientation
angle of the box about z, as shown in Figure 5.6.
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Figure 5.6: Screen shot of the SpinControlDemo, showing the numeric data in the timeline.

Alternatively, an application can subclass NumericControlProbe and override either its applyData(vec,t,trel) or
apply(t) methods, as described for NumericMonitorProbes (Section 5.4.6).

5.5 Application-Defined Menu Items

Application models can define custom menu items that appear under the Application menu in the main ArtiSynth
menu bar.

This can be done by implementing the interface HasMenultems in either the RootModel or any of its top-level compo-
nents (e.g., models, controllers, probes, etc.). The interface contains a single method

public boolean getMenultems (List<Object> items);

which, if the component has menu items to add, should append them to items and return true.
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Figure 5.7: Application-defined menu items appearing under the ArtiSynth menu bar.

The RootModel and all models derived from ModelBase implement HasMenuItems by default, but with getMenuItems ()
returning false. Models wishing to add menu items should override this default declaration. Other component types,
such as controllers, need to explicitly implement HasMenuItems.

Note: the Application menu will only appear if getMenuItems () returns true for either the RootModel or one or
more of its top-level components.

getMenultems() will be called each time the Application menu is selected, so the menu itself is created on demand and
can be varied to suite the current system state. In general, it should return items that are capable of being displayed
inside a Swing JMenu; other items will be ignored. The most typical item is a Swing JMenuItem. The convenience
method createMenultem(listener,text,toolTip) can be used to quickly create menu items, as in the following code
segment:

public boolean getMenultems (List<Object> items) {

items.add (GuiUtils.createMenultem (this, "reset", ""));
items.add (GuiUtils.createMenultem (this, "add sphere", ""));
items.add (GuiUtils.createMenulItem (this, "show flow", ""));

return true;

This creates three menu items, each with this specified as an ActionListener and no tool-tip text, and appends them
to items. They will then appear under the Application menu as shown in Figure 5.7.

To actually execute the menu commands, the items returned by getMenuItems () need to be associated with an
ActionListener (defined in java.awt.event), which supplies the method actionPerformed () which is called
when the menu item is selected. Typically the ActionListener is the component implementing HasMenuItems, as
was assumed in the example declaration of getMenuItems () shown above. RootModel and other models derived from
ModelBase implement ActionListener by default, with an empty declaration of actionPerformed () that should be
overridden as required. A declaration of actionPerformed () capable of handling the menu example above might look
like this:

public void actionPerformed (ActionEvent event) {

String cmd = event.getActionCommand () ;

if (cmd.equals ("reset")) {
resetModel () ;

}

else if (cmd.equals ("add sphere")) {
addSphere () ;

}

else if (cmd.equals ("show flow")) {

showFlow () ;
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Chapter 6

Finite Element Models

This chapter details how to construct three-dimensional finite element models, and how to couple them with the other
simulation components described in previous sections (e.g. particles and rigid bodies). Finite element muscles, which
have additional properties that allow them to contract given activation signals, are discussed in Section 6.9. An example
FEM model of the masseter, coupled to a rigid jaw and maxilla, is shown in Figure 6.1.

Figure 6.1: Finite element model of the masseter, coupled to the jaw and maxilla.

6.1 Overview

The finite element method (FEM) is a numerical technique used for solving a system of partial differential equations
(PDEs) over some domain. The general approach is to divide the domain into a set of building blocks, referred to

as elements. These partition the space, and form local domains over which the system of equations can be locally
approximated. The corners of these elements, the nodes, become control points in a discretized system. The solution

is then assumed to be smoothly interpolated across the elements based on values determined at the nodes. Using this
discretization, the differential system is converted into an algebraic one, which is often linearized and solved iteratively.

In ArtiSynth, the PDEs considered are the governing equations of continuum mechanics: the conservation of mass,
momentum, and energy. To complete the system, a constitutive equation is required that describes the stress-strain
response of the material. This constitutive equation is what distinguishes between material types. The domain is the
three-dimensional space that the model occupies. This must be divided into small elements which accurately represent
the geometry. Within each element, the PDEs are sampled at a set of points, referred to as integration points, and terms
are numerically integrated to form an algebraic system to solve.

The purpose of the rest of this chapter is to describe the construction and use of finite elements models within ArtiSynth.
It does not further discuss the mathematical framework or theory. For an in-depth coverage of the nonlinear finite
element method, as applied to continuum mechanics, the reader is referred to the textbook by Bonet and Wood [3].




6.1.1 FemModel3d

The basic type of finite element model is implemented in the class FemModel3d. This class controls some properties
that are used by the model as a whole. The key ones that affect simulation dynamics are:

Property Description
density The density of the model
material An object that describes the material’s constitutive law (i.e. its stress-strain relationship).

particleDamping Proportional damping associated with the particle-like motion of the FEM nodes.
stiffnessDamping Proportional damping associated with the system’s stiffness term.

These properties can be set and retrieved using the methods

setDensity (double density); // sets the density

double getDensity (); // gets the density

setMaterial (FemMaterial mat); // sets the FEM’s material

FemMaterial getMaterial (); // gets the FEM’s material

setParticleDamping (double d); // sets the particle (mass) damping coefficient
double getParticleDamping () ; // gets the particle (mass) damping coefficient

setStiffnessDamping (double d); // sets the stiffness damping coefficient
double getStiffnessDamping (); // gets the stiffness damping coefficient

Keep in mind that ArtiSynth is essentially “unitless” (Section 4.2), so it is the responsibility of the developer to ensure
that all properties are specified in a compatible way.

The density of the model is used to compute the mass distribution throughout the volume. Note that we use a diagonally
lumped mass matrix (DLMM) formulation, so the mass is assumed to be concentrated at the location of the discretized
FEM nodes. To allow for a spatially-varying density, densities can be explicitly set for individual elements, or masses
can be explicitly set for individual nodes.

The FEM’s material property is a delegate object used to compute stress and stiffness within individual elements. It
handles the constitutive component of the model, as described in more detail in Section 6.1.3. In addition to the main
material defined for the model, it is also possible set a material on a per-element basis, and to define additional materials
which augment the behavior of the main materials (Section 6.8).

The two damping parameters are related to Rayleigh damping, which is used to dissipate energy within finite element
models. There are two proportional damping terms: one related to the system’s mass, and one related to stiffness. The
resulting damping force applied is

f, = 7(dMM+dKK)V, 6.1)

where d)y is the value of particleDamping, dk is the value of stiffnessDamping, M is the FEM model’s lumped
mass matrix, K is the FEM’s stiffness matrix, and v is the concatenated vector of FEM node velocities. Since the lumped
mass matrix is diagonal, the mass-related component of damping can be applied separately to each FEM node. Thus, the
mass component reduces to the same system as Equation (3.3), which is why it is referred to as “particle damping”.

6.1.2 Component Structure

Each FemModel3d contains several lists of sub-components:

nodes
The particle-like dynamic components of the model. These lie at the corners of the elements and carry all the
mass (due to DLMM formulation).

elements

The volumetric model elements. These define the 3D sub-units over which the system is numerically integrated.

shellElements

The shell elements. These define additional 2D sub-units over which the system is numerically integrated.
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meshes

The geometry in the model. This includes the surface mesh, and any other embedded geometries.

materials

Optional additional materials which can be added to the model to augment the behavior of the model’s material
property. This is described in more detail in Section 6.8.

fields

Optional field components which can be used to interpolate application-defined quantities over the FEM model’s
domain. Fields are described in detail in Section 6.10.

The nodes, elements and meshes components are illustrated in Figure 6.2.

| ¢ > :
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(a) FEM model (b) Nodes (c) Elements (d) Geometry

Figure 6.2: Sub-components of FemModel3d.

6.1.2.1 Nodes

The set of nodes belong to a finite element model can be obtained by the method

PointList<FemNode3d> getNodes () ; // returns list of FEM nodes

Nodes are implemented in the class FemNode3d, which is a subclass of Particle (Section 3.1). They are the main
dynamic components of the finite element model. The key properties affecting simulation dynamics are:

Property Description

restPosition The initial position of the node.

position The current position of the node.

velocity The current velocity of the node.

mass The mass of the node.

dynamic Whether the node is considered dynamic or parametric (e.g. boundary condition).
Each of these properties has corresponding getXxx () and setXxx (...) functions to access and modify them.

113

The restPosition property defines the node’s position in the FEM model’s “natural” or “undeformed” state. Rest
positions are used to compute an initial configuration for the model, from which strains are determined. A node’s rest
position can be updated in code using the method: FemNode3d.setRestPosition(Point3d).

If any node’s rest positions are changed, the current values for stress and stiffness will become invalid. They can
be manually updated using the method FemModel3d.updateStressAndStiffness() for the parent model. Otherwise,
stress and stiffness will be automatically updated at the beginning of the next time step.

The properties position and velocity give the node’s current 3D state. These are common to all point-like particles,
as is the mass property. Here, however, mass represents the lumped mass of the immediately surrounding material. Its
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value is initialized by equally dividing mass contributions from each adjacent element, given their densities. For a finer
control of spatially-varying density, node masses can be set manually after FEM creation.

The FEM node’s dynamic property specifies whether or not the node is considered when computing the dynamics of the
system. If not, it is treated as being parametrically controlled. This has implications when setting boundary conditions
(Section 6.1.4).

6.1.2.2 Elements

Elements are the 3D volumetric spatial building blocks of the domain. Within each element, the displacement (or strain)
field is interpolated from displacements at nodes:

=

0i(x)u;, (6.2)

u(x) =

where u; is the displacement of the ith node that is adjacent to the element, and () is referred to as the shape function
(or basis function) associated with that node. Elements are classified by their shape, number of nodes, and shape

function order (Table 6.1). ArtiSynth supports the following element types:

TetElement, PyramidElement, WedgeElement, HexElement,
QuadtetElement QuadpyramidElement QuadwedgeElement QuadhexElement

Table 6.1: Supported element types

Element Type # Nodes Order # Integration Points
TetElement 4 linear 1
PyramidElement 5 linear 5
WedgeElement 6 linear 6
HexElement 8 linear 8
QuadtetElement 10 quadratic 4
QuadpyramidElement 13 quadratic 5
QuadwedgeElement 15 quadratic 9
QuadhexElement 20 quadratic 14

The base class for all of these is FemElement3d. A numerical integration is performed within each element to create

the (tangent) stiffness matrix. This integration is performed by evaluating the stress and stiffness at a set of integration
points within each element, and applying numerical quadrature. The list of elements in a model can be obtained with the
method

RenderableComponentList <FemElement3d> getElements () ;

All objects of type FemElement3d have the following properties:

Property Description
density  Density of the element
material  An object that describes the constitutive law within the element (i.e. its stress-strain relationship).

If left unspecified, the element’s density is inherited from the containing FemMode13d object. When set, the mass of
the element is computed and divided amongst all its nodes, updating the lumped mass matrix.

Each element’s’ material property is also inherited by default from the containing FemModel3d. Specifying a material
here allows for spatially-varying material properties across the model. Materials will be discussed further in Section
6.1.3.
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6.1.2.3 Shell elements

Shell elements are additional 2D spatial building blocks which can be added to a model. They are typically used to
model structures which are too thin to be easily represented by 3D volumetric elements, or to provide additional internal
stiffness within a set of volumetric elements.

ArtiSynth presently supports the following shell element types, with the number of nodes, shape function order, and
integration point count described in Table 6.2:

ShellTriElement ShellQuadElement

Table 6.2: Supported shell element types

Element Type # Nodes Order # Integration Points
ShellTriElement 3 linear 9 (3 if membrane)
ShellQuadElement 4 linear 8 (4 if membrane)

The base class for all shell elements is ShellElement3d, which contains the same density and material properties as
FemElement3d, as well as the additional property defaultThickness, whose use will be described below.

The list of shell elements in a model can be obtained with the method

RenderableComponentList <ShellElement3d> getShellElements () ;

Both the volumetric elements (FemElement3d) and the shell elements (Shel1Element3d) derive from the base class
FemElement3dBase. To obtain all the elements in an FEM model, both shell and volumetric, one may use the method

ArrayList<FemElement3dBase> getAllElements () ;
Each shell element can actually be instantiated in two forms:

* As aregular shell element, which has a bending stiffness;

* As a membrane element, which does not have bending stiffness.

Regular shell elements are implemented using the same extensible director formulation used by FEBio [9], and more
specifically the front/back node formulation [10]. Each node associated with a (regular) shell element is assigned

a director, which is a 3D vector providing a normal direction and virtual thickness at that node (Figure 6.3). This
virtual thickness allows us to continue to use 3D materials to provide the constitutive laws that determine the shell’s
stress/strain response, including its bending behavior. It also allows us to continue to use the element’s density to
determine its mass.

Director information is automatically assigned to a FemNode3d whenever one or more regular shell elements is
connected to it. This information includes both the current value of the director, its rest value, and its velocity, with the
difference between the first two determining the element’s bending strain. These quantities can be queried using the
methods

Vector3d getDirector (); // return the current director value
void getDirector (Vector3d dir);

Vector3d getRestDirector (); // return the rest director value
void getRestDirector (Vector3d dir);

Vector3d getDirectorVel (); // return the director velocity

boolean hasDirector (); // does this node have a director?
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Figure 6.3: ShellQuadElement with the directors (dark blue lines) visible at the nodes.

For nodes which are not connected to regular shell elements, and therefore do not have director information assigned,
these methods all return a zero-valued vector.

If not otherwise specified, the current and rest director values are computed automatically from the surrounding (regular)
shell elements, with their value d being computed from

d=Ztl-n,~

where #; is the value of the defaultThickness property and n; is the surface normal of the i-th surrounding regular shell
element. However, if necessary, it is also possible to explicitly assign these values, using the methods

setDirector (Vector3d dir); // set the current director

setRestDirector (Vector3d dir); // set the rest director

ArtiSynth FEM nodes can currently support only one director, which is shared by all regular shell elements
associated with that node. This effectively means that all such elements must belong to the same “surface”, and that
two intersecting surfaces cannot share the same nodes.

As indicated above, shell elements can also be instantiated as membrane elements, which do not exhibit bending
stiffness and therefore do not require director information. The regular/membrane distinction is specified in the
element’s constructor. For example, ShellTriElement and ShellQuadElement each have constructors with the
signatures:

ShellTriElement (FemNode3d n0, FemNode3d nl, FemNode3d n2,
double thickness, boolean membrane);

ShellQuadElement (FemNode3d n0O, FemNode3d nl, FemNode3d n2, FemNode3d n3,
double thickness, boolean membrane);

The thickness argument specifies the defaultThickness property, while membrane determines whether or not the
element is a membrane element.

While membrane elements do not require explicit director information stored at the nodes, they do make use of an
inferred director that is parallel to the element’s surface normal, and has a constant length equal to the element’s default-
Thickness property. This gives the element a virtual volume, which (as with regular elements) is used to determine 3D
strains and to compute the element’s mass from it’s density.

6.1.2.4 Meshes

The geometry associated with a finite element model consists of a collection of meshes (e.g. PolygonalMesh,
PolylineMesh, PointMesh) that move along with the model in a way that maintains the shape function interpolation
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equation (6.2) at each vertex location. These geometries can be used for visualizations, or for physical interactions like
collisions. However, they have no physical properties themselves. FEM geometries will be discussed in more detail in
Section 6.3. The list of meshes can be obtained with the method

MeshComponentList <FemMeshComp> getMeshComps () ;

6.1.3 Materials
The stress-strain relationship within each element is defined by a “material” delegate object, implemented by a subclass
of FemMaterial. This material object is responsible for implementing the functions

void computeStressAndTangent (...)

which computes the stress tensor and (optionally) the tangent stiffness matrix at each integration point, based on the
current local deformation at that point.

The default material type is LinearMaterial, where stress is related to strain through:

o(x) =De(x), (6.3)
A4+2u A A0 0 0
A A+24 A 0 0 0
A A A+2u 0 0 O B Ev _E
where D=1 0 0 u 0 of 7“(1+v)(1—2v)’ =50y
0 0 0 0 u O
0 0 0 0 0 u

o is the standard 6 x 1 stress vector, € is the strain vector, E is the Young’s Modulus, and v is Poisson’s ratio. This linear
material uses a corotational formulation, so rotations are removed per element before computing the strain [13]. To
enable or disable this corotational formulation, use LinearMaterial.setCorotated(boolean).

All material models, including linear and nonlinear, are available in the package artisynth.core.materials. A
list of common materials is provided in Table 6.3. Those that are subclasses of IncompressibleMaterial allow for
incompressibility.

Table 6.3: Commonly used FEM materials

Material Parameters

LinearMaterial E Young’s modulus
\% Poisson’s ratio
corotated corotational formulation

StVenantKirchoffMaterial Young’s modulus
Poisson’s ratio

E
\%
NeoHookeanMaterial E Young’s modulus
\4
G
K

Poisson’s ratio
shear modulus
bulk modulus

IncompNeoHookeanMaterial

MooneyRivlinMaterial C10,Co1,C20,Cpp  distortional parameters
K bulk modulus
OgdenMaterial Ui,...,Ue material parameters
ap,...,06
K bulk modulus

6.1.4 Boundary conditions
Boundary conditions can be implemented in one of several ways:

1. Explicitly setting FEM node positions/velocities

2. Attaching FEM nodes to other dynamic components
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3. Enabling collisions

To enforce an explicit (Dirichlet) boundary condition for a set of nodes, their dynamic property must be set to false.
This notifies ArtiSynth that the state of these nodes (both position and velocity) will be controlled parametrically. By
disabling dynamics, a fixed boundary condition is applied. For a moving boundary, positions and velocities of the
boundary nodes must be explicitly set every timestep. This can be accomplished with either a Controller (see Section
5.3) or an InputProbe (see Section 5.4). Note that both the position and velocity of the nodes should be explicitly set for
consistency.

Another type of supported boundary condition is to attach FEM nodes to other components, including particles, springs,
rigid bodies, and locations within other FEM elements. Here, the node is still considered dynamic, but its motion is
coupled to that of the attached component through a constraint mechanism. Attachments will be discussed further in
Section 6.4.

Finally, the boundary of an FEM can be constrained by enabling collisions with other components. This will be covered
in Section 6.11.

6.2 FEM model creation

Creating a finite element model in ArtiSynth typically follows the pattern:

// Create and add main MechModel
MechModel mech = new MechModel ("mech");
addModel (mech) ;

// Create FEM
FemModel3d fem = new FemModel3d ("fem");

/* ... Setup FEM structure and properties ... */

// Add FEM to model
mech.addModel (fem) ;

The main code block for the FEM setup should do the following:

* Build the node/element structure
 Set physical properties
— density
— damping
— material
 Set boundary conditions
 Set render properties

Building the FEM structure can be done with the use of factory methods for simple shapes, by loading external files, or
by writing code to manually assemble the nodes and elements.

6.2.1 Factory methods

For simple shapes such as beams and ellipsoids, there are factory methods to automatically build the node and element
structure. These methods are found in the FemFactory class. Some common methods are

FemFactory.createGrid (...) // basic beam
FemFactory.createCylinder (...) // cylinder
FemFactory.createTube (...) // hollowed cylinder
FemFactory.createEllipsoid (...) // ellipsoid
FemFactory.createTorus (...) // torus

The inputs specify the dimensions, resolution, and potentially the type of element to use. The following code creates a
basic beam made up of hexahedral elements:
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// Create FEM
FemModel3d beam = new FemModel3d ("beam");

// Build FEM structure
double[] size = {1.0, 0.25, 0.25}; // widths

int[] res = {8, 2, 2}; // resolution (# elements)

FemFactory.createGrid (beam, FemElementType .Hex,

size[0], size[l], size[2],
res[0], res[l], res([2]);
/* ... Set FEM properties ... */

// Add FEM to model
mech.addModel (beam) ;

6.2.2 Loading external FEM meshes

For more complex geometries, volumetric meshes can be loaded from external files. A list of supported file types is
provided in Table 6.4. To load a geometry, an appropriate file reader must be created. Readers capable of reading FEM
models implement the interface FemReader, which has the method

readFem( FemModel3d fem ) // populates the FEM based on file contents

Additionally, many FemReader classes have static methods to handle the loading of files for convenience.

Table 6.4: Supported FEM geometry files

Format File extensions Reader Writer
ANSYS .node, .elem AnsysReader AnsysWriter
TetGen .node, .ele TetGenReader TetGenWriter
Abaqus .inp AbaqusReader  AbaqusWriter
VTK (ASCII) .vtk VtkAsciiReader -

The following code snippet demonstrates how to load a model using the AnsysReader.

// Create FEM
FemModel3d tongue = new FemModel3d ("tongue");

// Read FEM from file
try {
// Get files relative to THIS class
String nodeFileName = PathFinder.getSourceRelativePath (this,
"data/tongue.node") ;
String elemFileName = PathFinder.getSourceRelativePath (this,
"data/tongue.elem") ;

AnsysReader.read (tongue, nodeFileName, elemFileName);

} catch (IOException ioe) {
// Wrap error, fail to create model
throw new RuntimeException ("Failed to read model", 1ioce);

// Add to model
mech.addModel (tongue) ;

The method PathFinder.getSourceRelativePath() is used to find a path within the ArtiSynth source tree that is relative to
the current model’s source file (Section 2.6). Note the try-catch block. Most of these readers throw an I0Exception if
the read fails.
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6.2.3 Generating from surfaces

There are two ways an FEM model can be generated from a surface: by using a FEM mesh generator, and by extruding
a surface along its normal direction.

ArtiSynth has the ability to interface directly with the TetGen library (http://tetgen.org) to create a tetrahedral volumetric
mesh given a closed and manifold surface. The main Java class for calling TetGen directly is TetgenTessellator. The
tessellator has several advanced options, allowing for the computation of convex hulls, and for adding points to a
volumetric mesh. For simply creating an FEM from a surface, there is a convenience routine within FemFactory that
handles both mesh generation and constructing a FemMode13d:

// Create an FEM from a manifold mesh with a given quality
FemFactory.createFromMesh ( PolygonalMesh mesh, double quality );

If quality > 0, then points will be added in an attempt to bound the maximum radius-edge ratio (see the -g switch for
TetGen). According to the TetGen documentation, the algorithm usually succeeds for a quality ratio of 1.2.

It’s also possible to create thin layer of elements by extruding a surface along its normal direction.

// Create an FEM by extruding a surface

FemFactory.createExtrusion (
FemModel3d model, int nlayers, double layerThickness, double zOffset,
PolygonalMesh surface);

For example, to create a two-layer slice of elements centered about a surface of a tendon mesh, one might use

// Load the tendon surface mesh
PolygonalMesh tendonSurface = new PolygonalMesh ("tendon.obj");

// Create the tendon
FemModel3d tendon = new FemModel3d ("tendon");

int layers = 2; // 2 layers
double thickness = 0.0005; // 0.5 mm layer thickness
double offset = thickness; // center the layers about the surface

// Create the extrusion
FemFactory.createExtrusion ( tendon, layers, thickness, offset, tendonSurface );

For this type of extrusion, triangular faces become wedge elements, and quadrilateral faces become hexahedral elements.

Note: for extrusions, no care is taken to ensure element quality; if the surface has a high curvature relative to the
total extrusion thickness, then some elements will be inverted.

6.2.4 Building elements in code

A finite element model’s structure can also be manually constructed in code. FemModel3d has the methods:

addNode ( FemNode3d ); // add a node to the model
addElement ( FemElement3d ) // add an element to the model

For an element to successfully be added, all its nodes must already have been added to the model. Nodes can be con-
structed from a 3D location, and elements from an array of nodes. A convenience routine is available in FemElement3d
that automatically creates the appropriate element type given the number of nodes (Table 6.1):

// Creates an element using the supplied nodes
FemElement3d FemElement3d.createElement ( FemNode3d[] nodes );

Be aware of node orderings when supplying nodes. For linear elements, ArtiSynth uses a clockwise convention with
respect to the outward normal for the first face, followed by the opposite node(s). To determine the correct ordering for
a particular element, check the coordinates returned by the function FemElement3dBase.getNodeCoords(). This returns
the concatenated coordinate list for an “ideal” element of the given type.
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Figure 6.4: FemBeam model loaded into ArtiSynth.

6.2.5 Example: a simple beam model

A complete application model that implements a simple FEM beam is given below.

package artisynth.demos.tutorial;

import java.awt.Color;

import

, import

import

s import

) import

0 import
11 import
2 import

java.io.IOException;

maspack.render.

RenderProps;

artisynth.
artisynth.
artisynth.
artisynth.
artisynth.

core.
. femmodels
core.
core.
core.

core

femmodels

femmodels
femmodels
materials

.FemFactory;
.FemModel.SurfaceRender;
.FemModel3d;

.FemNode3d;
.LinearMaterial;

artisynth.core.mechmodels.MechModel;

13 import artisynth.core.workspace.RootModel;

15 public class FemBeam extends RootModel ({
17 // Models and dimensions

18 FemModel3d fem;

19 MechModel mech;

20 double length = 1;
o1 double density = 10;
double width = 0.3;
double EPS = le-15;
public void build (String[] args) throws IOException ({
Create and add MechModel
mech = new MechModel ("mech");

addModel (mech) ;

and add FemModel
FemModel3d ("fem");
(fem);

31 // Create
fem = new
mech . add

Build hex beam using factory method

FemFactory.createHexGrid (

fem, length, width, width, /*nx=*/6, /*ny=*/3, /*nz=%*/3);

Set FEM properties

10 fem.setDensity (density);




41 fem.setParticleDamping (0.1);

2 fem.setMaterial (new LinearMaterial (4000, 0.33));
43

44 // Fix left-hand nodes for boundary condition
45 for (FemNode3d n : fem.getNodes ()) {

46 if (n.getPosition().x <= -length/2+EPS) {

47 n.setDynamic (false);

48 }

49 }

50

51 // Set rendering properties

52 setRenderProps (fem);

54 }

56 // sets the FEM'’s render properties

57 protected void setRenderProps (FemModel3d fem) {
58 fem.setSurfaceRendering (SurfaceRender.Shaded);
59 RenderProps.setlineColor (fem, Color.BLUE);

60 RenderProps.setFaceColor (fem, new Color (0.5f, 0.5f, 1f));
61 }

62

63 }

This example can be found in artisynth.demos.tutorial.FemBeam. The build () method first creates a MechModel
and FemModel3d. A FEM beam is created using a factory method on line 36. This beam is centered at the origin, so its
length extends from -length/2 to length/2. The density, damping and material properties are then assigned.

On lines 45-49, a fixed boundary condition is set to the left-hand side of the beam by setting the corresponding nodes to
be non-dynamic. Due to numerical precision, a small EPSILON buffer is required to ensure all left-hand boundary nodes
are identified (line 46).

Rendering properties are then assigned to the FEM model on line 52. These will be discussed further in Section 6.12.

6.3 FEM Geometry

Associated with each FEM model is a list of geometry with the heading meshes. This geometry can be used for either
display purposes, or for interactions such as collisions. A geometry itself has no physical properties; its motion is
entirely governed by the FEM model that contains it.

All FEM geometries are of type FemMeshComp, which stores a reference to a mesh object (Section 2.5), as well as
attachment information that links vertices of the mesh to points within the FEM. The attachments enforce the shape
function interpolation in Equation (6.2) to hold at each mesh vertex, with constant shape function coefficients.

6.3.1 Surface meshes

By default, every FemMode13d has an auto-generated geometry representing the “surface mesh”. The surface mesh
consists of all un-shared element faces (i.e. the faces of individual elements that are exposed to the world), and its
vertices correspond to the nodes that make up those faces. As the FEM nodes move, so do the mesh vertices due to the
attachment framework.

The surface mesh can be obtained using one of the following functions in FemModel3d:

FemMeshComp getSurfaceMeshComp () ; // returns the FemMeshComp surface component
PolygonalMesh getSurfaceMesh (); // returns the underlying polygonal surface mesh

The first returns the surface complete with attachment information. The latter method directly returns the PolygonalMesh
that is controlled by the FEM.
It is possible to manually set the surface mesh:

setSurfaceMesh ( PolygonalMesh surface ); // manually set surface mesh
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However, doing so is normally not necessary. It is always possible to add additional mesh geometries to a finite element
model, and the visibility settings can be changed so that the default surface mesh is not rendered.

6.3.2 Embedding geometry within an FEM

Any geometry of type MeshBase can be added to a FemModel13d. To do so, first position the mesh so that its vertices are
in the desired locations inside the FEM, then call one of the FemModel3d methods:

FemMeshComp addMesh ( MeshBase mesh ); // creates and returns <
FemMeshComp
FemMeshComp addMesh ( String name, MeshBase mesh );

The latter is a convenience routine that also gives the newly embedded FemMeshComp a name.

6.3.3 Example: a beam with an embedded sphere

Figure 6.5: FemEmbeddedSphere model loaded into ArtiSynth.

A complete model demonstrating embedding a mesh is given below.

I package artisynth.demos.tutorial;

3 ilmport java.awt.Color;
4+ import java.io.IOException;

¢ import maspack.geometry.*;

7 import maspack.render.RenderProps;

¢ import artisynth.core.mechmodels.Collidable.Collidability;
o import artisynth.core.femmodels.*;

0 import artisynth.core.femmodels.FemModel.SurfaceRender;

11 import artisynth.core.materials.LinearMaterial;

2 import artisynth.core.mechmodels.MechModel;

3 import artisynth.core.workspace.RootModel;

15 public class FemEmbeddedSphere extends RootModel ({

1 // Internal components

18 protected MechModel mech;

19 protected FemModel3d fem;
protected FemMeshComp sphere;

2 @Override
public void build(String[] args) throws IOException {
super.build(args);
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26 mech = new MechModel ("mech");
27 addModel (mech) ;

29 fem = new FemModel3d ("fem");
30 mech.addModel (fem) ;

32 // Build hex beam and set properties

33 double[] size = {0.4, 0.4, 0.4};

34 int[] res = {4, 4, 4};

35 FemFactory.createHexGrid (fem,

36 size[0], size[l], size[2], res[0], res[l], res[2]);
37 fem.setParticleDamping (2) ;

38 fem.setDensity (10) ;

39 fem.setMaterial (new LinearMaterial (4000, 0.33));

41 // Add an embedded sphere mesh

4 PolygonalMesh sphereSurface = MeshFactory.createOctahedralSphere (0.15, 3);
43 sphere = fem.addMesh ("sphere", sphereSurface);

44 sphere.setCollidable (Collidability .EXTERNAL) ;

45

46 // Boundary condition: fixed LHS

47 for (FemNode3d node : fem.getNodes ()) {

48 if (node.getPosition().x == -0.2) {

49 node.setDynamic (false);

50 }

51 }

53 // Set rendering properties

54 setFemRenderProps (fem);

55 setMeshRenderProps (sphere);

56 }

58 // FEM render properties

59 protected void setFemRenderProps ( FemModel3d fem ) {

60 fem.setSurfaceRendering (SurfaceRender.Shaded);

61 RenderProps.setlineColor (fem, Color.BLUE);

62 RenderProps.setFaceColor (fem, new Color (0.5f, 0.5f, 1f));
63 RenderProps.setAlpha (fem, 0.2); // transparent

66 // FemMeshComp render properties

67 protected void setMeshRenderProps ( FemMeshComp mesh ) {

68 mesh.setSurfaceRendering ( SurfaceRender.Shaded );

69 RenderProps.setFaceColor (mesh, new Color (1f, 0.5f, 0.5f));
70 RenderProps.setAlpha (mesh, 1.0); // opaque

This example can be found in artisynth.demos.tutorial.FemEmbeddedSphere. The model is very similar to
FemBeam. A MechModel and FemModel3d are created and added. At line 41, a PolygonalMesh of a sphere is created
using a factory method. The sphere is already centered inside the beam, so it does not need to be repositioned. At Line
42, the sphere is embedded inside model fem, creating a FemMeshComp with the name “sphere”. The full model is shown
in Figure 6.5.

6.4 Connecting FEM models to other components

To couple FEM models to other dynamic components, the “attachment” mechanism described in Section 1.2 is used.
This involves creating and adding to the model attachment components, which are instances of DynamicAttachment, as
described in Section 3.6. Common point-based attachment classes are listed in Table 6.5.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/DynamicAttachment.html

ArtiSynth Modeling Guide 161

Table 6.5: Point-based attachments
Attachment Description
PointParticleAttachment  Attaches one “point” to one “particle”
PointFrameAttachment  Attaches one “point” to one “frame”
PointFem3dAttachment  Attaches one “point” to a linear combination of FEM nodes

FEM models are connected to other model components by attaching their nodes to various components. This can be
done by creating an attachment object of the appropriate type, and then adding it to the MechModel using

addAttachment (DynamicAttachment attach); // adds an attachment constraint

There are also convenience routines inside MechModel that will create the appropriate attachments automatically (see
Section 3.6.1).

All attachments described in this section are based around FEM nodes. However, it is also possible to attach frame-
based components (such as rigid bodies) directly to an FEM, as described in Section 6.6.

6.4.1 Connecting nodes to rigid bodies or particles

Since FemNode3d is a subclass of Particle, the same methods described in Section 3.6.1 for attaching particles to other
particles and frames are available. For example, we can attach an FEM node to a rigid body using a either a statement of
the form

mech.addAttachment (new PointFrameAttachment (body, node));

or the following equivalent statement which does the same thing:

mech.attachPoint (node, body);

Both of these create a PointFrameAttachment between a rigid body (called body) and an FEM node (called node) and
then adds it to the MechModel mech.

One can also attach the nodes of one FEM model to the nodes of another using statements like

mech.addAttachment (new PointParticle (nodel, node2));

or

mech.attachPoint (node2, nodel);

which attaches node? to nodel.

6.4.2 Example: connecting a beam to a block

The following model demonstrates attaching an FEM beam to a rigid block.

I package artisynth.demos.tutorial;

-

3 import java.io.IOException;

s import maspack.matrix.RigidTransform3d;

6 import artisynth.core.femmodels.FemNode3d;

7 import artisynth.core.mechmodels.PointFrameAttachment ;
s import artisynth.core.mechmodels.RigidBody;

0 public class FemBeamWithBlock extends FemBeam {

12 public void build (String[] args) throws IOException ({

14 // Build simple FemBeam
15 super.build (args);
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Figure 6.6: FemBeamWithBlock model loaded into artisynth.

// Create a rigid block and move to the side of FEM
RigidBody block = RigidBody.createBox (
"block", width/2, 1.2*width, 1.2*width, 2*density);
2 mech.addRigidBody (block);
21 block.setPose (new RigidTransform3d (length/2+width/4, 0, 0));

2 // Attach right-side nodes to rigid block
24 for (FemNode3d node : fem.getNodes ()) {
if (node.getPosition().x >= length/2-EPS) {
26 mech.addAttachment (new PointFrameAttachment (block, node));

This model extends the FemBeam example of Section 6.2.5. The build () method then creates and adds a RigidBody
block (lines 18-20). On line 21, the block is repositioned to the side of the beam to prepare for the attachment. On lines
24-28, all right-most nodes of the beam are then set to be attached to the block using a PointFrameAttachment. In this
case, the attachments are explicitly created. They could also have been attached using

mech.attachPoint (node, block); // attach node to rigid block

6.4.3 Connecting nodes directly to elements

Typically, nodes do not align in a way that makes it possible to connect them to other FEM models and/or points based
on simple point-to-node attachments. Instead, we use a different mechanism that allows us to attach a point to an
arbitrary location within an FEM model. This is done using an attachment component of type PointFem3dAttachment,
which implements an attachment where the position p and velocity u of the attached point is determined by a weighted
sum of the positions x; and velocities u; of selected fem nodes:

P=) ax (6.4)
Any force f acting on the attached point is then propagated back to the nodes, according to the relation
f = oy f (6.5)

where f}, is the force acting on node k due to f. This relation can be derived based on the conservation of energy. If
p is embedded within a single element, then the x; are simply the element nodes and the ¢; are corresponding shape
function values; this is known as an element-based attachment. On the other hand, as described below, it is sometimes
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desirable to form an attachment using a more general set of nodes that extends beyond a single element; this is known as
a nodal-based attachment (Section 6.4.7).

An element-based attachment can be created using a code fragment of the form

PointFem3dAttachment ax = new PointFem3dAttachment (pnt);
ax.setFromElement (pnt.getPosition (), elem);
mech.addAttachment (ax);

First, a PointFem3dAttachment is created for the point pnt. Next, setFromElement () is used to determine the nodal
weights within the element elem for the specified position (which in this case is simply the point’s current position). To
do this, it computes the “natural coordinates” coordinates of the position within the element. For this to be guaranteed
to work, the position should be on or inside the element. If natural coordinates cannot be found, the method will return
false and the nearest estimates coordinates will be used instead. However, it is sometimes possible to find natural
coordinates outside a given element as long as the shape functions are well-defined. Finally, the attachment is added to
the model.

More conveniently, the exact same functionality is provided by the attachPoint () method in MechModel:

mech.attachPoint (pnt, elem);

This creates an attachment identical to that created by the previous code fragment.
Often, one does not want to have to determine the element to which a point should be attached. In that case, one can call

PointFem3dAttachment ax = new PointFem3dAttachment (pnt);
ax.setFromFem (pnt.getPosition (), fem);
mech.addAttachment (ax);

or, equivalently,

mech.attachPoint (pnt, fem);

This will find the nearest element to the node in question and use that to create the attachment. If the node is outside the
FEM model, then it will be attached to the nearest point on the FEM’s surface.

6.4.4 Example: connecting two FEMs together

Figure 6.7: FemBeamWithFemSphere model loaded into ArtiSynth.

The following model demonstrates how to attach two FEM models together:

I package artisynth.demos.tutorial;

3 import java.io.IOException;




s import maspack.matrix.RigidTransform3d;

6o import artisynth.core.femmodels.*;

7 import artisynth.core.materials.LinearMaterial;
s import maspack.util.PathFinder;

0 public class FemBeamWithFemSphere extends FemBeam {
12 public void build (String[] args) throws IOException ({

14 // Build simple FemBeam
15 super.build (args);

17 // Create a FEM sphere

18 FemModel3d femSphere = new FemModel3d ("sphere");

19 mech.addModel (femSphere) ;

20 // Read from TetGen file

21 TetGenReader .read (femSphere,

2 PathFinder.getSourceRelativePath (FemModel3d.class, "meshes/sphere2.l.node"),

23 PathFinder.getSourceRelativePath (FemModel3d.class, "meshes/sphere2.l.ele"));
24 femSphere.scaleDistance (0.22);

25 // FEM properties

26 femSphere.setDensity (10) ;

27 femSphere.setParticleDamping (2) ;

28 femSphere.setMaterial (new LinearMaterial (4000, 0.33));

30 // Reposition FEM to side of beam
31 femSphere.transformGeometry ( new RigidTransform3d (length/2+width/2, 0, 0) );

33 // Attach sphere nodes that are inside beam

34 for (FemNode3d node : femSphere.getNodes ()) {

35 // Find element containing node (if exists)

36 FemElement3d elem = fem.findContainingElement (node.getPosition ());
37 // Add attachment if node is inside "fem"

38 if (elem != null) {

39 mech.attachPoint (node, elem);

43 // Set render properties
44 setRenderProps (femSphere) ;

This example can be found in artisynth.demos.tutorial.FemBeamWithFemSphere. The model extends FemBeam,
adding a finite element sphere and coupling them together. The sphere is created and added on lines 18-28. It is read
from TetGen-generated files using the TetGenReader class. The model is then scaled to match the dimensions of the
current model, and transformed to the right side of the beam. To create attachments, the code first checks for any nodes
that belong to the sphere that fall inside the beam using the FemModel3d.findContainingElement(Point3d) method (line
36), which returns the containing element if the point is inside the model, or null if the point is outside. Internally,

this spatial search uses a bounding volume hierarchy for efficiency (see BVTree and BVFeatureQuery). If the point is
contained within the beam, then mech.attachPoint () is used to attach it to the nodes of the element (line 39).

6.4.5 Finding which nodes to attach

While it is straightforward to connect nodes to rigid bodies or other FEM nodes or elements, it is often necessary to
determine which nodes to attach. This was evident in the example of Section 6.4.4, which attached nodes of an FEM
sphere that were found to be inside an FEM beam.

As in that example, finding the nodes to attach can often be done using geometric queries. For example, we often select
nodes based on how close they are to the other body we wish to attach to.
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Various prolixity queries are available for this task. To find the distance of a point to a polygonal mesh, we can use the
following PolygonalMesh methods,

double distanceToPoint (Point3d pnt)

int isInside (Point3d pnt) // for closed meshes only

where the latter method returns 1 if the point is inside and O otherwise. For checking the distance of an FEM node, pnt
can be obtained from node.getPosition () (or possibly node.getRestPosition ()). For example, to find all nodes
within a distance tol of the surface of a rigid body, we could use the code fragment:

RigidBody body;
FemModel3d fem;

double tol = 0.001;
PolygonalMesh surface = body.getSurfaceMesh () ;

ArrayList<FemNode3d> nearNodes = new ArrayList<FemNode3d>();
for (FemNode3d n : fem.getNodes ()) {
if (surface.distanceToPoint (n.getPosition()) < tol) {

nearNodes.add (n);

If we want to check only nodes that lie on the FEM surface, then we can filter them using the FemModel3d method
isSurfaceNode():

for (FemNode3d n : fem.getNodes ()) {
if (fem.isSurfaceNode (n) &&
surface.distanceToPoint (n.getPosition()) < tol) {
nearNodes.add (n);

Most of the mesh-based query methods work only for triangular meshes. The PolygonalMesh method
isTriangular() can be used to determine if the mesh is triangular. If it is not, it can made triangular by calling
triangulate(), although in general this should be done during model construction before the mesh-based component
has been added to the model.

For connecting an FEM model to another FEM model, FemModel3d provides a number of query methods:

/* nearest element queries */
// find the nearest element (shell or volumetric) to pnt:
FemElement3dBase findNearestElement (Point3d near, Point3d pnt)

FemElement3dBase findNearestElement (
Point3d near, Point3d pnt, ElementFilter filter)

// find the nearest surface element (shell or volumetric) to pnt:
FemElement3dBase findNearestSurfaceElement (Point3d near, Point3d pnt)

// find the nearest volumetric element to pnt:
FemElement3d findNearestVolumetricElement (Point3d near, Point3d pnt)

// find the nearest shell element to pnt:
ShellElement3d findNearestShellElement (Point3d near, Point3d pnt)

// find the volumetric element (if any) containing pnt:
FemElement3d findContainingElement (Point3d pnt)

/* nearest node queries */

// find the nearest node to pnt that is within maxDist:
FemNode3d findNearestNode (Point3d pnt, double maxDist)
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// find all nodes that are within maxDist of pnt:
ArrayList<FemNode3d> findNearestNodes (Point3d pnt, double maxDist)

All the above queries are based on the FEM model’s current nodal positions. The method
findNearestElement(near,pnt,filter) allows the application to specify a FemModel.ElementFilter to restrict the elements
that are searched.

The argument near that appears in some of the queries is an optional argument which, if not null, returns the location
of the corresponding nearest point on the element. The distance from pnt to the element can then be found using

near.distance (pnt);

If the resulting distance is 0, then the point is on or inside the element. Otherwise, the point is outside the element, and if
no element filters were used in the query, outside the FEM model itself.

Typically, it is preferred attach a point to an element only if it lies on or inside an element. However, it is possible
to attach points outside an element as long as the system is able to determine appropriate element “coordinates” for
that point (which it may not be able to do if the point is far away). In addition, the motion behavior of an exterior
attached point may sometimes appear counterintuitive.

The FemModel3d element and node queries can be used in a variety of ways.

findNearestNodes() can be used to find all nodes within a certain distance of a point, as part of the process of making
nodal-based attachments (Section 6.4.7).

findNearestNode() is used in the FemMuscleBeam example (Section 6.9.4) to determine if a desired muscle point is near
enough to a node to use that node directly, or if a marker should be created.

As another example, suppose we wish to connect the surface nodes of an FEM model fema to the surface elements of
another model femB if they lie within a prescribed distance tol of the surface of femB. Then we could use the following
code:

MechModel mech;
FemModel3d femA;
FemModel3d femB;

double tol = 0.001;
Point3d near = new Point3d();
for (FemNode3d n : femA.getNodes ()) {
if (femA.isSurfaceNode (n)) {
FemElement3dBase elem =
femB.findNearestSurfaceElement (near, n.getPosition ());
if (elem != null && near.distance (n.getPosition ()) <= tol) {
// attach if within distance
mech.attachPoint (n, elem);

6.4.6 Example: two bodies connected by an FEM “spring”

The LumbarFrameSpring example in Section 3.5.4 uses a frame spring to connect two simplified lumbar vertebrae.
However, it is also possible to use an FEM model in place of a frame spring, possibly providing a more realistic model
of the intervertebral disc. A simple model which does this is defined in

artisynth.demos.tutorial.LumbarFEMDisk

The initial source code is similar to that for LumbarFrameSpring, but differs in the section where the FEM disk replaces
the FrameSpring:
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Figure 6.8: LumbarFEMDisk loaded into ArtiSynth, showing a simplified FEM model connecting two vertebrae.

create a torus shaped FEM model for the disk
FemModel3d fem = new FemModel3d () ;
fem.setDensity (1500);
fem.setMaterial (new LinearMaterial (20000, 0.4));
FemFactory.createHexTorus (fem, 0.011, 0.003, 0.008, 16, 30, 2);
mech.addModel (fem);

position it betweem the disks
double DTOR = Math.PI/180.0;
fem.transformGeometry (
new RigidTransform3d (-0.012, 0.0, 0.040, 0, -DTOR*25, DTOR*90));

find and attach nearest nodes to either the top or bottom mesh
double tol = 0.001;

for (FemNode3d n : fem.getNodes ()) {
// top vertebra
double d = lumbarl.getSurfaceMesh ().distanceToPoint (n.getPosition ());

if (d < tol) {
mech.attachPoint (n, lumbarl);
}
// bottom vertebra
d = lumbar2.getSurfaceMesh () .distanceToPoint (n.getPosition ());
if (d < tol) {
mech.attachPoint (n, lumbar2);

set render properties

fem.setSurfaceRendering (SurfaceRender.Shaded) ;

RenderProps.setFaceColor (fem, new Color (153/255f, 153/255f, 1f));
RenderProps.setFaceColor (mech, new Color (238, 232, 170)); // bone color

The simplified FEM model representing the “disk™ is created at lines 57-61, using a torus-shaped model created by
FemFactory. Itis then repositioning using transformGeometry () ( Section 4.8) to place it between the vertebrae (line
64-66). After the FEM model is positioned, we find which nodes are within a distance tol of each vertebral surface and
attach them to the appropriate body (lines 69-81).

To run this example in ArtiSynth, select All demos > tutorial > LumbarFEMDisk from the Models menu. The model
should load and initially appear as in Figure 6.8. The behavior is best seem by running the model and using the pull
controller to exert forces on the upper vertebra.




6.4.7 Nodal-based attachments

The example of Section 6.4.4 uses element-based attachments to connect the nodes of one FEM to elements of another.
As mentioned above, element-based attachments assume that the attached point is associated with a specific FEM model
element. While this often gives good results, there are situations where it may be desirable to distribute the connection
more broadly among a larger set of nodes.

In particular, this is sometimes the case when connecting FEM models to point-to-point springs. The end-point of such a
spring may end up exerting a large force on the FEM, and then if the number of nodes to which the end-point is attached
are too small, the resulting forces on these nodes (Equation 6.5) may end up being too large. In other words, it may be
desirable to distribute the spring’s force more evenly throughout the FEM model.

To handle such situations, it is possible to create a nodal-based attachment in which the nodes and weights are explicitly
specified. This involves explicitly creating a PointFem3dAttachment for the point or particle to be attached and the
specifying the nodes and weights directly,

PointFem3dAttachment ax = new PointFem3dAttachment (part);
ax.setFromNodes (nodes, weights);
mech.addAttachment (ax);

where nodes and weights are arrays of FemNode and double, respectively. It is up to the application to determine
these.

PointFem3dAttachment provides several methods for explicitly specifying nodes and weights. The signatures for these
include:

void setFromNodes (FemNode[] nodes, double[] weights)
void setFromNodes (Collection<FemNode> nodes, VectorNd weights)
boolean setFromNodes (Point3d pos, FemNode[] nodes)

boolean setFromNodes (Point3d pos, Collection<FemNode> nodes)

The last two methods determine the weights automatically, using an inverse-distance-based calculation in which each
weight o is initially computed as

_ dmax

- dk + dmax
where dj, is the distance from node & to pos and dnax is the maximum distance. The weights are then adjusted to ensure
that they sum to one and that the weighted sum of the nodes equals pos. In some cases, the specified nodes may not
provide enough support for the last condition to be met, in which case the methods return false.

O (6.6)

6.4.8 Example: element vs. nodal-based attachments
The model demonstrating the difference between element and nodal-based attachments is defined in
artisynth.demos.tutorial.PointFemAttachment

It creates two FEM models, each with a single point-to-point spring attached to a particle at their center. The model at
the top (feml in the code below) is connected to the particle using an element-based attachment, while the lower model
(fem2 in the code) is connected using a nodal-based attachment with a larger number of nodes. Figure 6.9 shows the
result after the model is run until stable. The element-based attachment results in significantly higher deformation in the
immediate vicinity around the attachment, while for the nodal-based attachment, the deformation is distributed much
more evenly through the model.

The build method and some of the auxiliary code for this model is shown below. Code for the other auxiliary methods,
including addFem (), addParticle (), addSpring (), and setAttachedNodesWhite (), can be found in the actual
source file.

1 // Filter to select only elements for which the nodes are entirely on the
2 // positive side of the x-z plane.
private class MyFilter extends ElementFilter ({
4 public boolean elementIsValid (FemElement e) {
5 for (FemNode n : e.getNodes ()) {
6 if (n.getPosition().y < 0) {
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Figure 6.9: PointFemAttachment loaded into ArtiSynth and run until stable. The top and bottom models are connected
to their springs using element and nodal-based attachments, respectively. The nodes associated with each attachment are

rendered as white spheres.

return false;

}

return true;

Collect and return all the nodes of an FEM model associated with a
set of elements specified by an array of element numbers
private HashSet <FemNode3d> collectNodes (FemModel3d fem, int[] elemNums) {
HashSet <FemNode3d> nodes = new HashSet <FemNode3d> () ;
for (int 1i=0; i<elemNums.length; i++) {
FemElement3d e = fem.getElements () .getByNumber (elemNums([i]);
for (FemNode3d n : e.getNodes ()) {

nodes.add (n);

}

return nodes;

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

mech.setGravity (0, 0, 0); // turn off gravity

create and add two FEM beam models centered at the specified locations
FemModel3d feml = addFem (mech, 0.0, 0.0, 0.25);
FemModel3d fem2 = addFem (mech, 0.0, 0.0, -0.25);

reconstruct the FEM surface meshes so that they show only elements on
rendering to

the positive side of the x-y plane. Also, set surface

show strain values.

feml.createSurfaceMesh (new MyFilter ());
feml.setSurfaceRendering (SurfaceRender.Strain);
fem2.createSurfaceMesh (new MyFilter());

fem2.setSurfaceRendering (SurfaceRender.Strain);

create and add the particles for the point-to-point springs
that will apply forces to each FEM.




46 Particle pl = addParticle (mech, 0.9, 0.0, 0.25);

47 Particle p2 = addParticle (mech, 0.9, 0.0, -0.25);

48 Particle ml = addParticle (mech, 0.0, 0.0, 0.25);

49 Particle m2 = addParticle (mech, 0.0, 0.0, -0.25);

50

51 // attach spring end-point to feml using an element -based marker

52 mech.attachPoint (ml, feml);

54 // attach spring end-point to fem2 using a larger number of nodes, formed
: // from the node set for elements 22, 31, 40, 49, and 58. This is done by
56 // explicitly creating the attachment and then setting it to use the

57 // specified nodes

58 HashSet <FemNode3d> nodes =

59 collectNodes (fem2, new int[] { 22, 31, 40, 49, 58 });

61 PointFem3dAttachment ax = new PointFem3dAttachment (m2);
62 ax.setFromNodes (m2.getPosition (), nodes);
63 mech.addAttachment (ax);

65 // finally, create the springs
66 addSpring (mech, /*stiffness=*/10000, pl, ml);
67 addSpring (mech, /*stiffness=*/10000, p2, m2);

69 // set the attachments nodes for ml and m2 to render as white spheres
70 setAttachedNodesWhite (ml);
71 setAttachedNodesWhite (m2);
7 // set render properties for ml
RenderProps.setSphericalPoints (ml, 0.015, Color.GREEN);

The build () method begins by creating a MechModel and then adding to it two FEM beams (created using the auxiliary
method addFem (). Rendering of each FEM model’s surface is then set up to show strain values (setSurfaceRendering(),
lines 41 and 43). The surface meshes themselves are also redefined to exclude the frontmost elements, allowing the

strain values to be displayed closer model centers. This redefinition is done using calls to createSurfaceMesh () (lines

40, 41) with a custom ElementFilter defined at lines 3-12.

Next, the end-point particles for the axial springs are created (using the auxiliary method addParticle (), lines 46-49),
and particle m1 is attached to feml using mech.attachPoint () (line 52), which creates an element-based attachment at
the point’s current location. Point m2 is then attached to fem2 using a nodal-based attachment. The nodes for these are
collected as the union of all nodes for a specified set of elements (lines 58-59, and the method collectNodes () defined
at lines 16-25). These are then used to create a nodal-based attachment (lines 61-63), where the weights are determined
automatically using the method associated with equation (6.6).

Finally, the springs are created (auxiliary method addSpring (), lines 66-67), the nodes associated for each attachment
are set to render as white spheres (setAttachedNodesWhites (), lines 70-71), and the particles are set to render as
green spheres.

To run this example in ArtiSynth, select All demos > tutorial > PointFemAttachment from the Models menu. Running the
model will cause it to settle into the state shown in Figure 6.9. Selecting and dragging one of the spring anchor points at
the right will cause the spring tension to vary and further illustrate the difference between the element and nodal-based
attachments.

6.5 FEM markers

Just as there are FrameMarkers to act as anchor points on a frame or rigid body (Section 3.2.1), there are also
FemMarkers that can mark a point inside a finite element. They are frequently used to provide anchor points for
attaching springs and forces to a point inside an element, but can also be used for graphical purposes.

FEM markers are implemented by the class FemMarker, which is a subclass of Point. They are essentially massless
points that contain their own attachment component, so when creating and adding a marker there is no need to create a
separate attachment component.

Within the component hierarchy, FEM markers are typically stored in the markers list of their associated FEM model.
They can be created and added using a code fragment of the form
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FemMarker mkr = new FemMarker (1, 0, 0);
mkr.setFromFem (fem); // attach to the nearest fem element
fem.addMarker (mkr); // add to fem

This creates a marker at the location (1,0,0) (in world coordinates), calls setFromFem () to attach it to the nearest
element in the FEM model ( which is either the containing element or the nearest element on the model’s surface), and
then adds it to the markers list.

If the marker’s attachment has not already been set when addMarker () is called, then addMarker () will call
setFromFem () automatically. Therefore the above code fragment is equivalent to the following:

FemMarker mkr = new FemMarker (1, 0, 0);
fem.addMarker (mkr);

Alternatively, one may want to explicitly specify the nodes associated with the attachment, as described in Section 6.4.7:

FemMarker mkr = new FemMarker (1, 0, 0);
mkr.setFromNodes (nodes, weights);
fem.addMarker (mkr);

There are a variety of methods available to set the attachment, mirroring those available in the underlying base class
PointFem3dAttachment:

void setFromFem (FemModel3d fem)
boolean setFromElement (FemElement3d elem)

void setFromNodes (FemNode[] nodes, double[] weights)
void setFromNodes (Collection<FemNode> nodes, VectorNd weights)
boolean setFromNodes (FemNode[] nodes)

boolean setFromNodes (Collection<FemNode> nodes)

The last two methods compute nodal weights automatically, as described in Section 6.4.7, based on the marker’s
currently assigned position. If the supplied nodes do not provide sufficient support, then the methods return false.

Another set of convenience methods are supplied by FemModel3d, which combine these with the addMarker () call:

void addMarker (FemMarker mkr, FemElement3d elem)

void addMarker (FemMarker mkr, FemNode[] nodes, double[] weights)
void addMarker (FemMarker mkr, Collection<FemNode> nodes, VectorNd weights)
boolean addMarker (FemMarker mkr, FemNode[] nodes)

boolean addMarker (FemMarker mkr, Collection<FemNode> nodes)

For example, one can do

FemMarker mkr = new FemMarker (1, 0, 0);
fem.addMarker (mkr, nodes, weights);

Markers are often used to track movement within an FEM model. For that, one can examine their positions and
velocities, as with any other particles, using the methods

Point3d getPosition () ; // returns the current position
Vector3d getVelocity () ; // returns the current velocity

The return values from these methods should not be modified. Alternatively, when a 3D force f is applied to the marker,
it is distributed to the attached nodes according to the nodal weights, as described in Equation (6.5).

6.5.1 Example: attaching an FEM beam to a muscle

A complete application model that employs a fem marker as an anchor for a spring is given below.

i package artisynth.demos.tutorial;
3 import java.awt.Color;
4+ import java.io.IOException;




s import

import

s import

import
import
import
import
import

s public

I/

Figure 6.10: FemBeamWithMuscle model loaded into ArtiSynth.

maspack.render.RenderProps;
maspack.render.Renderer;
artisynth.core.femmodels.FemMarker;
artisynth.core.femmodels.FemModel3d;
artisynth.core.materials.SimpleAxialMuscle;
artisynth.core.mechmodels.Muscle;
artisynth.core.mechmodels.Particle;
artisynth.core.mechmodels.Point;

class FemBeamWithMuscle extends FemBeam ({

Creates a point-to-point muscle

protected Muscle createMuscle () {

I/

Muscle mus = new Muscle (/*name=*/null, /*restLength=*/0);
mus.setMaterial (

new SimpleAxialMuscle (/*stiffness=*/20, /*damping=*/10, /*maxf=*/10));

RenderProps.setLineStyle (mus, Renderer.LineStyle.SPINDLE);
RenderProps.setLineColor (mus, Color.RED);
RenderProps.setLineRadius (mus, 0.03);

return mus;

Creates a FEM Marker

protected FemMarker createMarker (

FemModel3d fem, double x, double y, double z) {
FemMarker mkr = new FemMarker (/*name=*/null, x, y, z);
RenderProps.setSphericalPoints (mkr, 0.02, Color.BLUE);
fem.addMarker (mkr);

return mkr;

public void build (String[] args) throws IOException ({

// Create simple FEM beam
super.build (args);

// Add a particle fixed in space
Particle pl = new Particle (/*mass=*/0, -length/2, 0, 2*width);
mech.addParticle (pl);
pl.setDynamic (false);
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46 RenderProps.setSphericalPoints (pl, 0.02, Color.BLUE);

.

48 // Add a marker at the end of the model

49 FemMarker mkr = createMarker (fem, length/2-0.1, 0, width/2);
50

51 // Create a muscle between the point an marker

52 Muscle muscle = createMuscle ();

53 muscle.setPoints (pl, mkr);

54 mech.addAxialSpring (muscle);

This example can be found in artisynth.demos.tutorial.FemBeamWithMuscle. This model extends the FemBeam
example, adding a FemMarker for the spring to attach to. The method createMarker (...) on lines 29-35 is used to
create and add a marker to the FEM. Since the element is initially set to null, when it is added to the FEM, the model
searches for the containing or nearest element. The loaded model is shown in Figure 6.10.

6.6 Frame attachments

It is also possible to attach frame components, including rigid bodies, directly to FEM models, using the attachment
component FrameFem3dAttachment. Analogously to PointFem3dAttachment, the attachment is implemented by
connecting the frame to a set of FEM nodes, and attachments can be either element-based or nodal-based. The frame’s
origin is computed in the same way as for point attachments, using a weighted sum of node positions (Equation 6.4),
while the orientation is computed using a polar decomposition on a deformation gradient determined from either
element shape functions (for element-based attachments) or a Procrustes type analysis using nodal rest positions (for
nodal-based attachments).

An element-based attachment can be created using either a code fragment of the form

FrameFem3dAttachment ax = new FrameFem3dAttachment (frame) ;
ax.setFromElement (frame.getPose(), elem);
mech.addAttachment (ax);

or, equivalently, the attachFrame () method in MechModel:

mech.attachFrame (frame, elem);

This attaches the frame frame to the nodes of the FEM element elem. As with PointFem3dAttachment, if the frame’s
origin is not inside the element, it may not be possible to accurately compute the internal nodal weights, in which case
setFromElement () will return false.

In order to have the appropriate element located automatically, one can instead use

FrameFem3dAttachment ax = new FrameFem3dAttachment (frame) ;
ax.setFromFem (frame.getPose (), fem);
mech.addAttachment (ax);

or, equivalently,

mech.attachFrame (frame, fem);

As with point-to-FEM attachments, it may be desirable to create a nodal-based attachment in which the nodes and
weights are not tied to a specific element. The reasons for this are generally the same as with nodal-based point
attachments (Section 6.4.7): the need to distribute the forces and moments acting on the frame across a broader set

of element nodes. Also, element-based frame attachments use element shape functions to determine the frame’s
orientation, which may produce slightly asymmetric results if the frame’s origin is located particularly close to a specific
node.

FrameFem3dAttachment provides several methods for explicitly specifying nodes and weights. The signatures for these
include:
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void setFromNodes (RigidTransform3d TFW, FemNode[] nodes, double[] weights)

void setFromNodes (RigidTransform3d TFW, Collection<FemNode> nodes,
VectorNd weights)

boolean setFromNodes (RigidTransform3d TFW, FemNode[] nodes)

boolean setFromNodes (RigidTransform3d TFW, Collection<FemNode> nodes)

Unlike their counterparts in PointFem3dAttachment, the first two methods also require the current desired pose of
the frame TFW (in world coordinates). This is because while nodes and weights will unambiguously specify the frame’s
origin, they do not specify the desired orientation.

6.6.1 Example: attaching frames to an FEM beam

Figure 6.11: FrameFemAttachment loaded into ArtiSynth and run until stable.

A model illustrating how to connect frames to an FEM model is defined in
artisynth.demos.tutorial.FrameFemAttachment

It creates an FEM beam, along with a rigid body block and a massless coordinate frame, that are then attached to the
beam using nodal and element-based attachments. The build method is shown below:

public void build (String[] args) {

MechModel mech = new MechModel ("mech");
addModel (mech);

create and add FEM beam

FemModel3d fem = FemFactory.createHexGrid (null, 1.0, 0.2, 0.2, 6, 3, 3);
fem.setMaterial (new LinearMaterial (500000, 0.33));
RenderProps.setLineColor (fem, Color.BLUE);

10 RenderProps.setLineWidth (mech, 2);

1 mech.addModel (fem);

12 // fix leftmost nodes of the FEM

13 for (FemNode3d n : fem.getNodes ()) {

I if ((n.getPosition () .x-(-0.5)) < 1le-8) {

15 n.setDynamic (false);

19 // create and add rigid body box
RigidBody box = RigidBody.createBox (
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21 "box", 0.25, 0.1, 0.1, /*density=*/1000);

2 mech.add (box);
24 // create a basic frame and set its pose and axis length
25 Frame frame = new Frame();

26 frame.setPose (new RigidTransform3d (0.4, 0, 0, 0, Math.PI/4, 0));
27 frame.setAxisLength (0.3);
28 mech.addFrame (frame);

30 mech.attachFrame (frame, fem); // attach using element -based attachment

32 // attach the box to the FEM, using all the nodes of elements 31 and 32

33 HashSet <FemNode3d> nodes = collectNodes (fem, new int[] { 22, 31 });
34 FrameFem3dAttachment attachment = new FrameFem3dAttachment (box);
35 attachment .setFromNodes (box.getPose (), nodes);

36 mech.addAttachment (attachment);

38 // render the attachment nodes for the box as spheres
39 for (FemNode n : attachment.getNodes ()) {
40 RenderProps.setSphericalPoints (n, 0.007, Color.GREEN);

Lines 3-22 create a MechModel and populate it with an FEM beam and a rigid body box. Next, a basic Frame is created,
with a specified pose and an axis length of 0.3 (to allow it to be seen), and added to the MechModel (lines 25-28). It is
then attached to the FEM beam using an element-based attachment (line 30). Meanwhile, the box is attached to using

a nodal-based attachment, created from all the nodes associated with elements 22 and 31 (lines 33-36). Finally, all
attachment nodes are set to be rendered as green spheres (lines 39-41).

To run this example in ArtiSynth, select All demos > tutorial > FrameFemAttachment from the Models menu. Running
the model will cause it to settle into the state shown in Figure 6.11. Forces can interactively be applied to the attached
block and frame using the pull tool, causing the FEM model to deform (see the section “Pull Manipulation” in the
ArtiSynth User Interface Guide).

6.6.2 Adding joints to FEM models

The ability to connect frames to FEM models, as described in Section 6.6, makes it possible to interconnect different
FEM models directly using joints, as described in Section 3.3. This is done internally by using FrameFem3dAttachments
to connect frames C and D of the joint (Figure 3.7) to their respective FEM models.

As indicated in Section 3.3.3, most joints have a constructor of the form

JointType (bodyA, bodyB, TDW);

that creates a joint connecting bodyA to bodyB, with the initial pose of the D frame given (in world coordinates) by TDW.
The same body and transform settings can be made on an existing joint using the method setBodies(bodyA, bodyB, TDW).
For these constructors and methods, it is possible to specify FEM models for bodyA and/or bodyB. Internally, the joint
then creates a FrameFem3dAttachment to connect frame C and/or D of the joint (See Figure 3.7) to the corresponding
FEM model.

However, unlike joints involving rigid bodies or frames, there are no associated Tc4 or Tpp transforms (since there is no
fixed frame within an FEM to define such transforms). Methods or constructors which utilize Tc4 or Tpg can therefore
not be used with FEM models.

6.6.3 Example: two FEM beams connected by a joint
A model connecting two FEM beams by a joint is defined in
artisynth.demos.tutorial.JointedFemBeams

It creates two FEM beams and connects them via a special slotted-revolute joint. The build method is shown below:
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Figure 6.12: JointedFemBeams loaded into ArtiSynth and run until stable.

public void build (String[] args) {

3 MechModel mech = new MechModel ("mechMod");
4 addModel (mech);

double stiffness = 5000;

7 // create first fem beam and fix the leftmost nodes
FemModel3d feml = addFem (mech, 2.4, 0.6, 0.4, stiffness);
for (FemNode3d n : feml.getNodes ()) {

10 if (n.getPosition().x <= -1.2) {

1 n.setDynamic (false);

create the second fem beam and shift it 1.5 to the right
FemModel3d fem2 = addFem (mech, 2.4, 0.4, 0.4, 0.l1*stiffness);
fem2.transformGeometry (new RigidTransform3d (1.5, 0, 0));

create a slotted revolute joint that connects the two fem beams
RigidTransform3d TDW = new RigidTransform3d (0.5, 0, 0, 0, 0, Math.PI/2);
SlottedRevoluteJoint joint = new SlottedRevoluteJoint (fem2, feml, TDW);
21 mech.addBodyConnector (joint);

set ranges and rendering properties for the joint
24 joint.setShaftLength (0.8);
joint.setMinX (-0.5);
5 joint.setMaxX (0.5);
27 joint.setSlotDepth (0.63);
joint.setSlotWidth (0.08);
RenderProps.setFaceColor (joint, myJdointColor);

Lines 3-16 create a MechModel and populates it with two FEM beams, feml and fem?2, using an auxiliary method
addFem () defined in the model source file. The leftmost nodes of feml are set fixed. A SlottedRevoluteJoint is then
created to interconnect feml and fem?2 at a location specified by TDW (lines 19-21). Lines 24-29 set some parameters for
the joint, along with various render properties.

To run this example in ArtiSynth, select All demos > tutorial > JointedFemBeams from the Models menu. Running the
model will cause it drop and flex under gravity, as shown in 6.12. Forces can interactively be applied to the beams using
the pull tool (see the section “Pull Manipulation” in the ArtiSynth User Interface Guide).
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6.7 Incompressibility

FEM incompressibility within ArtiSynth is enforced by trying to ensure that the volume of an FEM remains locally
constant. This, in turn, is accomplished by constraining nodal velocities so that the local volume change, or divergence,
is zero (or close to zero). There are generally two ways to do this:

* Hard incompressibility, which sets up explicit constraints on the nodal velocities;

* Soft incompressibility, which uses a restoring pressure based on a potential field to try to keep the volume constant.

Both of these methods operate independently, and both can be used either separately or together. Generally speaking,
hard incompressibility will result in incompressibility being more rigorously enforced, but at the cost of increased
computation time and (sometimes) less stability. Soft incompressibility allows the application to control the restoring
force used to enforce incompressibility, usually by adjusting the value of the bulk modulus material property. As the
bulk modulus is increased, soft incompressibility starts to act more like ‘hard’ incompressibility, with an infinite bulk
modulus corresponding to perfect incompressibility. However, very large bulk modulus values will generally produce
stability problems.

Incompressibility is not currently implemented for shell elements. Applying hard incompressibility to a shell
element will have no effect on its behavior. If soft incompressibility is applied, by supplying the element with an
incompressible material, then only the deviatoric component of that material will have any effect; the dilational
component will generate no stress.

6.7.1 Volume regions and locking

Both hard and soft incompressibility can be applied to different regions of local volume. From larger to smaller, these
regions are:

* Nodal - the local volume surrounding each node;
e Element - the volume of each element;

e Full - the volume at each integration point.

Element-based incompressibility is the standard method generally seen in the literature. However, it tends not to work
well for tetrahedral meshes, because constraining the volume of each tet in a tetrahedral mesh tends to over constrain the
system. This is because the number of tets in a large tetrahedral mesh is often O(5n), where n is the number of nodes,
and so putting a volume constraint on each element may result in O(5n) constraints, which exceeds the 3n degrees

of freedom (DOF) in the FEM. This overconstraining results in an artificially increased stiffness known as locking.
Because of locking, for tetrahedrally based meshes it may be better to use nodal-based incompressibility, which creates
a single volume constraint around each node, resulting in only 7 constraints, leaving 2n DOF to handle the remaining
deformation. However, nodal-based incompressibility is computationally more costly than element-based and may not
be as stable.

Generally, the best solution for incompressible problems is to use element-based incompressibility with a mesh
consisting of hexahedra, or primarily hexahedra and a mix of other elements (the latter commonly being known as a hex
dominant mesh). For hex-based meshes, the number of elements is roughly equal to the number of nodes, and so adding
a volume constraint for each element imposes n constraints on the model, which (like nodal incompressibility) leaves 2n
DOF to handle the remaining deformation.

Full incompressibility tries to control the volume at each integration point within each element, which almost always
results in a large number of volumetric constraints and hence locking. It is therefore not commonly used and is provided
mostly for debugging and diagnostic purposes.




6.7.2 Hard incompressibility

Hard incompressibility is controlled by the incompressible property of the FEM, which can be set to one of the follow-
ing values of the enumerated type FemModel . IncompMethod:

OFF No hard incompressibility enforced.
ELEMENT Element-based hard incompressibility enforced (Section 6.7.1).
NODAL Nodal-based hard incompressibility enforced (Section 6.7.1).

AUTO Selects either ELEMENT or NODAL, with the former selected if the number of elements is less than or equal to the
number of nodes.

ON Same as AUTO.

Hard incompressibility uses explicit constraints on the nodal velocities to enforce the incompressibility, which increases
computational cost. Also, if the number of constraints is too large, perturbed pivot errors may be encountered by the
solver. However, hard incompressibility can in principle handle situations where complete incompressibility is required.
It is equivalent to the mixed u-P formulation used in commercial FEM codes (such as ANSYS), and the Lagrange
multipliers computed for the constraints are pressure impulses.

Hard incompressibility can be applied in addition to soft incompressibility, in which case it will provide additional
incompressibility enforcement on top of that provided by the latter. It can also be applied to linear materials, which are
not themselves able to emulate true incompressible behavior (Section 6.7.4).

6.7.3 Soft incompressibility

Soft incompressibility enforces incompressibility using a restoring pressure that is controlled by a volume-based energy
potential. It is only available for FEM materials that are subclasses of IncompressibleMaterial. The energy potential

U (J) is a function of the determinant J of the deformation gradient, and is scaled by the material’s bulk modulus k. The
restoring pressure p is given by

p=2 ©6.7)

Different potentials can be selected by setting the bulkPotential property of the incompressible material, whose value is
an instance of IncompressibleMaterial.BulkPotential. Currently there are two different potentials:

QUADRATIC The potential and associated pressure are given by
1
UW) =5k = 12, p=x(J—1). (6.8)

LOGARITHMIC The potential and associated pressure are given by

1 |
U() = 5x(nI?, p= KHTJ (6.9)

The default potential is QUADRATIC, which may provide slightly improved stability characteristics. However, we have
not noticed significant differences between the two potentials in practice.

How soft incompressibility is applied within an FEM model is controlled by the FEM’s softincompMethod property,
which can be set to one of the following values of the enumerated type FemModel . IncompMethod:

ELEMENT Element-based soft incompressibility enforced (Section 6.7.1).

NODAL Nodal-based soft incompressibility enforced (Section 6.7.1).

AUTO Selects either ELEMENT or NODAL, with the former selected if the number of elements is less than or equal to the
number of nodes.

FULL Incompressibility enforced at each integration point (Section 6.7.1).
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6.7.4 Incompressibility and linear materials

Within a linear material, incompressibility is controlled by Poisson’s ratio v, which for isotropic materials can assume a
value in the range [—1,0.5]. This specifies the amount of transverse contraction (or expansion) exhibited by the material
as it compressed or extended along a particular direction. A value of 0 allows the material to be compressed or extended
without any transverse contraction or expansion, while a value of 0.5 in theory indicates a perfectly incompressible
material. However, setting v = 0.5 in practice causes a division by zero, so only values close to 0.5 (such as 0.49) can be
used.

Moreover, the incompressibility only applies to small displacements, so that even with v = 0.49 it is still possible to
squash a linear FEM completely flat if enough force is applied. If true incompressible behavior is desired with a linear
material, then one must also use hard incompressibility (Section 6.7.2).

6.7.5 Using incompressibility in practice

As mentioned above, when modeling incompressible models, we have found that the best practice is to use, if possible,
either a hex or hex-dominant mesh, along with element-based incompressibility.

Hard incompressibility allows the handling of full incompressibility but at the expense of greater computational cost and
often less stability. When modeling biomechanical materials, it is often permissible to use only soft incompressibility,
partly since biomechanical materials are rarely completely incompressible. When implementing soft incompressibility,
it is common practice to set the bulk modulus to something like 100 times the other (deviatoric) stiffnesses of the
material.

We have found stability behavior to be complex, and while hard incompressibility often results in less stable behavior,
this is not always the case: in some situations the stronger enforcement afforded by hard incompressibility actually
improves stability.

6.8 Varying and augmenting material behaviors

The default material used by all elements of an FEM model is supplied by the model’s material property. However, it
is often the case that one wishes to specify different material behaviors for different sets of elements within an FEM
model. This may be particularly true when combining volumetric and shell elements.

There are several ways to vary material behavior within a model. These include:

» Setting an explicit material for specific elements, using their material property. An element’s material is null by
default, but if set to a material, it will override the default material supplied by the FEM model. While this method is
quite straightforward, it does have one disadvantage: because material settings are copied by each element, subsequent
interactive or online changes to the material require resetting the material in all the affected elements.

* Binding one or more material parameters to a field. Sometimes certain material parameters, such as stiffness
quantities or direction information, may need to vary across the FEM domain. While sometimes this can be handled
by setting material properties for specific elements, it may be more convenient to bind the varying properties to a field,
which can specify varying values over a domain composed of either a regular grid or an FEM mesh. Only one material
needs to be used, and any properties which are not bound can be adjusted interactively or online. Fields and their
bindings are described in detail in the Section 6.10.

* Adding augmenting material behaviors using MaterialBundles. A material bundle may be specified either for
all elements, or for a subset of them, and each provides one material (via its own material property) whose behavior
is added to that of the indicated elements. This also provides an easy way to combine the behaviors of two of more
materials in the same element. One also has the option of setting the material property of the certain elements to
NullMaterial, so that only the augmenting material(s) are applied.

* Adding muscle behaviors using MuscleBundles. This is analogous to using MaterialBundles, except that
MuscleBundles are restricted to using an instance of a MuscleMaterial, and include support for handling the
excitation value, as well as the activation directions (which usually vary across the FEM domain). MuscleBundles are
only present in the FemMuscleModels subclass of FemModel3d, and are described in detail in Section 6.9.
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The remainder of this section will discuss MaterialBundles.

Adding a MaterialBundle to an FEM model is illustrated by the following code fragment:

FemMaterial extraMat; // material to be added

FemModel3d fem; // FEM model

MaterialBundle bun = new MaterialBundle ("mybundle", extraMat);
// add volumetric elements to the bundle

for (FemElement3d e : fem.getElements ()) {

if (/* e should be added to the bundle */) {
bun.addElement (e);

}
fem.addMaterialBundle (bun);

Once added, the stress computed by the bundle’s material will be added to the stress computed by any other materials
which are active for the bundle’s elements.

When deciding what elements to add to a bundle, one is free to choose any means necessary. The example above
inspects all the volumetric elements in the FEM. To instead inspect all the shell elements, or all volumetric and shell
elements, one could use the code fragments such as the following:

// add shell elements to the bundle
for (ShellElement3d e : fem.getShellElements ()) {
if (/* e should be added to the bundle */) {
bun.addElement (e);

// add volumetric or shell elements to the bundle
for (FemElement3dBase e : fem.getAllElements ()) {
if (/* e should be added to the bundle */) {

bun.addElement (e);

Of course, if the elements are known through other means, then they can be added directly.

The element composition of a bundle can be controlled by the methods

void addElement (FemElement3dBase e) // adds an element

boolean removeElement (FemElement3dBase e) // removes an element

void clearElements () // removes all elements

int numElements () // gets the number of elements
FemElment3dBase getElement (int idx) // gets the idx-th element

It is also possible to create a MaterialBundle whose material is added to all the FEM elements. This can done either
by using one of the following constructors

MaterialBundle (String name, boolean useAllElements)
MaterialBundle (String name, FemMaterial mat, boolean useAllElements)

with useAllElements set to true, or by calling the method

void setUseAllElements (boolean enable)

When a bundle is set to use all the FEM elements, it clears its own element list, and one is not permitted to add elements
using addElement (elem).

After a bundle has been created, it is possible to get or set its material property using the methods

FemMateral getMaterial () // get the material
FemMateral setMaterial (FemMaterial mat) // set the material
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Again, because materials are copied internally, any modification to a material affer it has been used as an input to
setMaterial () will not be noticed by the bundle. Instead, one should modify the material before calling setMaterial (),
or modify the copied material which can be obtained by calling getMaterial () or by storing the value returned by
setMaterial ().

Finally, a MuscleBundle is a renderable component. Setting its elementWidgetSize property to a value greater than
zero will cause the rendering of all its elements, using a solid widget representation of each at a scale controlled by
elementWidgetSize: 0.5 for half size, 1.0 for full size, etc. The color of the widgets is controlled by the faceColor
property of the bundle’s renderProps. Being able to render the elements makes it easy to select the bundle and visualize
which elements it contains.

6.8.1 Example: FEM sheet with a stiff spine

Figure 6.13: MaterialBundleDemo model after being run in ArtiSynth.

A simple model demonstrating the use of material bundles is defined in
artisynth.demos.tutorial.MaterialBundleDemo

It consists of a simple thin hexahedral sheet in which a material bundle is used to stiffen elements close to the x-axis,
creating a stiff “spine”. While the same effect could be achieved by simply setting a different material property for the
“spine” elements, it does provide a good example of muscle bundle usage. The model’s build method is given below:

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);
// create a fem model consisting of a thin sheet of hexes
FemModel3d fem = FemFactory.createHexGrid (null, 1.0, 1.0, 0.1, 10, 10, 1);
fem.setDensity (1000);
8 fem.setMaterial (new LinearMaterial (10000, 0.45));
9 mech.add (fem);
10 // fix the left-most nodes:
1 double EPS = 1le-8;
12 for (FemNode3d n : fem.getNodes ()) {
13 if (n.getPosition().x <= -0.5+EPS) {
14 n.setDynamic (false);

5 }

17 // create a "spine" of stiffer elements using a MaterialBundle with a
18 // stiffer material

19 MaterialBundle bun =




20 new MaterialBundle ("spine", new NeoHookeanMaterial (5e6, 0.45), false);

21 for (FemElement3d e : fem.getElements ()) {

2 // use element centroid to determine which elements are on the "spine"
Point3d pos = new Point3d();

24 e.computeCentroid (pos);

2 if (Math.abs(pos.y) <= 0.1+EPS) {

26 bun.addElement (e);

28 }
29 fem.addMaterialBundle (bun);

31 // add a control panel to control both the fem and bundle materials,
32 // as well as the fem and bundle widget sizes

33 ControlPanel panel = new ControlPanel ();

34 panel.addWidget ("fem material", fem, "material");

35 panel.addWidget ("fem widget size", fem, "elementWidgetSize");
36 panel.addWidget ("bundle material", bun, "material");

37 panel.addWidget ("bundle widget size", bun, "elementWidgetSize");
38 addControlPanel (panel);

39

40 // set rendering properties, using element widgets

41 RenderProps.setFaceColor (fem, new Color (0.7f, 0.7f, 1.0£f));
2 RenderProps.setFaceColor (bun, new Color (0.7f, 1.0f, 0.7f));
4 bun.setElementWidgetSize (0.9);

44 fem.setElementWidgetSize (0.8);

Lines 6-9 create a thin FEM hex sheet, centered on the origin, with size 1 x 1 x 0.1 and 10 x 10 x 1 elements along each
axis. Its material is set to a linear material with a Young’s modulus of 10000. The leftmost nodes are then fixed (lines
11-16).

Next, a MuscleBundle is added and used to apply an additional material to the elements near the x axis (lines 19-29).
It is given a neo-hookean material with a much higher stiffness, and the “spine” elements for it are selected by finding
those whose centroids have a y value within 0.1 of the x axis.

After the bundle is added, a control panel is created allowing interactive control of the materials for both the FEM model
and the bundle, along with their elementWidgetSize properties.

Finally, some render properties are set (lines 41-44). The idea is to render the elements of both the FEM model and the
bundle using element widgets (both of which will be visible since there is no surface rendering and the element widget
sizes for both are greater than 0). The widget size for the bundle is made larger than that of the FEM model to ensure its
widgets will cover those of the latter. Widget colors are controlled by the FEM and bundle face colors, set in lines 41-42.

The example can be run in ArtiSynth by selecting All demos > tutorial > MaterialBundleDemo from the Models menu.
When it is run, the sheet will fall under gravity but be much stiffer along the spine (Figure 6.13). The control panel can
be used to interactively adjust the material parameters for both the FEM and the bundle. This is one advantage of using
bundles: the same material can be used to control multiple elements. The panel also allows interactive adjustment of the
widget sizes, to illustrate what they look like and how they are rendered.

6.9 Muscle activated FEM models

Finite element muscle models are an extension to regular FEM models. As such, everything previously discussed for
regular FEM models also applies to FEM muscles. Muscles have additional properties that allow them to contract when
activated. There are two types of muscles supported:

Fibre-based: Point-to-point muscle fibres are embedded in the model.

Material-based: An auxiliary material is added to the constitutive law to embed muscle properties.

In this section, both types will be described.
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6.9.1 FemMuscleModel

The main class for FEM-based muscles is FemMuscleModel, a subclass of FemModel3d. It differs from a basic FEM
model in that it has the new property

Property Description
muscleMaterial An object that adds an activation-dependent ‘muscle’ term to the constitutive law.

This is a delegate object of type MuscleMaterial that computes activation-dependent stress and stiffness in the muscle.
In addition to this property, FemMuscleModel adds two new lists of subcomponents:

bundles
Groupings of muscle sub-units (fibres or elements) that can be activated.

exciters
Components that control the activation of a set of bundles or other exciters.

6.9.1.1 Bundles

Muscle bundles allow for a muscle to be partitioned into separate groupings of fibres/elements, where each bundle can
be activated independently. They are implemented in the class MuscleBundle. Bundles have three key properties:

Property Description

excitation Activation level of the muscle, a € [0, 1].

fibresActive Enable/disable “fibre-based” muscle components.

muscleMaterial An object that adds an activation-dependent ‘muscle’ term to the constitutive law.

The excitation property controls the level of muscle activation, with zero being no muscle action, and one being fully
activated. The fibresActive property is a boolean variable that controls whether or not to treat any contained fibres as
point-to-point-like muscles (“fibre-based”). If false, the fibres are ignored. The third property, muscleMaterial, allows
for aMuscleMaterial to be specified per bundle. By default, its value is inherited from FemMuscleModel.

Once a muscle bundle is created, muscle sub-units must be assigned to it. These are either point-to-point fibres, or
material-based muscle element descriptors. The two types will be covered in Sections 6.9.2 and 6.9.3, respectively.

6.9.1.2 Exciters

Muscle exciters enable you to simultaneously activate a group of “excitation components”. This includes: point-to-point
muscles, muscle bundles, muscle fibres, material-based muscle elements, and other muscle exciters. Components that
can be excited all implement the ExcitationComponent interface. To add or remove a component to the exciter, use

addTarget (ExcitationComponent ex); // adds a component to the exciter

addTarget (ExcitationComponent ex, // adds a component with a gain factor
double gain);

removeTarget (ExcitationComponent ex); // removes a component

If a gain factor is specified, the activation is scaled by the gain for that component.

6.9.2 Fibre-based muscles

In fibre-based muscles, a set of point-to-point muscle fibres are added between FEM nodes or markers. Each fibre is
assigned an AxialMuscleMaterial, just like for regular point-to-point muscles (Section 4.4.1). Note that these muscle
materials typically have a “rest length” property, that will likely need to be adjusted for each fibre. Once the set of
fibres are added to a MuscleBundle, they need to be enabled. This is done by setting the fibresActive property of the
bundle to true.

Fibres are added to a MuscleBundle using one of the functions:
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addFibre ( Muscle muscle ); // adds a point-to-point fibre
Muscle addFibre( Point p0O, Point pl, // creates and adds a fibre
AxialMuscleMaterial mat);

The latter returns the newly created Muscle fibre. The following code snippet demonstrates how to create a fibre-based
MuscleBundle and add it to an FEM muscle.

1 // Create a muscle bundle
> MuscleBundle bundle = new MuscleBundle ("fibres");
s Point3d[] fibrePoints = ... //create a sequential list of points

s // Add fibres

¢ Point pPrev = fem.addMarker (fibrePoints [0]) ; // create an FEM marker
7 for (int i=1; i<=fibrePoints.length; i++) {
8 Point pNext = fem.addMarker (fibrePoint [i]);

10 // Create fibre material

T double 10 = pNext.distance (pPrev); // rest length
12 AxialMuscleMaterial fibreMat =

13 new BlemkerAxialMuscle (

14 1.4*10, 10, 3000, 0, 0);

16 // Add a fibre between pPrev and pNext
17 bundle.addFibre (pPrev, pNext, fibreMat); // add fibre to bundle
18 pPrev = pNext;

21 // Enable use of fibres (default is disabled)
» bundle.setFibresActive (true) ;
3 fem.addMuscleBundle (bundle) ; // add the bundle to fem

In these fibre-based muscles, force is only exerted between the anchor points of the fibres; it is a discrete approximation.
These models are typically more stable than material-based ones.

6.9.3 Material-based muscles

In material-based muscles, the constitutive law is augmented with additional terms to account for muscle-specific
properties. This is a continuous representation within the model.

The basic building block for a material-based muscle bundle is a MuscleElementDesc. This object contains a reference
to a FemElement3d, a MuscleMaterial, and either a single direction or set of directions that specify the direction

of contraction. If a single direction is specified, then it is assumed the entire element contracts in the same direction.
Otherwise, a direction can be specified for each integration point within the element. A null direction signals that there
is no muscle at the corresponding point. This allows for a sub-element resolution for muscle definitions. The positions
of integration points for a given element can be obtained with:

// loop through all integration points for a given element

for ( IntegrationPoint3d ipnt : elem.getIntegrationPoints () ) {
Point3d curPos = new Point3d();
Point3d restPos = new Point3d();
ipnt.computePosition (curPos, elem); // computes current position
ipnt.computeRestPosition (restPos, elem); // computes rest position

By default, the MuscleMaterial is inherited from the bundle’s material property. Supported muscle materials
include: GenericMuscle, BlemkerMuscle, and FullBlemkerMuscle. The Blemker-type materials are based on [2].
BlemkerMuscle only uses the muscle-specific terms (since a base material is provided the underlying FEM model),
whereas Ful1BlemkerMuscle adds all terms described in the aforementioned paper.

Elements can be added to a muscle bundle using one of the methods:

// Adds a muscle element
addElement (MuscleElementDesc elem);
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The following snippet demonstrates how to create and add a material-based muscle bundle:

// Creates and adds a muscle element

MuscleElementDesc addElement (FemElement3d elem, Vector3d dir);

// Sets a direction per integration point

MuscleElementDesc addElement (FemElement3d elem, Vector3d[] dirs);

// Create muscle bundle

> MuscleBundle bundle = new MuscleBundle ("embedded") ;

// Muscle material

s MuscleMaterial muscleMat = new BlemkerMuscle (

1.4, 1.0, 3000, 0, 0);

7 bundle.setMuscleMaterial (muscleMat) ;

// Muscle direction
Vector3d dir = Vector3d.X_UNIT;

> // Add elements to bundle
3 for (FemElement3d elem : beam.getElements ()) {

bundle.addElement (elem, dir);

// Add bundle to model
beam.addMuscleBundle (bundle) ;

6.9.4 Example: comparison with two beam examples

An example comparing a fibre-based and a material-based muscle is shown in Figure 6.14. The code can be found in
artisynth.demos.tutorial.FemMuscleBeams. There are two FemMuscleModel beams in the model: one fibre-

Figure 6.14: FemMuscleBeams model loaded into ArtiSynth.

based, and one material-based. Each has three muscle bundles: one at the top (red), one in the middle (green), and one
at the bottom (blue). In the figure, both muscles are fully activated. Note the deformed shape of the beams. In the fibre-
based one, since forces only act between point on the fibres, the muscle seems to bulge. In the material-based muscle,
the entire continuous volume contracts, leading to a uniform deformation.

Material-based muscles are more realistic. However, this often comes at the cost of stability. The added terms to the

constitutive law are highly nonlinear, which may cause numerical issues as elements become highly contracted or highly
deformed. Fibre-based muscles are, in general, more stable. However, they can lead to bulging and other deformation
artifacts due to their discrete nature.




6.10 Fields

In modeling applications, particularly those employing FEM methods, situations often arise where it is necessary to
describe numeric quantities that vary over some spatial domain. For example, the stiffness parameters of an FEM
material may vary at different points within the volumetric mesh. When modeling muscles, the activation direction
vector will also typically vary over the mesh.

ArtiSynth provides field objects which can be used to represent such spatially varying quantities, together with mecha-
nisms to attach these to properties within FEM materials. Field objects can provide either scalar or vector fields. Scalar
fields implement the interface ScalarField and supply the method

double getValue (Point3d pos)

while vector fields implement VectorField and supply the method

T getValue (Point3d pos)

where T is any class implementing maspack.matrix.VectorObject. (Most of the fixed-size matrix objects in maspack.matrix,
along with MatrixNd and VectorNd, implement VectorObject.) In both cases, the idea is to provide values at arbitrary
points over some spatial domain.

Both ScalarField and VectorField are subclassed from Field. The reason for separating scalar and vector
fields is simply efficiency: having scalar fields work with the primitive type double, instead of the object Double,
requires considerably less storage and somewhat less computational effort.

6.10.1 Field types

A field is typically implemented by specifying a finite set of values at discrete locations on an underlying spatial grid
and then using different methods to determine values at arbitrary points.

At present, ArtiSynth provides the following different field types:

Grid fields Implemented by classes that extend either ScalarGridField or VectorGridField, grid fields specify their
values at the vertices of a regular 3D grid. Values at an arbitrary position p are determined by finding the grid cell
containing p, and then using trilinear interpolation of the surrounding nodal values.

Nodal fields Implemented by classes that extend either ScalarNodalField or VectorNodalField, nodal fields specify
their values at the nodes of an FEM mesh. Values at an arbitrary position p are determined by finding the element
containing p, and then finding the nodal coordinates (i.e., weights) of p within that element and interpolating the
value accordingly. Values within a nodal field can also be queried directly either by node, or a set of node numbers
and weights:

T getValue (FemNode3d node)

T getValue (int[] nodeNums, double[] weights)

Element fields Implemented by classes that extend either ScalarElementField or VectorElementField, element fields
specify their values at the elements of an FEM mesh, with the value assumed to be constant over the element.
Values at an arbitrary position p are determined by finding the element containing p and then returning the value
for that element. Values within a nodal field can also be queried directly by element:

T getValue (FemElement3dBase elem)

Sub-element fields Implemented by classes that extend either ScalarSubElemField or VectorSubElemField, sub-
element fields specify their values at specific points within each element of an FEM mesh, with the points
corresponding to the element’s integration points. Values at an arbitrary position p are determined by finding
the element containing p, extrapolating the point values back to the nodes, and then using nodal interpolation.
While this is computationally expensive (and it is also possible to create a nodal field that gives the same result),
the purpose of sub-element fields is to provide precise values at element integration points, which can be queried
directly using the element and point sub-index:
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Field component value field type
modelbase.ScalarGridField double scalar grid
modelbase.VectorGridField VectorObject  vector grid
femmodels.ScalarNodalField double scalar nodal
femmodels.VectorNodalField VectorObject  vector nodal
femmodels.Vector3dNodalField Vector3d vector nodal
femmodels.VectorNdNodalField VectorNd vector nodal
femmodels.MatrixNdNodalField MatrixNd vector nodal
femmodels.ScalarElementField double scalar element
femmodels.VectorElementField VectorObject  vector element
femmodels.Vector3dElementField Vector3d vector element
femmodels.VectorNdElementField VectorNd vector element
femmodels.MatrixNdElementField MatrixNd vector element
femmodels.ScalarSubElemField double scalar sub-element
femmodels.VectorSubElemField VectorObject  vector sub-element
femmodels.Vector3dSubElemField Vector3d vector sub-element
femmodels.VectorNdSubElemField VectorNd vector sub-element
femmodels.MatrixNdSubElemField MatrixNd vector sub-element

Table 6.6: List of all the field components available in ArtiSynth, with their value and field types.

T getValue (FemElement3dBase elem, int subIdx)

Internally, field features, such as nodes or elements, are generally referred to by their number. This is because node and
element numbers are guaranteed to be persistent, in the sense that the number will remain unchanged as long as the
node or element is not removed from the FEM model. Element field implementations also need to distinguish between
volumetric and shell elements, since these are each numbered independently.

Table 6.6 gives a list of all the currently implemented fields. Some of them, such as those prefaced with Vector3d,
VectorNd, and MatrixNd, are specialized because they implement special features for their value type, or require
specialized construction because the value type does not have a fixed size.

Each field component also has a default value, which is returned for any query for which the specified position lies
outside the field’s domain. For a grid field, this means lying outside the bounds of the grid. For an FEM-based field, this
means lying outside the FEM mesh. The default value can be specified in the field’s constructor. If not specified, it is
usually set to 0.

Having a default value also means that explicit values do not have to specified at all of the features (e.g., nodes or
elements) used to define the field. If an explicit value is missing, the default value is used instead.

6.10.2 Adding fields to a model

Fields are added to an ArtiSynth model by first creating an instance of the desired field class, populating it with values
(at vertices, nodes, or elements, as required by the field), and then adding it to the model. Grid fields can generally be
added anywhere, whereas FEM-based fields should be added to the fields sublist of their associated FEM model (grid
fields can be added there as well).

As a simple example, one can construct a scalar nodal field, associated with an FEM model named fem, like this:

FemModel3d fem;
// ... build the fem
ScalarNodalField field = new ScalarNodalField ("stiffness", fem, 0);
for (FemNode3d n fem.getNodes () ) {
double value = // compute value for the node
field.setValue (n, value);
}
fem.addField (field); // add the field to the fem




Each field type has several constructors available. The one used above takes a component name ("stiffness"), the
FEM modal associated with the field, and a default value (0 in this case). When setting field values, it is often easiest to
simply specify the node (although the node’s number (i.e., node.getNumber () ) can be specified as well. After being
created and initialized, the field is added to the FEM model using its addField () method.

As noted in the previous section, it is not necessary to specify values for all the features of a field (e.g., nodes for
a nodal field, or elements for an element field). For features with undefined values, the default value will be used
instead.

As another example, consider constructing a vector element field, with two-dimensional values characterized by
Vector2d. An example of this is as follows:

VectorElementField<Vector2d> field =

new VectorElementField<> ("uv", Vector2d.class, fem);
for (FemElement3d e : fem.getElements ()) {
Vector2d value = ... // compute value for the element

field.setValue (e, value);

}
fem.addField (field); // add the field to the fem

General vector fields are declared using type parameterization, in which the class type of the vector must be appended
to the declaration between angle brackets (< >). Also, the constructor also requires the class type to be specified as an
argument. In the example above, the field is constructed with a name ("uv"), value class type (Vector2d.class), and
the FEM model. Since no default value is specified, a value of 0 will be assumed.

Since it is widely used, the vector type Vector3d has its own predefined field classes, which don’t require parameteriza-
tion and may also contain special methods and features relevant for 3D vectors. A Vector3d nodal field can be declared
and created as follows:

Vector3dNodalField field = new Vector3dNormalField ("normals", fem);

Since the vector type is explicitly “wired in”, no type parameterization is required, and Vector3d.class does not need
to be specified to the constructor.

The vector types VectorNd and MatrixNd also have special predefined classes, because these components do not have a
predetermined size and so it is necessary to specify this size information when constructing the field. Some constructors
for fields with these types look like:

MatrixNdElementField field =

new MatrixNdElementField ("matrixField", 3, 6, fem);
VectorNdNodalField field =

new VectorNdNodalField ("params", 7, fem);

Both of these contain size information after the name argument: 3 x 6 for the matrix field, and 7 for the vector field.
Again, no default value is specified, so 0 will be assumed.

Lastly, we consider constructing a sub-element field. This is normally done when we need precisely computed infor-
mation at each of the element’s integration points, and we can’t assume that nodal interpolation will give an accurate
enough approximation. A general template for constructing a sub-element field might look like this:

ScalarSubElemField field = new ScalarSubElemField ("precise", fem, -1);
for (FemElement3d e : fem.getElements ()) {
IntegrationPoint3d [] ipnts = e.getAllIntegrationPoints ();
for (int k=0; k<ipnts.length; k++) {
double value = ... // compute value at integration point k
field.setValue (e, k, value);

}
fem.addField (field); // add the field to the fem

Here, we create a scalar sub-element field named "precise" with a default value of -1. Then we iterate first through
the FEM elements, and then through each element’s integration points, computing values appropriate to each

one. Since we are likely to need information from the integration points themselves to compute the value, we use
e.getAllIntegrationPoints () to obtain a list of them.
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Assigning values to a sub-element field, it is important to use the element’s getAllIntegrationPoints () method
instead of get IntegrationPoints (), since the former returns a list of all integration points, including the special
warping point which is contained in the element’s center and is used by the solver under some circumstances.
Likewise, the number of sub-element values required is given by numAllIntegrationPoints ().

When computing sub-element field values, if it is necessary to obtain either the rest or current (spatial) position for an
integration point, these can be obtained as follows:

IntegrationPoint3d ipnt;
Point3d pos = new Point3d();
FemElement3d elem;

// compute spatial position:
ipnt .computePosition (pos, elem.getNodes());

// compute rest position:
ipnt .computeRestPosition (pos, elem.getNodes ());

6.10.3 Binding to material properties

Once a field has been created and added to the model, one may bind it to certain properties of a FemMaterial. When
this is done, then whenever those properties are queried internally by the solver at the integration points for each FEM
element, the field value at that integration point is used instead of the regular property value.

As long as a property XXX is bound to a field, its regular value will still appear (and can be set) through widgets in
control or property panels, or via the get XXX () and setXXX () accessors. However, the regular value won’t be used
internally by the FEM simulation.

To bind a property to a field, it is necessary that

1. The type of the field matches the value of the property;

2. The property is itself bindable.

If the property has a double value, then it can be bound to any ScalarField. Otherwise, if the property has a value T,
where T is an instance of maspack.matrix.VectorObject, then it can be bound to any VectorField<T>.

Bindable properties export two methods with the signature

setXXXField (T field, boolean useRestPos)

T getXXXField ()

where XXX is the property name and T is an appropriate field type. The second argument, useRestPos, is relevant only
for grid fields, and indicates whether the grid should be queried using the integration point’s rest position, or current
spatial position. For FEM-based fields, this distinction is irrelevant, since the field is assumed to always move with the
FEM.

For example, consider the YoungsModulus property of a NeoHookeanMaterial material. This has a double value, and is
bindable, and so can be bound to a ScalarField as follows:

FemModel3d fem;
ScalarNodalField field;
NeoHookeanMaterial mat;

other initialization

mat.setYoungsModulusField (field, false); // bind to the field
fem.setMaterial (mat); // set the material in the FEM model
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It is important to perform field bindings on materials before they are set in an FEM model (or one of its subcompo-
nents, such as MuscleBundles). That’s because the setMaterial () method copies the input material, and so any
settings made on it afterwards won’t be seen by the FEM:

// works: field will be seen by the copied version of ’mat’
mat.setYoungsModulusField (field, false);
fem.setMaterial (mat);

// does NOT work: field not seen by the copied version of ’mat’
fem.setMaterial (mat);
mat .setYoungsModulusField (field, false);

To unbind YoungsModulus, one can do

mat .setYoungsModulusField (null, false);

where the value of the useRestPos argument is ignored.

6.10.4 Example: FEM with variable stiffness

Figure 6.15: VariableStiffness model after being run in ArtiSynth.

A simple model demonstrating a stiffness that varies over an FEM mesh is defined in
artisynth.demos.tutorial.VariableStiffness

It consists of a simple thin hexahedral beam with a linear material for which the Young’s modulus E is made to vary
nonlinearly along the x axis of the rest position according to the formula
108

E=—""— 6.10
1+1000x3 ( )
The model’s build method is given below:

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

create regular hex grid FEM model
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6 FemModel3d fem = FemFactory.createHexGrid (

7 null, 1.0, 0.25, 0.05, 20, 5, 1);

8 fem.transformGeometry (new RigidTransform3d (0.5, 0, 0)); // shift right
9 fem.setDensity (1000.0) ;

10 mech.addModel (fem);

12 // fix the left-most nodes

13 double EPS = le-8;

14 for (FemNode3d n : fem.getNodes ()) |
15 if (n.getPosition().x < EPS) {

16 n.setDynamic (false);

18 }

19 // create a scalar nodel field to make the stiffness vary

20 // nonlinearly along the rest position x axis

21 ScalarNodalField stiffnessField = new ScalarNodalField (fem, 0);

2 for (FemNode3d n : fem.getNodes ()) {

23 double s = 10*(n.getRestPosition () .x);

24 double E = 100000000*(1/(1+s*s*s));

25 stiffnessField.setValue (n, E);

26 }

27 fem.addField (stiffnessField);

28 // create a linear material, bind its Youngs modulus property to the
29 // field, and set the material in the FEM model

30 LinearMaterial linearMat = new LinearMaterial (100000, 0.49);

31 linearMat .setYoungsModulusField (stiffnessField, /*useRestPos=*/true);
32 fem.setMaterial (linearMat);

34 // set some render properties for the FEM model
35 fem.setSurfaceRendering (SurfaceRender.Shaded);
36 RenderProps.setFaceColor (fem, Color.CYAN);

Lines 6-10 create the hex FEM model and shift it so that the left side is aligned with the origin, while lines 12-17 fix
the leftmost nodes. Lines 21-27 create a scalar nodal field for the Young’s modulus, with lines 23-24 computing E
according to (6.10). The field is then bound to a linear material which is then set in the model (lined 30-32).

The example can be run in ArtiSynth by selecting All demos > tutorial > VariableStiffness from the Models menu. When
it is run, the beam will bend under gravity, but mostly on the right side, due to the much higher stiffness on the left
(Figure 6.15).

6.10.5 Example: specifying FEM muscle directions

Another example involves using a Vector3d field to specify the muscle activation directions over an FEM model and is
defined in

artisynth.demos.tutorial.RadialMuscle

When muscles are added using MuscleBundles ( Section 6.9), the muscle directions are stored and handled internally
by the muscle bundle itself. However, it is possible to add a MuscleMaterial directly to the elements of an FEM model,
using a MaterialBundle (Section 6.8), in which case the directions need to be set explicitly using a field.

The model’s build method is given below:

1 public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

)

5 // create a thin cylindrical FEM model with two layers along z
6 double radius = 0.8;
7 FemMuscleModel fem = new FemMuscleModel ("radialMuscle");

8 mech.addModel (fem);
9 fem.setDensity (1000);
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Figure 6.16: (Top) RadialMuscle model after being loaded into ArtiSynth and run with its excitation set to 0. (Bottom)

RadialMuscle with its excitation set to around .375.

10 FemFactory.createCylinder (fem, radius/8, radius, 20, 2, 8);
1 fem.setMaterial (new NeoHookeanMaterial (200000.0, 0.33));

12 // fix the nodes close to the center

13 for (FemNode3d node : fem.getNodes ()) {

14 Point3d pos = node.getPosition () ;

15 double radialDist = Math.sqrt (pos.x*pos.x + pos.y*pos.y);
16 if (radialDist < radius/2) {
17 node.setDynamic (false);

19 }

20 // compute a direction field, with the directions arranged radially

21 Vector3d dir = new Vector3d();

Vector3dElementField dirField = new Vector3dElementField (fem);

23 for (FemElement3d elem : fem.getElements ()) {
24 elem.computeCentroid (dir);
5 // set directions only for the upper layer elements
26 if (dir.z > 0) {

dir.z = 0; // remove z component from direction
28 dir.normalize ();
29 dirField.setValue (elem, dir);
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32 fem.addField (dirField);

33 // add a muscle material, and use it to hold a simple force

34 // muscle whose ’'restDir’ property is attached to the field

35 MaterialBundle bun = new MaterialBundle ("bundle",/*all elements=*/true);
36 fem.addMaterialBundle (bun);

37 SimpleForceMuscle muscleMat = new SimpleForceMuscle (500000) ;

38 muscleMat .setRestDirField (dirField, true);

39 bun.setMaterial (muscleMat);

41 // add a control panel to control the excitation

e ControlPanel panel = new ControlPanel ();

43 panel.addWidget (bun, "material.excitation", 0, 1);

44 addControlPanel (panel);

45

46 // set some rendering properties

47 fem.setSurfaceRendering (SurfaceRender.Shaded);

48 RenderProps.setFaceColor (fem, new Color (0.6f, 0.6f, 1f));

49 }

Lines 5-19 create a thin cylindrical FEM model, centered on the origin, with radius r and height /8, consisting of hexes
with wedges at the center, with two layers of elements along the z axis (which is parallel to the cylinder axis). Its base
material is set to a neo-hookean material. To keep the model from falling under gravity, all nodes whose distance to the z
axis is less than r/2 are fixed.

Next, a Vector3d field is created to specify the directions, on a per-element basis, for the muscle material which will

be added subsequently (lines 21-32). While we could create an instance of VectorElementField<Vector3d>, we use
Vector3dElementField, since this is available and may provide additional functionality (such as the ability to render

the directions). Directions are set to lie outward in a radial direction perpendicular to the z axis, and since the model is
centered on the origin, they can be computed easily by first computing the element centroids, removing the z component,
and then normalizing. In order to give the muscle action an upward bias, we only set directions for elements in the upper
layer. Direction values for elements in the lower layer will then automatically have a default value of 0, which will cause
the muscle material to not apply any stress.

We next add to the model a muscle material whose directions will be determined by the field. To hold the material,

we first create and add a MaterialBundle which is set to act on all elements (line 35-36). Then we set this bundle’s
material to SimpleForceMuscle, which simply adds a stress along the muscle direction that equals the excitation value
times the value of its maxStress property, and bind the material’s restDir property to the direction field (lines 37-39).

Finally, we create and add a control panel to allow interactive control over the muscle material’s excitation property
(lines 42-44), and set some rendering properties for the FEM model.

The example can be run in ArtiSynth by selecting All demos > tutorial > RadialMuscle from the Models menu. When it
is first runs, it falls around the edges under gravity (Figure 6.16, top). Applying an excitation causes a radial contraction
which pulls the edges upward and, if high enough, causes then to buckle (Figure 6.16, bottom).

6.11 Collisions

As described in Section 4.5, collisions can be enabled for any class that implements the Collidable interface. Both
FemModel3d and FemMeshComp implement Collidable. FemMode13d will use its surface mesh as the collision surface.
A FemMeshComp will use its underlying mesh structure. At present, only meshes of type PolygonalMesh are supported.

Since FemMeshComp is also a Collidable, this means we can enable collisions with any embedded mesh inside an
FEM. Any forces resulting from the collision are then automatically transferred back to the underlying nodes of the
model using Equation (6.5).

Note: Collisions involving shell elements are not yet fully supported. This relates to the fact that shells are thin and
can therefore pass through each other easily in a single time step. However, collisions should work properly if

1. The collider type is set to AJL,_CONTOUR (Sections 4.5.3 and 4.6);

2. Collisions result in closed intersection contours between the colliding surfaces. This is more likely to occur if
one of the surfaces encloses a volume.
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6.11.1 Example: FEM collisions

Figure 6.17: FemCollisions model loaded into ArtiSynth.

An example of FEM collisions is shown in Figure 6.17. The full source code can be found in the ArtiSynth repository
under artisynth.demos.tutorial.FemCollisions. The collision-enabling code is as follows:

// Set up collisions

mech.setCollisionBehavior (ellipsoid, beam, true); // beam-ellipsoid

mech.setCollisionBehavior (ellipsoid, table, true); // ellipsoid-table

mech.setCollisionBehavior (table, beam, true); // beam-table

FemMeshComp embeddedSphere = block.getMeshComp ("embedded") ; // get embedded <=
FemMeshComp

mech.setCollisionBehavior (embeddedSphere, table, true); // sphere-table

mech.setCollisionBehavior (ellipsoid, embeddedSphere, true); // sphere-ellipsoid

Notice in the figure that the surface of the green block passes through the table and ellipsoid; only the embedded sphere
has collisions enabled.

6.12 Rendering and Visualizations

In addition to the standard RenderProps that control how the nodes and surfaces appear, finite element models and their
sub-components have a few additional properties that affect rendering. Some of these are listed in Table 6.7.

Table 6.7: FEM-specific rendering properties

Property Description

elementWidgetSize size of element to render € [0, 1]

directionRenderLen  relative length to draw fibre direction indicator € [0, 1]
directionRenderType  where to draw directions: ELEMENT, INTEGRATION_POINT

surfaceRendering how to render surface: None, Shaded, Stress, Strain,
MAPStress, MAPStrain

stressPlotRange range of values for stress/strain plot

stressPlotRanging how to determine stress/strain plot range: Auto, Fixed

colorMap delegate object controlling the map of stress/strain values to
color

The property elementiidgetSize applies only to FemModel3d and FemElement3d. It specifies the scale to draw each
element volume. For instance, the blue beam in Figure 6.17 uses a widget size of 0.8, resulting in a mosaic-like pattern.

The next two properties in Table 6.7 apply to the muscle classes FemMuscleModel, MuscleBundle, and MuscleElementDesc.
When directionRenderLen > 0, lines are drawn inside elements to indicate fibre directions. If directionRenderType
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= ELEMENT, then one line is drawn per element indicating the average contraction direction. If directionRenderType
= INTEGRATION_POINT, a separate direction line is drawn per point.

The last four properties apply to FemModel3d and FemMeshComp. They control how the surface is colored. This can
be used to enable stress/strain visualizations. The property surfaceRendering sets what to draw:

None no surface

Shaded the face color specified by the mesh’s RenderProps
Stress the von Mises stress

Strain the von Mises strain

MAPStress Maximum absolute value principal stress
MAPStrain Maximum absolute value principal strain

The stressPlotRange controls the range of values to use when plotting stress/strain. Values outside this range are
truncated. The colorMap is a delegate object that converts those stress and strain values to colors. Various types of maps
exist, including GreyscaleColorMap, HueColorMap, RainbowColorMap, and JetColorMap. These all implement the
ColorMap interface.

To display values corresponding to colors, a ColorBar needs to be added to the RootModel. Color bars are general
Renderable objects that are only used for visualizations. They are added to the display using the

addRenderable (Renderable 1r);

method in RootModel. Color bars also have a ColorMap associated with it. The following functions are useful for
controlling its visualization:

setNumberFormat ( String fmtStr ); // C-like numeric format specification
populateLabels ( double min, double max, int tick ); // initialize labels
updatelabels ( double min, double max ); // update existing labels
setColorMap ( ColorMap map ); // set color map

// Control position/size of the bar
setNormalizedLocation (double x, double y, double width, double height);
setLocationOverride (double x, double y, double width, double height)

The normalized location specifies sizes relative to the screen size (1 = screen width/height). The location override, if
values are non-zero, will override the normalized location, specifying values in absolute pixels. Negative values for
position correspond to distances from the left/top. For instance,

setNormalizedLocation (0, 0.1, 0, 0.8); // set relative positions
setLocationOverride (-40, 0, 20, 0); // override with pixel lengths

will create a bar that is 10% up from the bottom of the screen, 40 pixels from the right edge, with a height occupying
80% of the screen, and width 20 pixels.

Note that the color bar is not associated with any mesh or finite element model. Any synchronization of colors and
labels must be done manually by the developer. It is recommended to do this in the RootModel’s prerender (.. .)
method, so that colors are updated every time the model’s rendering configuration changes.

6.12.1 Example: stress and strain plotting

The following model extends FemBeam to render stress, with an added color bar. The loaded model is shown in Figure
6.18.

I package artisynth.demos.tutorial;

-

3 import java.io.IOException;

s import maspack.render.RenderList;

¢ import maspack.util.DoubleInterval;

7 import artisynth.core.femmodels.FemModel.Ranging;

s import artisynth.core.femmodels.FemModel.SurfaceRender;
o import artisynth.core.renderables.ColorBar;
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Figure 6.18: FemBeamColored model loaded into ArtiSynth.

10
1 public class FemBeamColored extends FemBeam {

»

13 @Override

14 public void build(String[] args) throws IOException ({
15 super.build(args);

17 // Show stress on the surface
18 fem.setSurfaceRendering (SurfaceRender.Stress);
19 fem.setStressPlotRanging (Ranging.Auto) ;

01 // Create a colorbar
2 ColorBar cbar = new ColorBar () ;
23 cbar.setName ("colorBar");
cbar.setNumberFormat ("%.2£f"); // 2 decimal places
25 cbar.populateLabels (0.0, 1.0, 10); // Start with range [0,1], 10 ticks
26 cbar.setLocation (=100, 0.1, 20, 0.8);
addRenderable (cbar) ;

31 @Override
) public void prerender (RenderList 1list) {
3 super.prerender (list);
34 // Synchronize color bar/values in case they are changed. Do this *after*
// super.prerender (), in case values are changed there.
ColorBar cbar = (ColorBar) (renderables () .get ("colorBar"));
37 cbar.setColorMap (fem.getColorMap () ) ;
DoubleInterval range = fem.getStressPlotRange () ;

39 cbar.updatelabels (range.getLowerBound (), range.getUpperBound ());

6.12.2 Example: rendering contact pressures

As mentioned in Section 4.6.5, it is possible to render the contact pressure involved in the collision between two bodies,
and this is often particularly desirable in the case of FEM models. A simple example is defined in

artisynth.demos.tutorial.ContactPressureRender
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which sets the drawColorMap property of the collision behavior to CONTACT_PRESSURE in order to display a color map
of the contact pressure. The example is similar to that of Section 4.6.7, which shows how to render penetration depth.

The caveats about color map rendering described in Section 4.6.5 apply. In particular, the resolution of the color
map is limited by the resolution of the collision mesh for the collidable on which the map is drawn, and so the
application should ensure that this is sufficiently fine. Also, to allow the map to blend properly with the rest of the

collidable, the color corresponding to O should match the default face color for the collidable.

Figure 6.19: ContactPressureRender showing the contact pressure as a spherical FEM model falls onto an FEM sheet.

The color map is drawn on the sheet model, with redder values indicating greater pressure.

The complete source code is shown below:

I package artisynth.demos.tutorial;
; import java.awt.Color;

s import artisynth.core.femmodels.FemFactory;

¢ import artisynth.core.femmodels.FemModel.SurfaceRender;
import artisynth.core.femmodels.FemModel3d;

¢ import artisynth.core.femmodels.FemNode3d;

v import artisynth.core.materials.LinearMaterial;

10 import artisynth.core.mechmodels.CollisionBehavior;

11 import artisynth.core.mechmodels.CollisionBehavior.ColorMapType;

2 import artisynth.core.mechmodels.CollisionManager;

13 import artisynth.core.mechmodels.MechModel;

4 import artisynth.core.renderables.ColorBar;

5 import artisynth.core.util.ScalarRange;

16 import artisynth.core.workspace.RootModel;

7 import maspack.matrix.RigidTransform3d;

s import maspack.render.RenderList;

9 import maspack.render.RenderProps;
import maspack.render.color.JetColorMap;

» public class ContactPressureRender extends RootModel {

24 double density = 1000;
double EPS = 1e-10;

27 // Convenience method for creating colors from [0-255] RGB values
28 private static Color createColor (int r, int g, int b) {
29 return new Color (r/255.0f, g/255.0f, b/255.0f);
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private static Color CREAM = createColor (255, 255, 200);
private static Color BLUE_GRAY = createColor (153, 153, 255);

// Creates and returns a ColorBar renderable object

public ColorBar createColorBar () {
ColorBar cbar = new ColorBar () ;
cbar.setName ("colorBar");
cbar.setNumberFormat ("%.2f"); // 2 decimal places
cbar.populatelabels (0.0, 1.0, 10); // Start with range [0,1], 10 ticks

cbar.setLocation (-100, 0.1, 20, 0.8);

cbar.setTextColor (Color.WHITE);

addRenderable (cbar) ; // add to root model’s renderables
return cbar;

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

// create FEM ball

FemModel3d ball = new FemModel3d ("ball");

ball.setDensity (density);

FemFactory.createIcosahedralSphere (ball, /*radius=*/0.1, /*ndivs=*/2, 1);
ball.setMaterial (new LinearMaterial (100000, 0.4));

mech.addModel (ball);

// create FEM sheet
FemModel3d sheet = new FemModel3d ("sheet");
sheet.setDensity (density);
FemFactory.createHexGrid (

sheet, /*wx*/0.5, /*wy*/0.3, /*wz*/0.05, /*nx*/20, /*ny*/10, /*nz*/1);
sheet.transformGeometry (new RigidTransform3d (0, 0, -0.2));
sheet.setMaterial (new LinearMaterial (500000, 0.4));
sheet.setSurfaceRendering (SurfaceRender.Shaded);
mech.addModel (sheet);

// fix the side nodes of the surface
for (FemNode3d n : sheet.getNodes()) {
double x = n.getPosition () .x;
if (Math.abs (x-(-0.25)) <= EPS || Math.abs(x-(0.25)) <= EPS) {
n.setDynamic (false);

// create and set a collision behavior between the ball and surface.
CollisionBehavior behav = new CollisionBehavior (true, 0);
behav.setDrawColorMap (ColorMapType.CONTACT_PRESSURE) ;
behav.setColorMapCollidable (1); // show color map on collidable 1 (sheet);
behav.setColorMapRange (new ScalarRange (0, 15000.0));
mech.setCollisionBehavior (ball, sheet, behav);

CollisionManager cm = mech.getCollisionManager ();
// set rendering properties in the collision manager:
RenderProps.setVisible (cm, true); // enable collision rendering
// create a custom color map for rendering the penetration depth
JetColorMap map = new JetColorMap () ;
map.setColorArray (
new Color[] ¢{

CREAM, // no penetration

createColor (255, 204, 153),

createColor (255, 153, 102),

createColor (255, 102, 51),

createColor (255, 51, 0),
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95 createColor (204, 0, 0), // most penetration

96 }) i
97 cm.setColorMap (map);

99 // create a separate color bar to show color map pressure values
100 ColorBar cbar = createColorBar () ;

101 cbar.updateLabels (0, 15000);

102 cbar.setColorMap (map);

103

104 // set color for all bodies

105 RenderProps.setFaceColor (mech, CREAM);

106 RenderProps.setlLineColor (mech, BLUE_GRAY);

107 }

108}

To begin, the demo creates two FEM models: a spherical ball (lines 52-56) and a rectangular sheet (lines 59-66), and
then fixes the end nodes of the sheet (lines 69-74). Surface rendering is enabled for the sheet (line 65), but not for the
ball, in order to improve the visibility of the color map.

Lines 77-81 create and set a collision behavior between the two models, with the drawColorMap property set to
CONTACT_PRESSURE. Because for this example we want the color map to be drawn on the second collidable (the sheet),
we set the setColorMapCollidable property to 1 (line 79); otherwise, the default value of 0 would cause the color map to
be drawn on the first collidable (the ball). (Alternatively, we could have simply defined the collision behavior as being
between the surface and the ball instead of the ball and the sheet.) The color map range is explicitly set to lie between
[0,15000] (line 80); this is in contrast to the example in Section 4.6.7, where the range is auto-updated on each step. The
color range is also set explicitly in the behavior, but if multiple objects were colliding it would likely be preferable to set
it in the collision manager (with the behavior’s value left as null) to ensure a uniform render range across all collisions.
Other rendering properties are set for the collision manager at lines 83-97, including a custom color map that varies
between CREAM (the color of the mesh) for no pressure and dark red for maximum pressure.

At line 100, a color bar is created and added to the scene, using the method createColorBar () (lines 36-45), to
explicitly show the pressure that corresponds to the different colors. The color bar is given the same color map and value
range used to render the pressure. Finally, default face and line colors for all components in the model are set at lines
105-106.

To run this example in ArtiSynth, select All demos > tutorial > ContactPressureRender from the Models menu. When
run, the FEM models will collide and render the contact pressure on the sheet, as shown in Figure 6.19.
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Chapter 7

Muscle Wrapping and Via Points

ArtiSynth provides support for multipoint springs and muscles, which are similar to axial springs and muscles (Sec-
tions 3.1.1 and 4.4), except that they can contain multiple via points and also wrap around obstacles. This allows the
associated force directions to vary in response to obstacles and constraints in the model, which is particularly important
in biomechanical models where point-to-point muscles need to wrap around anatomical structures such as bones. A
schematic illustration is shown in Figure 7.1, where a single spring connects points pg and p», while passing through a
single via point p; and wrapping around obstacles W; and W,. Figure 7.2 shows two examples involving a rigid body
with fixed via points and a spring wrapping around three rigid bodies.

Figure 7.1: Schematic illustration of a multipoint spring passing through a via point p; and wrapping around two obsta-
cles Wi and W,. The points Ay, By and A;, B denote the first and last locations where W; and W, make contact with the
spring.

Figure 7.2: Left: A multipoint spring with two via points rigidly fixed to a box-shaped rigid body. Right: A multipoint
spring wrapped around three obstacles.

As with axial springs and muscles, multipoint springs and muscles must have two points to denote their beginning and
end. In between, they can have any number of via points, which are fixed locations which the spring must pass through
in the specified order. Any ArtiSynth Point object may be specified as a via point, including particles and markers. The
purpose of the via point is generally to direct the spring along some particular path. In particular, the path directions
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before and after a via point will generally be different, and forces acting on the via point will be determined by the
tension in the spring (or muscle) acting along these two different directions.

Figure 7.3: A multipoint spring with a single via point p;, showing the unit direction vectors uq and up immediately
before and after.

Conceptually, the spring or muscle “slides” through its via points, which act analogously to virtual three dimen-
sional pulleys. In particular, the proportional distance between via points does not remain fixed.

The tension f within the spring or muscle is computed from its material, using the relation f(I,/,a) described in
Sections 3.1.1 and 4.4.1, where [ now denotes the entire length of the spring as it passes through the via points and
wraps around obstacles. The total force f acting on each via point is then given by

f=71 (ug—uy)
where up and uy are unit vectors giving the spring’s direction immediately after and before the via point (Figure 7.3).

Multipoint springs can also be made to wrap around one or more wrappable objects. Unlike via points, wrappable
objects can occur in any order along the spring and wrapping only occurs when the spring and the object actually
collide. Any ArtiSynth object that implements Wrappable can be used as a wrapping object (currently, only RigidBody
objects implement Wrappable). The forces acting on a wrappable are those generated by the forces f4 and fp acting on
the points A and B where the spring makes and leaves contact with the it (Figure 7.4). These forces are given by

fA:_qu7 fB:fuBa

where up are uy are unit vectors giving the spring’s direction immediately before A and after B. Points A and B are
collectively known as the A/B points.

Figure 7.4: A multipoint spring wrapping around a single obstacle W, with initial and final contact at points A and B,
and associated unit direction vectors uy and ug.

7.1 Via Points

Multipoint springs and muscles are implemented by the classes MultiPointSpring and MultiPointMuscle, respectively.
The relationship between MultiPointSpring and MultiPointMuscle is the same as that between AxialSpring and Muscle:
The latter is a subclass of the former, and allows the creation of active tension forces in response to its excitation

property.
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An application allocates one of these components, sets the appropriate material properties for the tension forces, and
then adds points and wrappable objects as desired.

Points can be added, queried, and removed using the methods

void addPoint (Point pnt)

Point getPoint (int idx)

int numPoints ()

boolean removePoint (Point pnt)

As with AxialSpring, there must be at least two points anchoring the beginning and end of the spring. Any additional
points will be via points.

Figure 7.5: A multipoint spring with two segments, separated by a blue via point (top), with the rightmost segment set to
be wrappable so that it can wrap around a cylinder. The right image shows the wrappable segment’s knots.

The section of a multipoint spring between any two adjacent points is known as a segment. By default, each segment
forms a straight line between the two points and does not interact with any wrappable obstacles. To interact with
wrappables, a segment needs to be declared wrappable, as described in Section 7.2.

Spring construction is illustrated by the following code fragment:

MultiPoint spring = new MultiPointSpring ();

spring.setMaterial (new LinearAxialMaterial (stiffness, damping));
spring.addPoint (p0); // start point

spring.addPoint (pl); // via point

spring.addPoint (p2); // via point

spring.addPoint (p3); // stop point

This creates a new MultiPointSpring and sets its material to a simple linear material with a specified stiffness and
damping. Four points p0, pl, p2, p3 are then added, forming a start point, two via points, and a stop point.

7.1.1 Example: a muscle with via points

A simple example of a muscle containing via points is given by artisynth.demos.tutorial.ViaPointMuscle. It
consists of a MultiPointMuscle passing through two via points attached to a block. The code is given below:

package artisynth.demos.tutorial;
3 ilmport java.awt.Color;

s import artisynth.core.gui.ControlPanel;
¢ import artisynth.core.materials.SimpleAxialMuscle;
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Figure 7.6: ViaPointMuscle model loaded into ArtiSynth.

artisynth.core.mechmodels.FrameMarker;
artisynth.core.mechmodels .MechModel;
artisynth.core.mechmodels.MultiPointMuscle;
artisynth.core.mechmodels.Particle;
artisynth.core.mechmodels.RigidBody;
artisynth.core.workspace.RootModel;
maspack.matrix.Point3d;
maspack.render.RenderProps;

class ViaPointMuscle extends RootModel {

protected static double size = 1.0;

public void build (String[] args) {

MechModel mech = new MechModel ("mech");
addModel (mech);

mech.setFrameDamping (1.0); // set damping parameters
mech.setRotaryDamping (0.1);

create block to which muscle will be attached
RigidBody block = RigidBody.createBox (

"block", /*widths=*/1.0, 1.0, 1.0, /*density=*/1.0);
mech.addRigidBody (block);

create muscle start and end points
Particle p0 = new Particle (/*mass=*/0.1, /*x,y,z=*/-3.0,
p0.setDynamic (false);
mech.addParticle (p0);
Particle pl = new Particle (/*mass=*/0.1, /*x,y,z=*/3.0, 0
pl.setDynamic (false);
mech.addParticle (pl);

create markers to serve as via points

FrameMarker via0 = new FrameMarker ();
mech.addFrameMarker (via0, block, new Point3d (-0.5, 0, O.
FrameMarker vial = new FrameMarker ();

mech .addFrameMarker (vial, block, new Point3d (0.5, 0, 0.5

create muscle, set material, and add points
MultiPointMuscle muscle = new MultiPointMuscle ();
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48 muscle.setMaterial (new SimpleAxialMuscle (/*k=*/1, /*d=*/0, /*maxf=*/10));
49 muscle.addPoint (p0);

50 muscle.addPoint (via0);

51 muscle.addPoint (vial);

52 muscle.addPoint (pl);

mech.addMultiPointSpring (muscle);

55 // set render properties

56 RenderProps.setSphericalPoints (mech, 0.1, Color.WHITE);
57 RenderProps.setCylindricallines (mech, 0.03, Color.RED);
58

59 createControlPanel () ;

60 }

61

62 private void createControlPanel () {

63 // creates a panel to adjust the muscle excitation

64 ControlPanel panel = new ControlPanel ("options", "");

65 panel.addWidget (this, "models/mech/multiPointSprings/0:excitation");

66 addControlPanel (panel);

Lines 21-30 of the build () method create a MechModel and add a simple rigid body block to it. Two non-dynamic
points (p0 and pl) are then created to act as muscle end points (lines 33-38), along with two markers (via0 and vial)
which are attached to the block to act as via points (lines 41-44). The muscle itself is created by lines 42-53, with

the end points and via points being added in order from start to end. The muscle material is a SimpleAxialMuscle,
which computes tension according to the simple linear formula (4.1) described in Section 4.4.1. Lines 56-57 set render
properties for the model, and line 59 creates a control panel (Section 5.1) that allows the muscle excitation property to be
interactively controlled.

To run this example in ArtiSynth, select All demos > tutorial > ViaPointMuscle from the Models menu. The model should
load and initially appear as in Figure 7.6. Running the model will cause the block to fall and swing about under gravity,
while changing the muscle’s excitation in the control panel will vary its tension.

7.2 Obstacle Wrapping

As mentioned in Section 7.1, segments between pairs of via points can be declared wrappable, allowing them to interact
with wrappable obstacles. This can be done as via points are added to the spring, using the methods

void setSegmentWrappable (int numKnots)
void setSegmentWrappable (int numKnots, Point3d[] initialPoints)

These make wrappable the next segment to be created (i.e., the segment between the most recently added point and the
next point to be added), with numKnot s specifying the number of knots that should be used to implement the wrapping.
Knots are points that divide the wrappable segment into a piecewise linear curve, and are used to check for collisions
with the wrapping surfaces (Figure 7.5). The argument initialPoints used by the second method is an optional
argument which, if non-null, can be used to specify intermediate guide points to give the segment an initial path around
around any obstacles (for more details, see Section 7.4).

Each wrappable segment will be capable of colliding with any of the wrappable obstacles that are known to the spring.
Wrappables can be added, queried and removed using the following methods:

void addWrappable (Wrappable wrappable)
Wrappable getWrappable (int idx)

int numWrappables ()

boolean removeWrappable (Wrappable wrappable)

Unlike points, however, there is no implied ordering and wrappables can be added in any order and at any time during
the spring’s construction.

Wrappable spring construction is illustrated by the following code fragment:
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MultiPoint spring = new MultiPointSpring ();

spring.setMaterial (new LinearAxialMaterial (stiffness, damping));
spring.addPoint (p0); // start point

spring.setSegmentWrappable (50); // wrappable segment

spring.addPoint (pl); // via point

spring.addPoint (p2); // end point

spring.addWrappable (wrappablel);

spring.addWrappable (wrappable2);

spring.updateWrapSegments (); // ‘‘shrink wrap’’ spring to the obstacles

This creates a new MultiPointSpring with a linear material and three points p0, p1, and p2, forming a start point,

via point, and stop point. The segment between p0 and p1 is set to be wrappable with 50 knot points. Two wrappable
obstacles are added next, each of which will interact with the p0-p1 segment, but not with the non-wrappable pl-p2
segment. Finally, updateWrapSegments () is called to do an initial solve for the wrapping segments, so that they will be
“pulled tight” around any obstacles before simulation begins.

It is also possible to make a segment wrappable after spring construction, using the method

void setSegmentWrappable (int segIdx, int numKnots, Point3d[] initialPoints)

where segIdx identifies the segment between points segIdx and segIdx+ 1.

How many knots should be specified for a wrappable segment? Enough so that the resulting piecewise-linear approxi-
mation to the wrapping curve is sufficiently "smooth", and also enough to adequately detect contact with the obstacles
without passing through them. Values between 50 and 100 generally give good results. Obstacles that are small with
respect to the segment length may necessitate more knots. Making the number of knots very large will slow down the
computation (although the computational cost is only O(n) with respect to the number of knots).

At the time of this writing, ArtiSynth implements two types of Wrappable object, both of which are instances of
RigidBody. The first are specialized analytic subclasses of RigidBody, listed in Table 7.1, which define specific
geometries and use analytic methods for the collision handling with the knot points. The use of analytic methods allows
for greater accuracy and (possibly) computational efficiency, and so because of this, these special geometry wrappables
should be used whenever possible.

Wrappable Description

RigidCylinder A cylinder with a specified height and radius
RigidSphere A sphere with a specified radius
RigidEllipsoid  An ellipsoid with specified semi-axis lengths
RigidTorus A torus with specified inner and outer radii

Table 7.1: Specialized analytic subclasses of RigidBody

The second are general rigid bodies which are not analytic subclasses, and for which the wrapping surface is determined
directly from the geometry of its collision mesh returned by getCollisionMesh(). (Typically the collision mesh corre-
sponds to the surface mesh, but it is possible to specify alternates; see Section 3.2.8.) This is useful in that it permits
wrapping around arbitrary mesh geometries (Figure 7.7), but in order for the wrapping to work well, these geometries
should be smooth, without sharp edges or corners. Wrapping around general meshes is implemented using a quadrati-
cally interpolated signed-distance grid (Section 4.7), and the resolution of this grid also affects the effective smoothness
of the wrapping surface. More details on this are given in Section 7.3.

7.2.1 Example: wrapping around a cylinder

A example showing multipoint spring wrapping is given by artisynth.demos.tutorial.CylinderWrapping. It
consists of a MultiPointSpring passing through a single via point, with both segments on either side of the point made
wrappable. Two analytic wrappables are used: a fixed RigidCylinder, and a moving RigidEllipsoid attached to the
end of the spring. The code, excluding include directives, is given below:

i public class CylinderWrapping extends RootModel {

args) {
("mech") ;

public void build
4 MechModel mech =

(String[]
new MechModel
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Figure 7.7: Muscle strands wrapped around general bone-shaped meshes: a humerus (left), and a pelvis (right)

Figure 7.8: CylinderWrapping model loaded into ArtiSynth.

addModel (mech);

7 mech.setFrameDamping (100.0); // set damping parameters
8 mech.setRotaryDamping (10.0);

10 double density = 150;

12 Particle via0 = new Particle (/*mass=*/0, /*x,y,z=*/-1.0, 0.0, 4.0);
13 via0.setDynamic (false);

14 mech.addParticle (via0);

15 Particle pl = new Particle (/*mass=*/0, /*x,y,z=*/-3.0, 0.0, 0.0);

16 pl.setDynamic (false);

17 mech.addParticle (pl);

19 // create cylindrical wrapping object

20 RigidCylinder cylinder = new RigidCylinder (

21 "cylinder", /*rad=*/0.5, /*height=*/3.5, density, /*nsides=*/50);
2 cylinder.setPose (new RigidTransform3d (0, 0, 1.5, 0, 0, Math.PI/2));
23 cylinder.setDynamic (false);




24 mech.addRigidBody (cylinder);

2% // create ellipsoidal wrapping object

27 double rad = 0.6;

28 RigidEllipsoid ellipsoid = new RigidEllipsoid (

29 "ellipsoid", /*a,b,c=*/rad, 2*rad, rad, density, /*nslices=*/50);
30 ellipsoid.transformGeometry (new RigidTransform3d (3, 0, 0));

31 mech.addRigidBody (ellipsoid);

33 // attach a marker to the ellipsoid

34 FrameMarker p0 = new FrameMarker ();

35 double halfRoot2 = Math.sqrt (2)/2;

36 mech.addFrameMarker (

37 p0, ellipsoid, new Point3d (-rad*halfRoot2, 0, rad*halfRoot2));

39 // enable collisions between the ellipsoid and cylinder

40 mech.setCollisionBehavior (cylinder, ellipsoid, true);

41

) // create the spring, making both segments wrappable with 50 knots
43 MultiPointSpring spring = new MultiPointSpring ("spring", 300, 1.0, 0);
44 spring.addPoint (p0);

45 spring.setSegmentWrappable (50);

46 spring.addPoint (vial);

47 spring.setSegmentWrappable (50);

48 spring.addPoint (pl);

49 spring.addWrappable (cylinder);

50 spring.addWrappable (ellipsoid);

51 mech.addMultiPointSpring (spring);

53 // set various rendering properties

54 RenderProps.setSphericalPoints (mech, 0.1, Color.WHITE);

55 RenderProps.setSphericalPoints (pl, 0.2, Color.BLUE);

56 RenderProps.setSphericalPoints (spring, 0.1, Color.GRAY);

57 RenderProps.setCylindricallines (spring, 0.03, Color.RED);

58

59 createControlPanel (spring);

62 private void createControlPanel (MultiPointSpring spring) {

63 ControlPanel panel = new ControlPanel ("options", "");
64 // creates a panel to control knot and A/B point visibility
65 panel.addWidget (spring, "drawKnots");

66 panel.addWidget (spring, "drawABPoints");
67 addControlPanel (panel);

Lines 4-17 of the build () method create a MechModel with two fixed particles via0 and p1 to be used as via and stop
points. Next, two analytic wrappables are created: a RigidCylinder and a RigidEllipsoid, with the former fixed in
place and the latter connected to the start of the spring via the marker p0 (lines 20-37). Collisions are enabled between
these two wrappables at line 40. The spring itself is created (lines 44-52), using set SegmentWrappable () to make

the segments (p0, via0) and (via0, pl) wrappable with 50 knots each, and addWrappable () to make it aware of the
two wrappables. Finally, render properties at set (lines 55-58), and a control panel (Section 5.1) is added that allows the
spring’s drawKnots and drawABPoints properties to be interactively set.

To run this example in ArtiSynth, select All demos > tutorial > CylinderWrapping from the Models menu. The model
should load and initially appear as in Figure 7.8. Running the model will cause the ellipsoid to fall and the spring to
wrap around the cylinder. Using the pull tool (Section “Pull Manipulation” in the ArtiSynth User Interface Guide) on the
ellipsoid can cause additional motions and make it also collide with the spring. Selecting drawKnots or drawABPoints in
the control panel will cause the spring to render its knots and/or A/B points.
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7.3 General Surfaces and Distance Grids

As mentioned in Section 7.2, wrapping around general mesh geometries is implemented using a quadratically interpo-
lated signed distance grid. By default, for a rigid body, this grid is generated automatically from the body’s collision
mesh (as returned by getCollisionMesh (); see Section 4.6.2).

Using a distance grid allows very efficient collision handling between the body and the wrap segment knots. However, it
also means that the true wrapping surface is not actually the collision mesh itself, but instead the zero-valued isosurface
associated with quadratic grid interpolation. Well-behaved wrapping behavior requires that this isosurface be smooth
and free of sharp edges, so that knot motions remain relatively smooth as they move across it. Quadratic interpolation
helps with this, which is the reason for employing it. Otherwise, one should try to ensure that (a) the collision mesh
from which the grid is generated is itself smooth and free of sharp edges, and (b) the grid has sufficient resolution to not
introduce discretization artifacts.

Muscle wrapping is often performed around structures such as bones, for which the representing surface mesh is

often insufficiently smooth (especially if segmented from medical image data). In some cases, the distance grid’s
quadratic interpolation may provide sufficient smoothing on its own; to determine this, one should examine the quadratic
isosurface as described below. In other cases, it may be necessary to explicitly smooth the mesh itself, either externally
or within ArtiSynth using the LaplacianSmoother class, which can apply iterations of either Laplacian or volume-
preserving Taubin smoothing, via the method

LaplacianSmoother .smooth (mesh, numi, lam, mu);

Here numi is the number of iterations and tau and mu are the Taubin parameters. Setting 1am = 1 and mu = O results in
traditional Laplacian smoothing. If this causes the mesh to shrink more than desired, one can counter this by setting tau
and mu to values used for Taubin smoothing, as described in [18].

If the mesh is large (i.e., has many vertices), then smoothing it may take noticeable computational time. In such
cases, it is generally best to simply save and reuse the smoothed mesh.

By default, if a rigid body contains only one polygonal mesh, then its surface and collision meshes (returned by
getSurfaceMesh() and getCollisionMesh(), respectively) are the same. However, if it is necessary to significantly smooth
or modify the collision mesh, for wrapping or other purposes, it may be desirable to use different meshes for the surface
and collision. This can be done by making the surface mesh non-collidable and adding an additional mesh that is
collidable, as discussed in Section 3.2.8 as illustrated by the following code fragment:

PolygonalMesh surfaceMesh;
PolygonalMesh wrappingMesh;

// ... initialize surface and wrapping meshes

// create the body from the surface mesh
RigidBody body = RigidBody.createFromMesh (
"body", mesh, /*density=*/1000, /*scale=*/1.0);

// set the surface mesh to be non-collidable, and add the wrapping mesh as
// collidable but not having mass
body.getSurfaceMeshComp () .setIsCollidable (false);
RigidMeshComp wcomp = body.addMesh (

wrappingMesh, /*hasMass=*/false, /*collidable=*/true);
RenderProps.setVisible (wcomp, false); // hide the wrapping mesh

Here, to ensure that the wrapping mesh does not to contribute to the body’s inertia, its hasMass property is set to false.

Although it is possible to specify a collision mesh that is separate from the surface mesh, there is currently no way
to specify separate collision meshes for wrapping and collision handling. If this is desired for some reason, then one
alternative is to create a separate body for wrapping purposes, and then attach it to the main body, as described in
Section 7.5.

To verify that the distance grid’s quadratic isosurface is sufficiently smooth for wrapping purposes, it is useful to
visualize the both distance grid and its isosurface directly, and if necessary adjust the resolution used to generate the
grid. This can be accomplished using the body’s DistanceGridComp, which is a subcomponent named distanceGrid
and which may be obtained using the method
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Figure 7.9: TalusWrapping model, with a dragger being used to move p0 (left), and the knots visible and grid visible
with restricted range (right).

DistanceGridComp getDistanceGridComp ()

A DistanceGridComp exports a number of properties that can be used to control the grid’s visualization, resolution, and
fit around the collision mesh. These properties are described in detail in Section 4.7, and can be set either in code using
their set/get accessors, or interactively using custom control panels or by selecting the grid component in the GUI and
choosing Edit properties ... from the right-click context menu.

When rendering the mesh isosurface, it is usually desirable to also disable rendering of the collision meshes

within the rigid body. For convenience, this can be accomplished by setting the body’s gridSurfaceRendering
property to true, which will cause the grid isosurface to be rendered instead of the body’s meshes. The isosurface
type will be that indicated by the grid component’s surfaceType property (which should be QUADRATIC for the
quadratic isosurface), and the rendering will occur independently of the visibility settings for the meshes or the grid
component.

7.3.1 Example: wrapping around a bone

An example of wrapping around a general mesh is given by artisynth.demos.tutorial.TalusWrapping. It consists
of a MultiPointSpring anchored by two via points and wrapped around a rigid body representing a talus bone. The code,
with include directives omitted, is given below:

i public class TalusWrapping extends RootModel ({
private static Color BONE = new Color (l1f, 1f, 0.8f);
private static double DTOR = Math.PI/180.0;

public void build (String[] args) {

MechModel mech = new MechModel ("mech");
addModel (mech);

1 // read in the talus bone mesh

12 PolygonalMesh mesh = null;

13 try {

14 mesh = new PolygonalMesh (

15 PathFinder.findSourceDir (this) + "/data/TalusBone.obj");
16 }

17 catch (Exception e) {

18 System.out.println ("Error reading mesh:" + e);
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68

69

// smooth the mesh using 20 iterations of regular Laplacian smoothing
LaplacianSmoother .smooth (mesh, /*count=*/20, /*lambda=*/1, /*mu=*/0);
// create the talus body from the mesh
RigidBody talus = RigidBody.createFromMesh (
"talus", mesh, /*density=*/1000, /*scale=*/1.0);
mech.addRigidBody (talus);
talus.setDynamic (false);
RenderProps.setFaceColor (talus, BONE);

// create start and end points for the spring

Particle p0 = new Particle (/*mass=*/0, /*x,y,z=*/2, 0, 0);
p0.setDynamic (false);

mech.addParticle (p0);

Particle pl = new Particle (/*mass=*/0, /*x,y,z=*/-2, 0, 0);
pl.setDynamic (false);

mech.addParticle (pl);

// create a wrappable spring using a SimpleAxialMuscle material
MultiPointSpring spring = new MultiPointSpring ("spring");
spring.setMaterial (

new SimpleAxialMuscle (/*k=*/0.5, /*d=*/0, /*maxf=*/0.04));
spring.addPoint (p0);
// add an initial point to the wrappable segment to make sure it wraps
// around the bone the right way
spring.setSegmentWrappable (

100, new Point3d[] { new Point3d (0.0, -1.0, 0.0) 1});
spring.addPoint (pl);
spring.addWrappable (talus);
spring.updateWrapSegments (); // update the wrapping path
mech.addMultiPointSpring (spring);

// set render properties

DistanceGridComp gcomp = talus.getDistanceGridComp () ;
RenderProps.setSphericalPoints (mech, 0.05, Color.BLUE); // points
RenderProps.setLineWidth (gcomp, 0); // normal rendering off
RenderProps.setCylindricallines (spring, 0.03, Color.RED); // spring
RenderProps.setSphericalPoints (spring, 0.05, Color.WHITE); // knots

// create a control panel for interactive control
ControlPanel panel = new ControlPanel ();
panel.addWidget (talus, "gridSurfaceRendering");
panel.addWidget (gcomp, "resolution");
panel.addWidget (gcomp, "maxResolution");
panel.addWidget (gcomp, "renderGrid");
panel.addWidget (gcomp, "renderRanges");

(

(

(

panel.addWidget (spring, "drawKnots");
panel.addWidget (spring, "wrapDamping");
addControlPanel panel);

The mesh describing the talus bone is loaded from the file "data/TalusBone.obj" located beneath the model’s source
directory (lines 11-19), with the utility class PathFinder used to determine the file path (Section 2.6). To ensure better
wrapping behavior, the mesh is smoothed using Laplacian smoothing (line 21) before being used to create the rigid
body (lines 23-27). The spring and its anchor points p0 and pl are created between lines 30-49, with the talus added as
a wrappable. The spring contains a single segment which is made wrappable using 100 knots, and initialized with an
intermediate point (line 45) to ensure that it wraps around the bone in the correct way. Intermediate points are described
in more detail in Section 7.4.

Render properties are set at lines 52-56; this includes turning off rendering for grid normals by zeroing the lineWidth
render property for the grid component.

Finally, lines 59-67 create a control panel (Section 5.1) for interactively controlling a variety of properties, including
gridSurfaceRendering for the talus (to see the grid isosurface instead of the bone mesh), resolution, maxResolution,
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renderGrid, and renderRanges for the grid component (to control its resolution and visibility), and drawKnots and
wrapDamping for the spring (to make knots visible and to adjust the wrap damping as described in Section 7.6).

To run this example in ArtiSynth, select All demos > tutorial > TalusWrapping from the Models menu. Since all of the
dynamic components are fixed, running the model will not cause any initial motion. However, while simulating, one can
use the viewer’s graphical dragger fixtures (see the section “Transformer Tools” in the ArtiSynth User Interface Guide)
to move p0 or pl and hence pull the spring across the bone surface (Figure 7.9, left). One can also interactively adjust
the property settings in the control panel to view the grid, isosurface, and knots, and the adjust the grid’s resolution.
Figure 7.9, right, shows the model with renderGrid and drawKnots set to true and renderRanges setto "10:12 * *",

7.4 Initializing the Wrap Path

By default, when a multipoint spring or muscle is initialized (either at the start of the simulation or as a result of calling
updateWrapSegments()), each wrappable segment is initialized to a straight line between its via points. This path is
then adjusted to avoid and wrap around obstacles, using artificial linear forces as described in Section 7.6. The result is
a local shortest path that wraps around obstacles instead of penetrating them. However, in some cases, the initial path
may not be the one desired; instead, one may want it to wrap around obstacles some other way. This can be achieved
by specifying additional intermediate points to initialize the segment as a piecewise linear path which threads its way
around obstacles in the desired manner (Figure 7.10). These are specified using the optional initialPnts argument to
the setSegmentWrappable () methods.

Figure 7.10: By default, the path for each wrappable segment is initialized to a straight line between its via points (dot-
ted line, left), which is then adjusted to wrap around obstacles (solid line, middle). To cause the path to wrap around
obstacles in a different way, it can instead be initialized using a piecewise-linear path defined by intermediate initial
points (dotted line, right), which will then adjust to an alternate configuration.

When initial points are specified, it is recommended to finish construction of the spring or muscle with a call

to updateWrapSegments(). This fits the wrappable segments to their correct path around the obstacles, which

can then be seen immediately when the model is first loaded. On the other hand, by omitting an initial call to
updateWrapSegments (), it is possible to see the initial path as specified by the initial points. This may be useful
to verify that they are in the correct locations.

In some cases, initial points may also be necessary to help ensure that the initial path does not penetrate obstacles.
While obstacle penetration will normally be resolved by the artificial forces described in Section 7.6, this may not
always work correctly if the starting path penetrates an obstacle too deeply.

7.4.1 Example: wrapping around a torus

An example of using initial points is given by artisynth.demos.tutorial.TorusWrapping, in which a spring is
wrapped completely around the inner section of a torus. The primary code for the build method is given below:

1 MechModel mech = new MechModel ("mech");
2 addModel (mech);

4 mech.setFrameDamping (1.0); // set damping parameters
mech.setRotaryDamping (10.0);

7 // create the torus
8 double DTOR = Math.PI/180;
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double innerRad = 0.75;
10 double outerRad = 2.0;
0 RigidTorus torus =
12 new RigidTorus ("torus", outerRad, innerRad, /*density=%*/

13 torus.setPose (

Figure 7.11: TorusWrapping model loaded into ArtiSynth.

new RigidTransform3d (2, 0, -2, 0, DTOR*90,

14 mech.addRigidBody (torus);

16 // create start

18 p0.setDynamic (

and end points for the spring

7 Particle p0 = new Particle (0, /*x,y,z=*/4, 0.2, 2);

false);

19 mech.addParticle (p0);

Particle pl = new Particle (0,

1 pl.setDynamic (

false);

mech.addParticle (pl);

create a wrappable MultiPointSpring between p0 and pl, with

points speci

fied so that it wraps around the torus

MultiPointSpring spring =
new MultiPointSpring (/*k=*/10, /*d=*/0, /*restlen=*/0);

spring.addPoint

(p0);

spring.setSegmentWrappable (
100, new Point3d[] {

31 new Point
new Point
new Point

34 new Point

new Point

36 new Point

37 1)

spring.addPoint

3d (3, 0, 0),
3d (2, 0, -1),
3d (1, 0, 0),
3d (2, 0, 1),
3d (3, 0, 0),
3d (2, 0, -1),
(pl);

spring.addWrappable (torus);

40 spring.updateWrapSegments () ;

‘‘shrink wrap’’

1 mech.addMultiPointSpring (spring);

The mech model is created in the usual way with frame and rotary damping set to 1 and 10 (lines 4-5). The torus
is created using the analytic wrappable RigidTorus (lines 8-14). The spring start and end points p0 and pl are
created at lines (17-22), and the spring itself is created at lines (26-41), with six initial points being specified to

setSegmentirappable () to wrap the spring completely around the torus inner section.

To run this example in ArtiSynth, select All demos > tutorial > TorusWrapping from the Models menu. The torus will

slide along the wrapped spring until it reaches equilibrium.

around torus

1);

0)

)



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidTorus.html

Figure 7.12: PhalanxWrapping model loaded into ArtiSynth.

7.5 Alternate Wrapping Surfaces

Although it common to use the general mesh geometry of a RigidBody as the wrapping surface, situations may arise
where it is desirable to not do this. These may include:

* The general mesh geometry is not sufficiently smooth to form a good wrapping surface;
* Wrapping around the default mesh geometry is not stable, in that it is too easy for the wrap strand to “slip off™;
» Using one of the simpler analytic geometries (Table 7.1) may result in a more efficient computation.
There are a couple of ways to handle this. One, discussed in Section 7.3, involves creating a collision mesh which
is separate from the general mesh geometry. However, that same collision mesh must then also be used for collision
handling (Section 4.5). If that is undesirable, or if multiple wrapping surfaces are needed, then a different approach may
be used. This involves creating the desired wrappable as a separate object and then attaching it to the main RigidBody.
Typically, this wrappable will be created with zero mass (or density), so that it does not alter the effective mass or inertia
of the main body. The general procedure then becomes:

1. Create the main RigidBody with whatever desired geometry and inertia is needed;

2. Create the additional wrappable object(s), usually with zero density/mass;

3. Attach the wrappables to the main body using one of the MechModel attachFrame () methods described in
Section 3.6.3.

7.5.1 Example: wrapping for a finger joint

An example using an alternate wrapping surface is given by artisynth.demos.tutorial.PhalanxWrapping, which
shows a a muscle wrapping around a joint between two finger bones. Because the bones themselves are fairly narrow,
using them as wrapping surfaces would likely lead to the muscle slipping off. Instead, a RigidCylinder is used for the
wrapping and attached to one of the bones. The code, with include directives excluded, is given below:

I public class PhalanxWrapping extends RootModel {

private static Color BONE = new Color (l1f, 1f, 0.8f);
4 private static double DTOR = Math.PI/180.0;

private RigidBody createBody (MechModel mech, String name, String fileName) ({
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7 // creates a bone from its mesh and adds it to a MechModel

8 String filePath = PathFinder.findSourceDir (this) + "/data/" + fileName;
9 RigidBody body = RigidBody.createFromMesh (

10 name, filePath, /*density=*/1000, /*scale=*/1.0);

1 mech.addRigidBody (body);

12 RenderProps.setFaceColor (body, BONE);

13 return body;

16 public void build (String[] args) {

18 MechModel mech = new MechModel ("mech");
19 addModel (mech);

21 // create the two phalanx bones, and offset them

22 RigidBody proximal = createBody (mech, "proximal", "HP3ProximalLeft .obj");
23 RigidBody distal = createBody (mech, "distal", "HP3MiddleLeft .obj");

24 distal.setPose (new RigidTransform3d (0.02500, 0.00094, -0.03979));

26 // make the proximal phalanx non dynamic; add damping to the distal

27 proximal.setDynamic (false);

28 distal.setFrameDamping (0.03);

30 // create a revolute joint between the bones
31 RigidTransform3d TJW =

32 new RigidTransform3d (0.018, 0, -0.022, 0, 0, -DTOR*90) ;

33 HingeJoint joint = new HingeJoint (proximal, distal, TJW);

34 joint.setShaftLength (0.02); // render joint as a blue cylinder
35 RenderProps.setFaceColor (joint, Color.BLUE) ;

36 mech.addBodyConnector (joint);

38 // create markers for muscle origin and insertion points

39 FrameMarker origin = mech.addFrameMarkerWorld (

40 proximal, new Point3d (0.0098, -0.0001, -0.0037));

41 FrameMarker insertion = mech.addFrameMarkerWorld (

) distal, new Point3d (0.0293, 0.0009, -0.0415));

43

44 // create a massless RigidCylinder to use as a wrapping surface and
45 // attach it to the distal bone

46 RigidCylinder cylinder = new RigidCylinder (

47 "wrapSurface", /*rad=*/0.005, /*h=*/0.04, /*density=*/0, /*nsegs=*/32);
48 cylinder.setPose (TJW);

49 mech.addRigidBody (cylinder);

50 mech.attachFrame (cylinder, distal);

51

5 // create a wrappable muscle using a SimpleAxialMuscle material

53 MultiPointSpring muscle = new MultiPointMuscle ("muscle");

54 muscle.setMaterial (

55 new SimpleAxialMuscle (/*k=*/0.5, /*d=*/0, /*maxf=*/0.04));

56 muscle.addPoint (origin);

57 // add an initial point to the wrappable segment to make sure it wraps
S8 // around the cylinder the right way

59 muscle.setSegmentWrappable (

60 50, new Point3d[] { new Point3d (0.025, 0.0, -0.02) });

61 muscle.addPoint (insertion);

62 muscle.addWrappable (cylinder);

63 muscle.updateWrapSegments (); // ‘‘shrink wrap’’ around cylinder

64 mech.addMultiPointSpring (muscle);

65

66 // set render properties

67 RenderProps.setSphericalPoints (mech, 0.002, Color.BLUE);

68 RenderProps.setCylindricallines (muscle, 0.001, Color.RED);

69 RenderProps.setFaceColor (cylinder, new Color (200, 200, 230));




The method createBody () (lines 6-14) creates a rigid body from a geometry mesh stored in a file in the directory
“data” beneath the source directory, using the utility class PathFinder used to determine the file path (Section 2.6).

Within the build () method, a MechModel is created containing two rigid bodies representing the bones, proximal and
distal, with proximal fixed and distal free to move with a frame damping of 0.03 (lines 18-28). A cylindrical joint
is then added between the bones, along with markers describing the muscle’s origin and insertion points (lines 31-42).
A RigidCylinder is created to act as a wrapping obstacle and attached to the distal bone in the same location as the
joint (lines 46-50); since it is created with a density of O it has no mass and hence does not affect the bone’s inertia. The
muscle itself is created at lines 53-64, using a SimpleAxialMuscle as a material and an extra initial point specified to
setSegmentWrappable () to ensure that it wraps around the cylinder in the correct way (Section 7.4). Finally, some
render properties are set at lines 67-69.

To run this example in ArtiSynth, select All demos > tutorial > PhalanxWrapping from the Models menu. The model
should load and initially appear as in Figure 7.12. When running the model, one can move the distal bone either by
using the pull tool (Section “Pull Manipulation” in the ArtiSynth User Interface Guide), or selecting the muscle in the
GUI, invoking a property dialog by choosing Edit properties ... from the right-click context menu, and adjusting the
excitation property.

7.6 Tuning the Wrapping Behavior

Wrappable segments are implemented internally using artificial linear elastic forces to draw the knots together and keep
them from penetrating obstacles. These artificial forces are invisible to the simulation: the wrapping segment has no
mass, and the knot forces are used to create what is essentially a first order physics that “shrink wraps” each segment
around the obstacles at the beginning of each simulation step, forming a shortest-distance geodesic curve from which the
wrapping contact points A and B are calculated. This process is now described in more detail.

Assume that a wrappable segment has m knots, indexed by k = 1,...,m, each located at a position x;. Two types of
artificial forces then act on each knot: a wrapping force that pulls it closer to other knots, and contact forces that push it
away from wrappable obstacles. The wrapping force is given by

£k = Ko (Xke1 — 2% +X—1)

where K,, is the wrapping stiffness. To determine the contact forces, we compute, for each wrappable, the knot’s
distance to the surface dj and associated normal direction ny, where d;, < 0 implies that the knot is inside. These
quantities are determined either analytically (for analytic wrappables, Table 7.1), or using a signed distance grid (for
general wrappables, Section 7.3). The contact forces are then given by

—K.dyn, ifd, <0
fc k= .
0 otherwise,
where K, is the contact stiffness.

The total force f; acting on each knot is then given by

fi =f,+ ch,k

where the latter term is the sum of contact forces for all wrappables. If we let x and f denote the aggregate position and
force vectors for all knots, then computing the wrap path involves finding the equilibrium position such that f(x) = 0.
This is done at the beginning of each simulation step, or whenever updateWrapSegments() is called, and is achieved
iteratively using Newton’s method. If x/ and f(x/) denote the positions and forces at iteration j, and

K= ﬁ
Jx
denotes the local force derivative (or “stiffness”), then the basic Newton update is given by
Xt = x/ - K (x).
In practice, to help deal with the nonlinearities associated with contact, we use a damped Newton update,

X =x/ 4+ a(DI—K)~'f(x/), (7.1)
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where D is a constant wrap damping parameter, and o is an adaptively computed step size adjustment. The computation
of (7.1) can be performed quickly, in O(m) time, since K is a block-tridiagonal matrix, and the number of iterations
required is typically small (on the order of 10 or less), particularly since the iterative procedure continues across
simulation steps and so f(x) does not need to be brought to 0 for any given step. The maximum number of Newton
iterations used for each time step iS Npax-

Again, it is important to understand the artificial knot forces f(x) described here are separate from the physical
spring/muscle tension forces f(/,,a) discussed in Sections 3.1.1 and 4.4.1, and only facilitate the computation of
each wrappable segment’s path around obstacles.

The default values for the wrapping parameters are K,, = 1, K. = 10, D = 10, and Npax = 10, and these often give
satisfactory results without the need for modification. However, in some situations the default muscle wrapping may not
perform adequately and it is necessary to adjust these parameters. Problems may include:

* The wrapping path does not settle down and tends to “jump around”. Solutions include increasing the damping
parameter D or the maximum number of wrap iterations N;. For general wrapping surfaces (Section 7.3), one should
also ensure that the surface is sufficiently smooth.

* A wrapping surface is too thin and so the wrapping path “jumps through” it. Solutions include increasing the damping
parameter D, increasing the number of knots in the segment, or decreasing the simulation step size. An alternative
approach is to use an alternative wrapping surface (Section 7.5) that is thicker and better behaved.

Wrapping parameters are exported as properties of MultiPointSpring and MultiPointMuscle, and may be changed
in code (using their set/get accessors), or interactively, either by exposing them through a control panel, or by selecting
the spring/muscle in the GUI and choosing Edit properties ... from the right-click context menu. Property values include:

wrapStiffness Wrapping stiffness K, between knot points (default value 1). Since the wrapping behavior is determined
by the damping to stiffness ratio, it is generally not necessary to change this value.

wrapDamping Damping factor D (default value 10). Increasing this value relative to K, results in wrap path mo-
tions that are smoother and less likely to penetrate obstacles, but which are also less dynamically responsive.
Applications generally work with damping values between 10 and 100 (assuming K, = 1).

contactStiffness Contact stiffness K, used to resolve obstacle penetration (default value 10). It is generally not
necessary to change this value. Decreasing it will increase the distance that knots are permitted to penetrate
obstacles, which may result in a slightly more stable contact behavior.

maxWraplterations Maximum number of Newton iterations Np,x per time step (default value 10). If the wrapping
simulation exhibits instability, particularly with regard to obstacle contact, increasing the number of iterations (to
say 100) may help.

In addition, MultiPointSpring and MultiPointMuscle also export the following properties to control the rendering of
knot and A/B points:

drawKnots If true, renders the knot points in each wrappable segment. This can be useful to visualize the knot density.
Knots are rendered using the style, size, and color given by the pointStyle, pointRadius, pointSize, and pointColor
values of the spring/muscle’s render properties.

drawABPoints If true, renders the A/B points. These are the first and last points of contact that a wrap segment makes
with each wrappable, and correspond to the points where the spring/muscle’s tension acts on that wrappable
(Section 7 and Figure 7.4). A/B points are rendered using the style and size given by the pointStyle, pointRadius
(x1.2) and pointSize values of the spring/muscle’s render properties, and the color given by the ABPointColor

property.
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Chapter 8

Skinning

A useful technique for creating anatomical and biomechanical models is to attach a passive mesh to an underlying set of
dynamically active bodies so that it deforms in accordance with the motion of those bodies. ArtiSynth allows meshes to
be attached, or “skinned”, to collections of both rigid bodies and FEM models, facilitating the creation of structures that
are either embedded in, or connect or envelope a set of underlying components. Such approaches are well known in the
computer animation community, where they are widely used to represent the deformable tissue surrounding a “skeleton”
of articulated rigid bodies, and have more recently been applied to biomechanics [12].

Figure 8.1: A skin mesh used to delimit the boundary of the human upper airway, connected to various surrounding
structures including the palate, tongue, and jaw [17].

One application of skinning is to create a continuous skin surrounding an underlying set of anatomical components. For
example, for modeling the human airway, a disparate set of models describing the tongue, jaw, palate and pharynx can
be connected together with a surface skin to form a seamless airtight mesh (Figure 8.1), as described in [17]. This then
provides a uniform boundary for handling air or fluid interactions associated with tasks such as speech or swallowing.

ArtiSynth provides support for “skinning” a mesh over an underlying set of master bodies, consisting of rigid bodies
and/or FEM models, such that the mesh vertices deform in response to changes in the position, orientation and shape of
the master bodies.

8.1 Implementation

This section describes the technical details of the ArtiSynth skinning mechanism. A skin mesh is implemented using
a SkinMeshBody, which contains a base mesh and references to a set of underlying dynamic master bodies. A master
body can be either a Frame (of which RigidBody is a subclass), or a FemModel3d. The positions of the mesh vertices
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(along with markers and other points that can be attached to the skin mesh) are determined by a weighted sum of
influences from each of the m master bodies, such that as the latter move and/or deform, the vertices and attached points
deform as well. More precisely, for each master body k,k € {0,...,m — 1}, let wy be the weighting factor and f;(qx)
the connection function that describes the contribution of body k to the position of the vertices (or attached points) as

a function of its generalized coordinates (. Then if the position of a vertex (or attached point) is denoted by p and its

initial (or base) position is pg, we have
m—1

P=Y wifi(Qr) +wmPo. (8.1)
k=0

The weight w,, in the last term is known as the base weight and describes an optional contribution from the base position

Po. Usually w,, = 0, unless the vertex is not connected to any master bodies, in which case w,, = 1, so that the vertex is

anchored to its initial position.

In general, connection weights wy, are computed based on the distances dj between the vertex (or attached point) and
each master body k. More details on this are given in Sections 8.2 and 8.3.

For Frame master bodies, the connection function is one associated with various rigid body skinning techniques known
in the literature. These include linear, linear dual quaternion, and iterative dual quaternion skinning. Which technique is
used is determined by the frameBlending property of the SkinMeshBody, which can be queried or set in code using the
methods

FrameBlending getFrameBlending ()

void setFrameBlending (FrameBlending blending)
where FrameBlending is an enumerated type defined by SkinMeshBody with the following values:

LINEAR

Linear blending, in which the connection function f;() implements a standard rigid connection between the vertex
and the frame coordinates. Let the frame’s generalized coordinates q; be given by the 3 x 3 rotation matrix R and
translation vector pr describing its pose, with its initial pose given by Ry and pro. The connection function f()
then takes the form

f(R,pr) =RR{ (po — pro) + pr- (8.2)

Linear blending is faster than other blending techniques but is more prone to pinching and creasing artifacts in the
presence of large rotations between frames.

DUAL_QUATERNION_LINEAR

Linear dual quaternion blending, which is more computationally expensive but typically gives better results than
linear blending, and is described in detail as DLB in [5]. Let the frame’s generalized coordinates q; be given by
the dual-quaternion §; (describing both rotation and translation), with the initial pose given by the dual-quaternion

qro- Then define the relative dual-quaternion qy as
Aoa]
4xq
K=o T (8.3)
HZjo(Iqu'o [

where the denominator is formed by summing over all master bodies j which are frames. The connection function
fx() is then given by

£, (6) = @pod; ' — Po, (8.4)

where we note that a dual quaternion multiplied by a position vector yields a position vector.

DUAL_QUATERNION_ITERATIVE

Dual quaternion iterative blending, which is a more complex dual quaternion technique described in detail as
DIB in [5]. The connection function for iterative dual quaternion blending involves an iterative process and is
not described here. It also does not conform to (8.1), because the connection functions f () for the Frame master
bodies do not combine linearly. Instead, if there are r Frame master bodies, there is a single connection function

fwo,. s wr—1,Q0, .., 8r-1) (8.5)

that determines the connection for all of them, given their weighting factors w; and generalized coordinates §;.
Iterative blending relies on two parameters: a blend tolerance, and a maximum number of blend steps, both of
which are controlled by the SkinMeshBody properties DQBlendTolerance and DQMaxBlendSteps, which have
default values of 173 and 3.
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Iterative dual quaternion blending is not completely supported in ArtiSynth. In particular, because of its
complexity, the associated force and velocity mappings are computed using the simpler computations
employed for linear dual quaternion blending. For the examples shown in this chapter, iterative dual
quaternion gives results that are quite close to those of linear dual quaternion blending.

For FEM master bodies, the connection works by tying each vertex (or attached point) to a specific FEM element using
a fixed-length offset vector d that rotates in conjunction with the element. This is illustrated in Figure 8.2 for the case of
a single FEM master body. Starting with the initial vertex position pg, we find the nearest point p.o on the nearest FEM
element, along with the offset vector dg = pg — p.o. The point p.o can be expressed as the weighted sum of the initial
element nodal positions X o,

n—1

Pe0 = Z oX o, (8.6)

j=0
where 7 is the number of nodes and o; represent the (constant) nodal coordinates. As the element moves and deforms,
the element point p, moves with the nodal positions x; according to the same relationship, while the offset vector d
rotates according to d = Rgdy, where R is the rotation of the element’s coordinate frame E with respect to its initial
orientation. The connection function f; () then takes the form

n—1
fk(Xo,...,Xn,l): Z(Xij—I—REd(). (8.7)
=0

RE is determined by computing a polar decomposition F = RgP on the deformation gradient F at the element’s
center. We note that the displacement d is only rotated and so the distance ||d|| = ||dg|| of the vertex from the element
remains constant. If the vertex is initially on or inside the element, then dy = 0 and (8.7) takes the form of a standard
point/element attachment as described in 6.4.3.

Figure 8.2: Illustration of FEM skinning, showing how a position p is tied to an FEM element. Given the initial position
Po, we find the nearest point p.og on the element, along with the offset vector dy = po — peo (left). As the element moves
and deforms, the updated position is obtained fromp = p, + d, where p, deforms with the element, and d rotates in
tandem with its coordinate frame E.

While it is sometimes possible to determine weights «; that control a vertex position outside an element, without
the need for an offset vector d, the resulting vertex positions tend to be very sensitive to element distortions,
particularly when the vertex is located at some distance. Keeping the element-vertex distance constant via an offset
vector usually results in more plausible skinning behavior.

8.2 Creating a skin mesh

As mentioned above, skin meshes within ArtiSynth are implemented using the SkinMeshBody component. Applications
typically create a skin mesh in code according to the following steps:
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1. Create an instance of SkinMeshBody and assign its underlying mesh, usually within the constructor;
2. Add references to the required master bodies;

3. Compute the master body connections

This is illustrated by the following example:

MechModel mech;
PolygonalMesh mesh;

// ... initialize mesh

// create the body with an underlying mesh:
SkinMeshBody skinMesh = new SkinMeshBody (mesh);

// add references to the master bodies:
skinMesh.addMasterBody (rigidBodyl) ;
skinMesh.addMasterBody (rigidBody2);
skinMesh.addMasterBody (femModell);

// compute the weighted connections for each vertex:
skinMesh.computeAllVertexConnections () ;

// add to the MechModel
mech.addMeshBody (skinMesh)

Master body references are added using addMasterBody(). When all the master bodies have been added, the method
computeAllVertexConnections() computes the weighted connections to each vertex. The connection weights wy for each
vertex are determined by a weighting function, based on the distances dj between the vertex and each master body. The
default weighting function is inverse-square weighting, which first computes a set of raw weights wj according to

d>.

wy = —:anm, (8.8)
k

where dpi, = min(d j) is the minimum master body distance, and then normalizes these to determine wy:

W*
k

Wy = <. (8.9)

Ljwj

Other weighting functions can be specified, as described in Section 8.3.

SkinMeshBody provides the following set of methods to set and query its master body configuration:

void addMasterBody (ModelComponent body) // add a master body

int numMasterBodies () // query number of master bodies
boolean hasMasterBody (ModelComponent body) // query master body presence
ModelComponent getMasterBody (int idx) // get a master body by index
RigidTransform3d getBasePose (Frame frame) // query base pose for frame

void setBasePose (Frame frame, RigidTransform3d T) // set base pose for frame

When a Frame master body is added using addMasterBody (), its initial, or base, pose (corresponding to Ry and pro
in Section 8.1) is set from its current pose. If necessary, applications can later query and reset the base pose using the
methods getBasePose () and setBasePose ().

Internally, each vertex is connected to the master bodies by a PointSkinAttachment, which contains a list of
PointSkinAttachment.SkinConnection components describing each master connection. Applications can obtain the
PointSkinAttachment for each vertex using the method

PointSkinAttachment getVertexAttachment (int vidx)

where vidx is the vertex index, which must be in the range 0 to numv-1, with numv the number of vertices as returned by
numVertices (). Methods also exist to query and set each vertex’s base (i.e., initial) position pg:

Point3d getVertexBasePosition (int vidx)

void setVertexBasePosition (int wvidx, Point3d pos)
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Figure 8.3: RigidBodySkinning model loaded into ArtiSynth (left), then run with excitation set to 0.7 (middle). The
right image shows the result of changing the frameBlending property from LINEAR to DUAL_QUATERNION_LINEAR

8.2.1 Example: skinning over rigid bodies

An example of skinning a mesh over two rigid bodies is given by artisynth.demos.tutorial .RigidBodySkinning.
It consists of a SkinMeshBody placed around two rigid bodies connected by a hinge joint to form a toy “arm”, with a
Muscle added to move the lower body with respect to the upper. The code for the build () method is given below:

public void build (String[] args) throws IOException ({
2 MechModel mech = new MechModel ("mech");
addModel (mech);

// set damping parameters for rigid bodies
6 mech.setFrameDamping (10);
mech.setRotaryDamping (100.0);

9 // create a toy "arm" conisting of upper and lower rigid bodies connected

10 // by a revolute joint:

1 double len = 2.0;

12 RigidBody upper = addBody (mech, "upper");

13 upper.setPose (new RigidTransform3d (0, 0, len/2));
14 upper.setDynamic (false); // upper body is fixed

16 RigidBody lower = addBody (mech, "lower");
17 // reposition the lower body"

18 double angle = Math.toRadians (225);
19 double sin = Math.sin (angle);
20 double cos = Math.cos (angle);

21 lower.setPose (new RigidTransform3d (sin*len/2, 0, cos*len/2, 0, angle,

23 // add the revolute joint between the upper and lower bodies:
HingeJoint joint =
new HingeJoint (lower, upper, new Point3d (), Vector3d.Y_UNIT);
26 joint.setName ("elbow");
mech.addBodyConnector (joint);

29 // add two frame markers and a "muscle" to move the lower body
3 FrameMarker mku = mech.addFrameMarker (

31 upper, new Point3d(-len/20, 0, len/2.4));

32 FrameMarker mkl = mech.addFrameMarker (

lower, new Point3d(len/20, 0, -len/4));
Muscle muscle = new Muscle ("muscle");

0));
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35 muscle.setMaterial (new SimpleAxialMuscle (1000.0, 0, 2000.0));
36 mech.attachAxialSpring (mku, mkl, muscle);

38 // create an ellipsoidal base mesh for the SkinMeshBody by scaling a
39 // spherical mesh

40 PolygonalMesh mesh = MeshFactory.createSphere (1.0, 12, 12);

41 mesh.scale (1, 1, 2.5);

e mesh.transform (

4 new RigidTransform3d (-0.6, 0, 0, 0, Math.toRadians (22.5),0));

44

45 // create the skinMesh, with the upper and lower bodies as master bodies
46 SkinMeshBody skinMesh = new SkinMeshBody (mesh);

47 skinMesh.addMasterBody (upper);

48 skinMesh.addMasterBody (lower);

49 skinMesh.computeAllVertexConnections () ;

50 mech.addMeshBody (skinMesh);

51

52 // add a control panel to adjust the muscle excitation and frameBlending
s3 ControlPanel panel = new ControlPanel ();

54 panel.addWidget (muscle, "excitation");

55 panel.addWidget (skinMesh, "frameBlending");

56 addControlPanel (panel);

58 // set up render properties

59 RenderProps.setFaceStyle (skinMesh, Renderer.FaceStyle.NONE);

60 RenderProps.setDrawEdges (skinMesh, true);

61 RenderProps.setlineColor (skinMesh, Color.CYAN);

62 RenderProps.setSpindlelLines (muscle, 0.06, Color.RED);

63 RenderProps.setSphericalPoints (mech, 0.05, Color.WHITE);

64 RenderProps.setFaceColor (joint, Color.BLUE) ;

65 joint.setShaftLength (len/3);

66 joint.setShaftRadius (0.05);

67 RenderProps.setFaceColor (mech, new Color (0.8f, 0.8f, 0.8f));

A MechModel is created in the usual way (lines 2-7). To this is added a very simple toy “arm” consisting of an upper and
lower body connected by a hinge joint (lines 9-27), with a simple point-to-point muscle attached between frame markers
on the upper and lower bodies to provide a means of moving the arm (lines 29-36). Creation of the arm bodies uses an
addBody () method which is not shown.

The mesh to be skinned is an ellipsoid, created using the FemFactory method createSphere () to produce a spherical
mesh which is then scaled and repositioned (lines 38-43). The skin body itself is then created around this mesh, with the
upper and lower bodies assigned as master bodies and the connections computed using computeAllVertexConnections ()
(lines 45-50).

A control panel is added to allow control over the muscle’s excitation as well as the skin body’s frameBlending property
(lines 52-56). Finally, render properties are set (lines 58-67): the skin mesh is made transparent by setting its faceStyle
and drawEdges properties to NONE and true, respectively, with cyan colored edges; the muscle is rendered as a red
spindle; the joint is drawn as a blue cylinder and the bodies are colored light grey.

To run this example in ArtiSynth, select All demos > tutorial > RigidBodySkinning from the Models menu. The model
should load and initially appear as in Figure 8.3 (left). When running the simulation, the arm can be flexed by adjusting
the muscle excitation property in the control panel, causing the skin mesh to deform (Figure 8.3, middle). Changing the
frameBlending property from its default value of LINEAR to DUAL_QUATERNION_LINEAR causes the mesh deformation to
become fatter and less prone to creasing (Figure 8.3, right).

8.3 Computing weights

As described above, the default method for computing skin connection weights is inverse-square weighting (equations
8.8) and 8.9). However, applications can specify alternatives to this. The method

void setGaussianWeighting (double sigma)



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemFactory.html

ArtiSynth Modeling Guide 225

causes weights to be computed according to a Gaussian weighting scheme, with sigma specifying the standard deviation
o. Raw weights wj are then computed according to

—d. )2
wi :exp (_M) ,

202
and then normalized to form wy.
The method

void setInverseSquareWeighting ()

reverts the weighting function back to inverse-square weighting.

It is also possible to specify a custom weighting function by implementing a subclass of SkinWeightingFunction.
Subclasses must implement the function

void computeWeights (
double[] weights, Point3d pos, NearestPoint [] nearestPnts);

in which the weights for each master body are computed and returned in weights. pos gives the initial position of the
vertex (or attached point) being skinning, while nearestPnts provides information about the distance from pos to each
of the master bodies, using an array of SkinMeshBody.NearestPoint objects:

class NearestPoint {
public Point3d nearPoint; // nearest point on the body
public double distance; // distance to the body
public ModelComponent body; // master body (either Frame or FemModel3d)

Once an instance of SkinWeightingFunction has been created, it can be set as the skin mesh weighting function by
calling

void setWeightingFunction (SkinWeightingFunction fxn)

Subsequent calls to computeAllVertexConnections (), or the addMarker or computeAttachment methods described
in Section 8.4, will then employ the specified weighting.

As an example, imagine an application wishes to compute weights according to an inverse-cubic weighting function,

such that to s

min

*
Wy = d3 .
k

A subclass of SkinWeightingFunction implementing this could then be defined as

class MyWeighting extends SkinWeightingFunction ({

// implements inverse-cubic weighting
public void computeWeights (
double[] weights, Point3d pos, NearestPoint [] nearestPnts) {

// find minimum distance to all the master bodies
double dmin = Double.POSITIVE_INFINITY ;
for (int 1i=0; i<nearestPnts.length; i++) {
if (nearestPnts[i].distance < dmin) {
dmin = nearestPnts[i].distance;

}

double sumw = 0; // sum of all weights (for normalizing)
// compute raw weights:

for (int i=0; i<nearestPnts.length; i++) {

double d = nearestPnts[i].distance;
double w;
if (d == dmin) {

w = 1; // handles case where dmin = d = 0
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else {
w = dmin*dmin*dmin/ (d*d*d) ;
}
weights[i] = w;
sumw += w;
}
// normalize the weights:
for (int i=0; i<nearestPnts.length; i++) {
weights[i] /= sumw;

and then set as the weighting function using the code fragment:

SkinMeshBody skinMesh;
/7
skinMesh.setWeightingFunction (new MyWeighting());

The current weighting function for a skin mesh can be queried using

SkinWeightingFunction getWeightingFunction ()

The inverse-square and Gaussian weighting methods described above are implemented using the system-provided
SkinWeightingFunction subclasses InverseSquareWeighting and GaussianWeighting, respectively.

8.3.1 Setting weights explicitly

As an alternative to the weighting function, applications can also create connections to vertices or points in which the
weights are explicitly specified. This allows for situations in which a weighting function is unable to properly specify all
the weights correctly.

When a mesh is initially added to a skin body, via either the constructor SkinMeshBody(mesh), or by a call to
setMesh(mesh), all master body connections are cleared and the vertex position is “fixed” to its initial position, also
known as its base position. After the master bodies have been added, vertex connections can be created by calling
computeAllVertexConnections(), as described above. However, connections can also be created on a per-vertex basis,
using the method

void computeVertexConnections (int vidx, VectorNd weights)

where vidx is the index of the desired vertex and weights is an optional argument which if non-null explicitly
specifies the connection weights. A sketch example of how this can be used is given in the following code fragment:

VectorNd weights = new VectorNd (skinMesh.numMasterBodies ());
// compute connections for each vertex
for (int 1=0; i<skinMesh.numVertices (); 1i++) {
// ... compute connections weights as required
skinMesh.computeVertexConnections (i, weights);

For comparison, it should be noted that the code fragment

for (int 1=0; i<skinMesh.numVertices (); 1i++) {
skinMesh.computeVertexConnections (i, null);

in which weights are not explicitly specified, is is equivalent to calling computeAllVertexConnections ().
If necessary, after vertex connections have been computed, they can also be cleared, using the method

void clearVertexConnections (int wvidx)
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This will disconnect the vertex with index vidx from the master bodies, and set its base weighting wy, (equation 8.1) to
1, so that it will remain fixed to its initial position.

In some special cases, it may be desirable for an application to set attachment base weights to some value other than 0
when connections are present. Base weights for vertex attachments can be queried and set using the methods

double getVertexBaseWeight (int vidx)

void setVertexBaseWeight (int vidx, double weight, boolean normalize)

In the second method, the argument normalize, if true, causes the weights of the other connections to be scaled so that
the total weight sum remains the same. For skin markers and point attachments (Section 8.4), base weights can be set by
calling the equivalent Point SkinAttachment methods

double getBaseWeight ()

void setBaseWeight (double weight, boolean normalize)

(If needed, the attachment for a skin marker can be obtained by calling its getAttachment () method.) In addition, base
weights can also be specified in the weights argument to the method computeVertexConnections (vidx, weights),
as well as the methods addMarker (name, pos, weights) and createPointAttachment (pnt,weights) described

in Section 8.4. This is done by giving weights a size equal to m 4 1, where m is the number of master bodies, and
specifying the base weight in the last location.

8.4 Markers and point attachments

In addition to controlling the positions of mesh vertices, a SkinMeshBody can also be used to control the positions
of dynamic point components, including markers and other points which can be attached to the skin body. For both
markers and attached points, any applied forces are propagated back onto the skin body’s master bodies, using the
principle of virtual work. This allows skin bodies to be fully incorporated into a dynamic model.

Markers and point attachments can be created even if the SkinMeshBody does not have a mesh, a fact that can be used in
situations where a mesh is unnecessary, such as when employing skinning techniques for muscle wrapping (Section 8.7).

8.4.1 Markers

Markers attached to a skin body are instances of SkinMarker, and are contained in the body’s subcomponent list
markers (analogous to the markers list for FEM models). Markers can be created and maintained using the following
SkinMeshBody methods:

// create markers:
SkinMarker addMarker (Point3d pos)
SkinMarker addMarker (String name, Point3d pos)
SkinMarker addMarker (
String name, Point3d pos, VectorNd weights)

// remove markers:
boolean removeMarker (SkinMarker mkr)
void clearMarkers () ;

// access the marker list:
PointList<SkinMarker> markers ()

The addMarker methods each create and return a SkinMarker which is added to the skin body’s list of markers. The
marker’s initial position is specified by pos, while the second and third methods also allow a name to be specified. Con-
nections between the marker and the master bodies are created in the same way as for mesh vertices, with the connection
weights either being determined by the skin body’s weighting function (as returned by getWeightingFunction()), or
explicitly specified by the argument weights (third method).

Once created, markers can be removed individually or all together by the removeMarker () and clearMarkers ()
methods. The entire marker list can be accessed on a read-only basis by the method markers ().
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Figure 8.4: AllBodySkinning model as first loaded into ArtiSynth (left), and after the simulation is run and the model
has fallen under gravity (right). The skin mesh is rendered in cyan using only its edges.

8.4.2 Point attachments

In addition to markers, applications can also attach any regular Point component (including particles and FEM nodes) to
a skin body by using one of its createPointAttachment methods:

PointSkinAttachment createPointAttachment (Point pnt)
PointSkinAttachment createPointAttachment (Point pnt, VectorNd weights)

Both of these create a PointSkinAttachment that connects the point pnt to the master bodies in the same way as for
mesh vertices and markers, with the connection weights either being determined by the skin body’s weighting function
or explicitly specified by the argument weights in the second method.

Once created, the point attachment must also be added to the underlying MechModel, as illustrated by the following code
fragment:

MechModel mech;
SkinMeshBody skinBody;
Point pnt;

// ... initialize

PointSkinAttacment a = skinBody.createPointAttachment (pnt);
mech.addAttachment (a);

8.4.3 Example: skinning rigid bodies and FEM models

An example of skinning a mesh over both rigid bodies and FEM models is given by the demo model
artisynth.demos.tutorial.AllBodySkinning. It consists of a skin mesh placed around a tubular FEM model
connected to rigid bodies connected at each end, and a marker attached to the mesh tip. The code for the build()
method is given below:

public void build (String[] args) {
MechModel mech = new MechModel ("mech");
addModel (mech);

// size and density parameters
double len = 1.0;
double rad = 0.15;

8 double density = 1000.0;

10 // create a tubular FEM model, and rotate it so it lies along the x axis
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FemModel3d fem = FemFactory.createHexTube (

null, len, rad/3, rad, 8, 8, 2);
fem.transformGeometry (new RigidTransform3d (0, 0, 0, 0, Math.PI/2, 0));
mech.addModel (fem);

// create two rigid body blocks
RigidBody block0 =

RigidBody.createBox ("blockO", len/2, 2*rad, 2*rad, density);
block0.setPose (new RigidTransform3d (-3*len/4, 0, 0));
mech.addRigidBody (block0);
block0.setDynamic (false);

RigidBody blockl =

RigidBody.createBox ("blockl", len/2, 2*rad, 2*rad, density);
blockl.setPose (new RigidTransform3d (3*len/4, 0, 0));
mech.addRigidBody (blockl);

// attach the blocks to each end of the FEM model
for (FemNode3d n : fem.getNodes ()) {
if (Math.abs(n.getPosition () .x-len/2) < EPS) {
mech.attachPoint (n, blockl);
}
if (Math.abs(n.getPosition () .x+len/2) < EPS) {
mech.attachPoint (n, block0);

}
fem.setMaterial (new LinearMaterial (500000.0, 0.49));

// create base mesh to be skinned
PolygonalMesh mesh =
MeshFactory.createRoundedCylinder (
/*r=*/0.4, 2*len, /*nslices=*/16, /*nsegs=*/15, /*flatbotton=*/false);
// rotate mesh so its long axis lies along the x axis
mesh.transform (new RigidTransform3d (0, 0, 0, 0, Math.PI/2, 0));

// create the skinBody, with the FEM model and blocks as master bodies
SkinMeshBody skinBody = new SkinMeshBody ("skin", mesh);
skinBody.addMasterBody (fem);

skinBody.addMasterBody (block0);

skinBody.addMasterBody (blockl);
skinBody.computeAllVertexConnections () ;

mech.addMeshBody (skinBody) ;

// add a marker point to the end of the skin mesh
SkinMarker marker =
skinBody.addMarker ("marker", new Point3d (1.4, 0.000, 0.000));

// set up rendering properties

RenderProps.setFaceStyle (skinBody, FaceStyle.NONE);
RenderProps.setDrawEdges (skinBody, true);
RenderProps.setlLineColor (skinBody, Color.CYAN);
fem.setSurfaceRendering (FemModel.SurfaceRender.Shaded);
RenderProps.setFaceColor (fem, new Color (0.5f, 0.5f, 1f));
RenderProps.setSphericalPoints (marker, 0.05, Color.RED);

A MechModel is first created and length and density parameters are defined (lines 2-8). Then a tubular FEM model is
created, by using the FemFactory method createHexTube () and transforming the result by rotating it by 90 degrees
about the y axis (lines 10-14). Two rigid body blocks are then created (lines 16-26) and attached to the ends of the FEM
model by finding and attaching the left and rightmost nodes (lines 28-24). The model is anchored to ground by setting
the left block to be non-dynamic (line 21).

The mesh to be skinned is a rounded cylinder, created using the MeshFactory method createRoundedCylinder ()
and rotating the result by 90 degrees about the y axis (lines 39-44). This is then used to create the skin body itself, to
which both rigid bodies and the FEM model are added as master bodies and the vertex connections are computed using a



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemFactory.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshFactory.html

call to computeAllVertexConnections () (lines 46-52). A marker is then added to the tip of the skin body, using the
addMarker () method (lines 54-56). Finally render properties are set (lines 58-64): The mesh is made transparent by
drawing only its edges in cyan; the FEM model surface mesh is rendered in blue-grey, and the tip marker is drawn as a
red sphere.

To run this example in ArtiSynth, select All demos > tutorial > AllBodySkinning from the Models menu. The model
should load and initially appear as in Figure 8.4 (left). When running the simulation, the FEM and the rightmost rigid
body fall under gravity, causing the skin mesh to deform. The pull tool can then be used to move things around by
applying forces to the master bodies or the skin mesh itself.

8.4.4 Mesh-based markers and attachments

For the markers and point attachments described above, the connections to the underlying master bodies are created in
the same manner as connections for individual mesh vertices. This means that the resulting markers and attached points
move independently of the mesh vertices, as though they were vertices in their own right.

An advantage to this is that such markers and attachments can be created even if the SkinMeshBody does not even have

a mesh, as noted above. However, a disadvantage is that such markers will not remain tightly connected to vertex-based

features (such as the faces of a PolygonalMesh or the line segments of a PolylineMesh). For example, consider a marker
defined by

SkinMarker mkr = skinBody.addMarker (pos);

where pos is a point that is initially located on a face of the body’s mesh. As the master bodies move and the mesh
deforms, the resulting marker may not remain strictly on the face. In many cases, this may not be problematic or the
deviation may be too small to matter. However, if it is desirable for markers or point attachments to be tightly bound to
mesh features, they can instead be created with the following methods:

// create mesh-based markers:
SkinMarker addMeshMarker (Point3d pos)
SkinMarker addMeshMarker (String name, Point3d pos)

// create mesh-based attachments:
PointSkinAttachment createPointMeshAttachment (Point pnt)

The requested position pos will then be projected onto the nearest mesh feature (e.g., a face for a PolygonalMesh or
a line segment for a PolylineMesh), and the resulting position p will be defined as a linear combination of the vertex
positions p; for this feature,

p=) B (8.10)

where f; are the barycentric coordinates of p with respect to the feature. The master body connections are then defined
by the same linear combination of the connections for each vertex. When the master bodies move, the marker or
attached point will move with the feature and remain in the same relative position.

Since SkinMeshBody implements the interface PointAttachable, it provides the general point attachment method

PointSkinAttachment createPointAttachment (Point pnt)

which allows it to be acted on by agents such as the ArtiSynth marker tool (see the section “Marker tool” in the
ArtiSynth User Interface Guide). Whether or not the resulting attachment is a regular attachment or mesh-based is
controlled by the skin body’s attachPointsToMesh property, which can be adjusted in the GUI or in code using the
property’s accessor methods:

boolean getAttachPointsToMesh ()
void setAttachPointsToMesh (boolean enable)

8.5 Resolution and Limitations

Skinning techniques do have limitations, which are common to all methodologies.
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Figure 8.5: A skin mesh enveloping a single FEM body whose element resolution is lower than that of the mesh (left).
When the FEM undergoes a large deformation, this disparity in resolution can cause artifacts such as crimping, as seen
on the underside of the mesh in the middle image. Using an FEM model with a higher resolution can mitigate this
(right).

* The passive nature of the connection between skinned vertices and the master bodies means that it can be easy for the
skin mesh to self intersect and/or fold and crease in ways that are not physically realistic. These effects are often more
pronounced when mesh vertices are relatively far away from the master bodies, or in places where the mesh undergoes
a concave deformation. When the master bodies include frames, these effects can sometimes be reduced by setting the
frameBlending property to DUAL_QUATERNION_LINEAR instead of the default LINEAR.

* When the master bodies include FEM models which undergo large deformations, crimping artifacts may arise if the
skin mesh has a higher resolution that the FEM model (Figure 8.5). This is because each mesh vertex is connected
to the coordinate frame of a single FEM element, and for reasons of computational efficiency the influence of these
coordinate frames is not blended as it is for frame-based master bodies. If crimping artifacts occur, one solution may
be to adjust the mesh and/or the FEM model so that their resolutions are more compatible (Figure 8.5, right).

8.6 Collisions

It is possible to make skin bodies collide with other ArtiSynth bodies, such as RigidBody and FemModel3d, which
implement the Collidable interface (Section 4.5). SkinMeshBody itself implements CollidableBody, and is considered
a deformable body, so that collisions can be activated either by setting one of the default collision behaviors involving
deformable bodies, or by setting an explicit collision behavior between it and another body. Self collisions involving
SkinMeshBody are not currently supported.

As described in Section 4.6, collisions work by computing the intersection between the meshes of the skin body and
other collidables. The vertices, faces, and (possibly) edges of the resulting intersection region are then used to compute
contact constraints, which propagate the effect of the contact back onto the collidable bodies” dynamic components. For
a skin mesh, the dynamic components are the Frame master bodies and the nodes of the FEM master bodies.

Collisions involving SkinMeshBody frequently suffer from the problem of being overconstrained (Section 4.6.3),
whereby the the number of contacts exceeds the number of master body DOFs available to handle the collision. This
may occur if the skin body contains only rigid bodies, or if the mesh resolution exceeds the resolution of the FEM
master bodies. Managing overconstrained collisions is discussed in Section 4.6.3, with the easiest method being
constraint reduction, which can be activated by setting to t rue the reduceConstraints property for either the collision
manager or a specific CollisionBehavior involving the skin body.

Caveats: The distance between the vertices of a skinned mesh and its master bodies can sometimes cause odd
or counter-intuitive collision behavior. Collision handling may also be noticeably slower if frameBlending is set
to DUAL_QUATERNION_LINEAR or DUAL_QUATERNION_ITERATIVE. If any of the master bodies are FEM models,
collisions resulting in large friction forces may result in unstable behavior.
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Figure 8.6: SkinBodyCollide demo, showing a skin mesh colliding with a cylinder about 0.6 seconds into the simula-

tion.

8.6.1

Collisions involving SkinMeshBody are illustrated by the demo model artisynth.demos.tutorial.SkinBodyCollide,
which extends the demo A11BodySkinning to add a cylinder with which the skin body can collide. The code for the

Example: collision with a cylinder

demo is given below:

I package artisynth.demos.tutorial;

3 import

import

s import

import
import

public

artisynth.core.femmodels.SkinMeshBody;
artisynth.core.mechmodels.CollisionBehavior;
artisynth.core.mechmodels.MechModel;
artisynth.core.mechmodels.RigidBody;
maspack.matrix.RigidTransform3d;

class SkinBodyCollide extends AllBodySkinning

public void build (String[] args) {

super.build (args);

// get components from the super class
MechModel mech = (MechModel)models () .get ("mech"

SkinMeshBody skinBody = (SkinMeshBody)mech.meshBodies ().get ("skin");

{

)i

RigidBody block0 = mech.rigidBodies () .get ("blockO");

// set block0 dynamic so the skin body and its masters can

// fall under gravity
block0.setDynamic (true);

// create a cylinder for the skin body to collide with

RigidBody cylinder =
RigidBody.createCylinder (
"cylinder", 0.5, 2.0, /*density=*/1000.0,
cylinder.setDynamic (false);
cylinder.setPose (

/*nsides=*/50) ;

new RigidTransform3d (-0.5, 0, -1.5, 0, 0, Math.PI/2));

mech.addRigidBody (cylinder);

// enable collisions between the cylinder and the skin body
CollisionBehavior cb = new CollisionBehavior (true, 0);

mech.setCollisionBehavior (cylinder, skinBody,
mech.getCollisionManager () .setReduceConstraints

cb);
(true);
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The model subclasses A11BodySkinning, using the superclass build () method within its own build method to create
the original model (line 12). It then obtains references to the MechModel, SkinMeshBody, and leftmost block, using
their names to find them in various component lists (lines 14-17). (If the original model had stored references to these
components as accessible member attributes, this step would not be needed.)

These component references are then used to make changes to the model: the left block is made dynamic so that the skin
mesh can fall freely (line 21), a cylinder is created and added (lines 23-30), collisions are enabled between the skin body
and the cylinder (lines 32-34), and the collision manager is asked to use constraint reduction to minimize the chance of
overconstrained contact (line 35).

To run this example in ArtiSynth, select All demos > tutorial > SkinBodyCollide from the Models menu. When run, the
skin body should fall and collide with the cylinder as shown in Figure 8.6.

8.7 Application to muscle wrapping

It is sometimes possible to use skinning as a computationally cheaper way to implement muscle wrapping (Chapter 7).

Typically, the end points (i.e., origin and insertion points) of a point-to-point muscle are attached to different bodies.

As these bodies move with respect to each other, the path of the muscle may wrap around portions of these bodies and
perhaps other intermediate bodies as well. The wrapping mechanism of Chapter 7 manages this by performing the
computations necessary to allow one or more wrappable segments of a MultiPointSpring to wrap around a prescribed set
of rigid bodies. However, if the induced path deformation is not too great, it may be possible to achieve a similar effect
at much lower computational cost by simply “skinning” the via points of the multipoint spring to the underlying rigid
bodies.

The general approach involves:

1. Creating a SkinMeshBody which references as master bodies the bodies containing the origin and insertion points,
and possibly other bodies as well;

2. Creating the wrapped muscle using a MultiPointSpring with via points that are attached to the skin body.

It should be noted that for this application, the skin body does not need to contain a mesh. Instead, “skinning” connec-
tions can be made solely between the master bodies and the via points. An easy way to do this is to simply use skin body
markers as via points. Another way is to create the via points as separate particles, and then attach them to the skin body
using one of its createPointAttachment methods.

It should also be noted that unlike with the wrapping methods of Chapter 7, skin-based wrapping can be applied
around FEM models as well as rigid bodies.

Generally, we observe better wrapping behavior if the frameBlending property of the SkinMeshBody is set to
DUAL_QUATERNION_LINEAR instead of the default value of LINEAR.

8.7.1 Example: wrapping for a finger joint

An example of skinning-based muscle wrapping is given by artisynth.demos.tutorial.PhalanxSkinWrapping,
which is identical to the demo artisynth.demos.tutorial.PhalanxWrapping except for using skinning to achieve
the wrapping effect. The portion of the code which differs is shown below:

I // create a SkinMeshBody and use it to create "skinned" muscle via points
SkinMeshBody skinBody = new SkinMeshBody () ;

; skinBody.addMasterBody (proximal);

4 skinBody.addMasterBody (distal);

5 skinBody.setFrameBlending (FrameBlending.DUAL_QUATERNION_LINEAR) ;

6 mech.addMeshBody (skinBody) ;

7 SkinMarker vial = skinBody.addMarker (new Point3d (0.0215, 0, -0.015));
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Figure 8.7: PhalanxSkinWrapping model loaded into ArtiSynth and running with no load on the distal bone (left).
The pull tool is then used to exert forces on the distal bone and pull it around the joint (middle). The viewer has
been set to orthographic projection to enable better visualization of the wrapping behavior of the muscle via
points (shown in white). The results appear better when the SkinMeshBody’s frameBlending property is set to
DUAL_QUATERNION_LINEAR (middle) instead of LINEAR (right).

SkinMarker via2 = skinBody.addMarker (new Point3d (0.025, 0, -0.018));
SkinMarker via3 = skinBody.addMarker (new Point3d (0.026, 0, -0.0225));

1 // create a cylindrical mesh around the Jjoint as a visualization aid to

12 // see how well the via points "wrap" as the lower bone moves

13 PolygonalMesh mesh = MeshFactory.createCylinder (

14 /*rad=*/0.0075, /*h=*/0.04, /*nsegs=*/32);

15 FixedMeshBody meshBody = new FixedMeshBody (

16 MeshFactory.createCylinder (/*rad=*/0.0075, /*h=*/0.04, /*nsegs=%*/32));
7 meshBody.setPose (TJW) ;

18 mech.addMeshBody (meshBody) ;

20 // create a wrappable muscle using a SimpleAxialMuscle material
01 MultiPointSpring muscle = new MultiPointMuscle ("muscle");
muscle.setMaterial (
new SimpleAxialMuscle (/*k=*/0.5, /*d=*/0, /*maxf=*/0.04));
muscle.addPoint (origin);
add via points to the muscle
muscle.addPoint (vial);
muscle.addPoint (via2);
muscle.addPoint (via3);
muscle.addPoint (insertion);
mech.addMultiPointSpring (muscle);

create control panel to allow frameBlending to be set
ControlPanel panel = new ControlPanel ();
34 panel.addWidget (skinBody, "frameBlending");
addControlPanel (panel);

37 // set render properties
RenderProps.setSphericalPoints (mech, 0.002, Color.BLUE);
RenderProps.setSphericalPoints (skinBody, 0.002, Color.WHITE);
40 RenderProps.setCylindricallLines (muscle, 0.001, Color.RED);
41 RenderProps.setFaceColor (meshBody, new Color (200, 200, 230));

First, a SkinMeshBody is created referencing the proximal and distal bones as master bodies, with the frameBlending
property set to DUAL_QUATERNION_LINEAR (lines 1-6). Next, we create a set of three via points that will be attached to
the skin body to guide the muscle around the joint in lieu of making it actually wrap around a cylinder (lines 7-9).
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In the original PhalanxWrapping demo, a RigidCylinder was used as a muscle wrap surface. In this demo, we replace
this with a simple cylindrical mesh which has no dynamic function but allows us to visualize the wrapping behavior of
the via points (lines 11-18). The muscle itself is created using the three via points but with no wrappable segments or
bodies (lines 20-30).

A control panel is added to allow for the adjustment of the skin body’s frameBlending property (lines 32-35). Finally,
render properties are set as for the original demo, only with the skin body markers rendered as white spheres to make
them more visible (lines 37-41).

To run this example in ArtiSynth, select All demos > tutorial > PhalanxSkinWrapping from the Models menu. The model
should load and initially appear as in Figure 8.7 (left). The pull tool can then be used to move the distal joint while
simulating, to illustrate how well the via points “wrap” around the joint, using the cylindrical mesh as a visual reference
(Figure 8.7, middle). Changing the frameBlending property to LINEAR results in a less satisfactory behavior (Figure 8.7,
right).



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidCylinder.html
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Chapter 9

DICOM Images

Some models are derived from image data, and it may be useful to show the model and image in the same space. For
this purpose, a DICOM image widget has been designed, capable of displaying 3D DICOM volumes as a set of three

perpendicular planes. An example widget and its property panel is shown in Figure 9.1.
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Figure 9.1: DICOM image of the heart, downloaded from http://www.osirix-viewer.com.

The main classes related to the reading and displaying of DICOM images are:

DicomElement

Describes a single attribute in a DICOM file.
DicomHeader

Contains all header attributes (all but the image data) extracted from a DICOM file.
DicomPixelBuffer

Contains the decoded image pixels for a single image frame.
DicomSlice

Contains both the header and image information for a single 2D DICOM slice.
DicomImage

Container for DICOM slices, creating a 3D volume (or 3D + time)
DicomReader

Parses DICOM files and folders, appending information to a DicomImage.
DicomViewer

Displays the DicomImage in the viewer.

If the purpose is simply to display a DICOM volume in the ArtiSynth viewer, then only the last three classes will be of

interest. Readers who simply want to display a DICOM image in their model can skip to Section 9.3.



http://www.osirix-viewer.com
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomElement.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomHeader.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomPixelBuffer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomSlice.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomImage.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomReader.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomImage.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/renderables/DicomViewer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomImage.html

9.1 The DICOM file format

For a complete description of the DICOM format, see the specification page at http://medical.nema.org/standard.html.
A brief description is provided here. Another excellent resource is the blog by Roni Zaharia: http://dicomiseasy.blogspot.ca/.

Each DICOM file contains a number of concatenated attributes (a.k.a. elements), one of which defines the embedded
binary image pixel data. The other attributes act as meta-data, which can contain identity information of the subject,
equipment settings when the image was acquired, spatial and temporal properties of the acquisition, voxel spacings,
etc.... The image data typically represents one or more 2D images, concatenated, representing slices (or ‘frames’) of a
3D volume whose locations are described by the meta-data. This image data can be a set of raw pixel values, or can be
encoded using almost any image-encoding scheme (e.g. JPEG, TIFF, PNG). For medical applications, the image data

is typically either raw or compressed using a lossless encoding technique. Complete DICOM acquisitions are typically
separated into multiple files, each defining one or few frames. The frames can then be assembled into 3D image ‘stacks’
based on the meta-information, and converted into a form appropriate for display.

Table 9.1: A selection of Value Representations

VR  Description

CS  Code String

DS  Decimal String
DT Date Time

IS  Integer String

OB  Other Byte String
OF  Other Float String
OW  Other Word String
SH  Short String

Ul  Unique Identifier
US  Unsigned Short
OX  One of OB, OW, OF

Each DICOM attribute is composed of:

* astandardized unique integer fag in the format (XXXX,XXXX) that defines the group and element of the attribute
* avalue representation (VR) that describes the data type and format of the attribute’s value (see Table 9.1)

* avalue length that defines the length in bytes of the attribute’s value to follow

* avalue field that contains the attribute’s value

This layout is depicted in Figure 9.2. A list of important attributes are provided in Table 9.2.

| Tag | VR [ Value Length | Value Field |
Figure 9.2: DICOM attribute structure

9.2 The DICOM classes

Each DicomElement represents a single attribute contained in a DICOM file. The DicomHeader contains the col-

lection of DicomElements defined in a file, apart from the pixel data. The image pixels are decoded and stored in a
DicomPixelBuffer. Each DicomSlice contains a DicomHeader, as well as the decoded DicomPixelBuffer for a single
slice (or ‘frame’). All slices are assembled into a single DicomImage, which can be used to extract 3D voxels and spatial
locations from the set of slices. These five classes are described in further detail in the following sections.

9.2.1 DicomElement

The DicomElement class is a simple container for DICOM attribute information. It has three main properties:

* an integer fag
* avalue representation (VR)
e avalue



http://medical.nema.org/standard.html
http://dicomiseasy.blogspot.ca/
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomElement.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomHeader.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomPixelBuffer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomSlice.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomImage.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomElement.html
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Table 9.2: A selection of useful DICOM attributes

Attribute name VR Tag

Transfer syntax UID Ul  0x0002, 0x0010
Slice thickness DS 0x0018, 0x0050
Spacing between slices DS 0x0018, 0x0088
Study ID SH  0x0020, 0x0010
Series number IS 0x0020, 0x0011
Aquisition number IS 0x0020, 0x0012
Image number IS  0x0020, 0x0013
Image position patient DS  0x0020, 0x0032
Image orientation patient DS  0x0020, 0x0037

Temporal position identifier IS 0x0020, 0x0100
Number of temporal positions IS~ 0x0020, 0x0105

Slice location DS  0x0020, 0x1041
Samples per pixel US 0x0028, 0x0002
Photometric interpretation CS  0x0028, 0x0004
Planar configuration (color) US  0x0028, 0x0006
Number of frames IS 0x0028, 0x0008
Rows US 0x0028, 0x0010
Columns US 0x0028, 0x0011
Pixel spacing DS  0x0028, 0x0030
Bits allocated US  0x0028, 0x0100
Bits stored US  0x0028, 0x0101
High bit US 0x0028, 0x0102
Pixel representation US  0x0028, 0x0103
Pixel data OX 0x7FE0, 0x0010

These properties can be obtained using the corresponding get function: getTag (), getVR (), getValue (). The

tag refers to the concatenated group/element tag. For example, the transfer syntax UID which corresponds to group
0x0002 and element 0x0010 has a numeric tag of 0x00020010. The VR is represented by an enumerated type,
DicomElement.VR. The ‘value’ is the raw value extracted from the DICOM file. In most cases, this will be a String.
For raw numeric values (i.e. stored in the DICOM file in binary form) such as the unsigned short (US), the ‘value’
property is exactly the numeric value.

For VRs such as the integer string (IS) or decimal string (DS), the string will still need to be parsed in order to extract
the appropriate sequence of numeric values. There are static utility functions for handling this within DicomElement.
For a ‘best-guess’ of the desired parsed value based on the VR, one can use the method getParsedvalue (). Often,
however, the desired value is also context-dependent, so the user should know a priori what type of value(s) to expect.
Parsing can also be done automatically by querying for values directly through the DicomHeader object.

9.2.2 DicomHeader

When a DICOM file is parsed, all meta-data (attributes apart from the actual pixel data) is assembled into a DicomHeader
object. This essentially acts as a map that can be queried for attributes using one of the following methods:

DicomElement getElement (int tag); // includes VR and data

String getStringValue (int tag); // all non-numeric VRs

String[] getMultiStringValue (int tag); // UT, SH

int getIntValue (int tag, int defaultValue); // 1S, DS, SL, UL, SS, US

int[] getMultilIntValue (int tag); // 1S, DS, SL, UL, SS, US

double getDecimalValue (int tag, double defaultValue); // DS, FL, FED

double[] getMultiDecimalValue (int tag); // DS, FL, FD

VectorNd getVectorValue (int tag); // DS, IS, SL, UL, SS, US, FL, FD
DicomDateTime getDateTime (int tag); // DT, DA, TM

The first method returns the full element as described in the previous section. The remaining methods are used for
convenience when the desired value type is known for the given tag. These methods automatically parse or convert the
DicomElement’s value to the desired form.



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomElement.VR.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomHeader.html

If the tag does not exist in the header, then the get IntValue(...) and getDecimalValue(...) will return the
supplied defaultValue. All other methods will return null.

9.2.3 DicomPixelBuffer

The DicomPixelBuffer contains the decoded image information of an image slice. There are three possible pixel types
currently supported:

* byte grayscale values (PixelType.BYTE)
* short grayscale values (PixelType.SHORT)
* byte RGB values, with layout RGBRGB. . .RGB (PixelType.BYTE_RGB)

The pixel buffer stores all pixels in one of these types. The pixels can be queried for directly using getPixel (idx) to
get a single pixel, or getBuffer () to get the entire pixel buffer. Alternatively, a DicomPixellnterpolator object can be
passed in to convert between pixel types via one of the following methods:

public int getPixelsByte (
int x, int dx, int nx, byte[] pixels, int offset, DicomPixelInterpolator interp);

public int getPixelsShort (
int x, int dx, int nx, short[] pixels, int offset, DicomPixelInterpolator interp);

public int getPixelsRGB (
int x, int dx, int nx, byte[] pixels, int offset, DicomPixelInterpolator interp);

public int getPixels (
int x, int dx, int nx, DicomPixelBuffer pixels, int offset,
DicomPixelInterpolator interp);

These methods populate an output array or buffer with converted pixel values, which can later be passed to a renderer.
For further details on these methods, refer to the Javadoc documentation.

9.2.4 DicomSlice

A single DICOM file contains both header information, and one or more image ‘frames’ (slices). In ArtiSynth, we
separate each frame and attach them to the corresponding header information in a DicomSlice. Thus, each slice
contains a single DicomHeader and DicomPixelBuffer. These can be obtained using the methods: getHeader () and
getPixelBuffer ().

For convenience, the DicomSlice also has all the same methods for extracting and converting between pixel types as the
DicomPixelBuffer.

9.2.5 DicomImage

An complete DICOM acquisition typically consists of multiple slices forming a 3D image stack, and potentially contains
multiple 3D stacks to form a dynamic 3D+time image. The collection of DicomS1lices are thus assembled into a
DicomImage, which keeps track of the spatial and temporal positions.

The DicomImage is the main object to query for pixels in 3D(+time). To access pixels, it has the following methods:

public int getPixelsByte (
int x, int y, int z, int dx, int dy, int dz, int nx, int ny, int nz,
int time, byte[] pixels, DicomPixelInterpolator interp);

public int getPixelsShort (
int x, int y, int z, int dx, int dy, int dz, int nx, int ny, int nz,
int time, short[] pixels, DicomPixelInterpolator interp);

public int getPixelsRGB (
int x, int y, int z, int dx, int dy, int dz, int nx, int ny, int nz,
int time, byte[] pixels, DicomPixelInterpolator interp);



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomPixelBuffer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomPixelInterpolator.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomSlice.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomImage.html
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public int getPixels (
int x, int y, int z, int dx, int dy, int dz, int nx, int ny, int nz,
int time, DicomPixelBuffer pixels, DicomPixelInterpolator interp);

The inputs {x, vy, z} refer to voxel indices, and time refers to the time instance index, starting at zero. The four voxel
dimensions of the image can be queried with: getNumCols () getNumRows (), getNumSlices (), and getNumTimes ().

The DicomImage also contains spatial transform information for converting between voxel indices and patient-centered
spatial locations. The affine transform can be acquired with the method getPixelTransform(). This allows the image
to be placed in the appropriate 3D location, to correspond with any derived data such as segmentations. The spatial
transformation is automatically extracted from the DICOM header information embedded in the files.

9.3 Loading a DicomImage

DICOM files and folders are read using the DicomReader class. The reader populates a supplied DicomImage with
slices, forming the full 3D(+time) image. The basic pattern is as follows:

String DICOM_directory = ... // define directory of interest
DicomReader reader = new DicomReader () ; // create a new reader

// read all files in a directory, returning a newly constructed image
DicomImage image = reader.read(null, DICOM_directory);

The first argument in the read(...) command is an existing image in which to append slices. In this case, we pass in
null to signal that a new image is to be created.

In some cases, we might wish to exclude certain files, such as meta-data files that happen to be in the DICOM folder.

By default, the reader attempts to read all files in a given directory, and will print out an error message for those it fails
to detect as being in a valid DICOM format. To limit the files to be considered, we allow the specification of a Java
Pattern, which will test each filename against a regular expression. Only files with names that match the pattern will be
included. For example, in the following, we limit the reader to files ending with the “dcm” extension.

String DICOM_directory = ... // define directory of interest
DicomReader reader = new DicomReader () ; // create a new reader
Pattern dcmPattern = Pattern.compile (".*\\.dcm") ; // files ending with .dcm

// read all files in a directory, returning a newly constructed image
DicomImage image = reader.read(null, DICOM_directory, dcmPattern, /*subdirs*/ false);

The pattern is applied to the absolute filename, with either windows and mac/linux file separators (both are checked
against the regular expression). The method also has an option to recursively search for files in subdirectories. If the full
list of files is known, then one can use the method:

public DicomImage read (DicomImage im, List<File> files);

which will load all specified files.

9.3.1 Time-dependent images

In most cases, time-dependent images will be properly assembled using the previously mentioned methods in the
DicomReader. Each slice should have a temporal position identifier that allows for the separate image stacks to be
separated. However, we have found in practice that at times, the temporal position identifier is omitted. Instead, each
stack might be stored in a separate DICOM folder. For this reason, additional read methods have been added that allow
manual specification of the time index:

public DicomImage read (DicomImage im, List<File> files, int temporalPosition);
public DicomImage read(DicomImage im, String directory, Pattern filePattern,
boolean checkSubdirectories, int temporalPosition);



https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/image/dicom/DicomReader.html

If the supplied temporalPosition is non-negative, then the temporal position of all included files will be manually
set to that value. If negative, then the method will attempt to read the temporal position from the DICOM header
information. If no such information is available, then the reader will guess the temporal position to be one past the last
temporal position in the original image stack (or O if im == null). For example, if the original image has temporal
positions {0, 1, 2}, then all appended slices will have a temporal position of three.

9.3.2 Image formats

The DicomReader attempts to automatically decode any pixel information embedded in the DICOM files. Unfortu-
nately, there are virtually an unlimited number of image formats allowed in DICOM, so there is no way to include native
support to decode all of them. By default, the reader can handle raw pixels, and any image format supported by Java’s
ImageIO framework, which includes JPEG, PNG, BMP, WBMP, and GIF. Many medical images, however, rely on loss-
less or near-lossless encoding, such as lossless JPEG, JPEG 2000, or TIFF. For these formats, we provide an interface
that interacts with the third-party command-line utilities provided by ImageMagick (http://www.imagemagick.org).
To enable this interface, the ImageMagick utilities identify and convert must be available and exist somewhere on
the system’s PATH environment variable.

ImageMagick Installation

To enable ImageMagick decoding, required for image formats not natively supported by Java
(e.g. JPEG 2000, TIFF), download and install the ImageMagick command-line utilities from:
http://www.imagemagick.org/script/binary-releases.php

The install path must also be added to your system’s PATH environment variable so that ArtiSynth can locate the
identify and convert utilities.

9.4 The DicomViewer

Once a DicomImage is loaded, it can be displayed in a model by using the DicomViewer component. The viewer has
several key properties:

name

the name of the viewer component

X’ y’z

the normalized slice positions, in the range [0,1], at which to display image planes

timeIndex

the temporal position (image stack) to display

transform

an affine transformation to apply to the image (on top of the voxel-to-spatial transform extracted from the DICOM
file)

drawYZ

draw the YZ plane, corresponding to position x

drawXZ

draw the XZ plane, corresponding to position y

drawXY

draw the XY plane, corresponding to position z

drawBox

draw the 3D image’s bounding box



http://www.imagemagick.org
http://www.imagemagick.org/script/binary-releases.php
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/renderables/DicomViewer.html
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pixelConverter

the interpolator responsible for converting pixels decoded in the DICOM slices into values appropriate for display.
The converter has additional properties:

window
name of a preset window for linear interpolation of intensities

center
center intensity

width
width of window

Each property has a corresponding getXxx (...) and setXxx (...) method that can adjust the settings in code. They
can also be modified directly in the ArtiSynth GUI. The last property, the pixelConverter allows for shifting and
scaling intensity values for display. By default a set of intensity ‘windows’ are loaded directly from the DICOM file.
Each window has a name, and defines a center and width used for linearly scale the intensity range. In addition to the
windows extracted from the DICOM, two new windows are added: FULL_DYNAMIC, corresponding to the entire intensity
range of the image; and CUSTOM, which allows for custom specification of the window center and width properties.

To add a DicomViewer to the model, create the viewer by supplying a component name and reference to a DicomImage,
then add it as a Renderable to the RootModel:

DicomViewer viewer = new DicomViewer ("my image", dicomImage);
addRenderable (viewer) ;

The image will automatically be displayed in the patient-centered coordinates loaded from the DicomImage. In addition
to this basic construction, there are convenience constructors to avoid the need for a DicomReader for simple DICOM
files:

// loads all matching DICOM files to create a new image

public DicomViewer (String name, String imagePath, Pattern filePattern, boolean <+
checkSubdirs) ;

// loads a list of DICOM files to create a new image

public DicomViewer (String name, List<File> files);

These constructors generate a new DicomImage internal to the viewer. The image can be retrieved from the viewer using
the get Image () method.

9.5 DICOM example

Some examples of DICOM use can be found in the artisynth.core.demos.dicom package. The model DicomTest
loads a partial image of a heart, which is initially downloaded from the ArtiSynth website:

I package artisynth.demos.dicom;

)

3 import java.awt.Color;
4+ import java.io.File;
5 import java.io.IOException;

7 import artisynth.core.renderables.DicomViewer;

s import artisynth.core.workspace.DriverInterface;
9 import artisynth.core.workspace.RootModel;

0 import maspack.fileutil.FileManager;

11 import maspack.util.PathFinder;

3 public class DicomTest extends RootModel ({

15 // Dicom file name and URL from which to load it

16 String dicom_file = "MR-MONO2-8-1l6x-heart";

17 String dicom_url =

18 "http://www.artisynth.org/files/data/dicom/MR-MONO2-8-16x-heart.gz";




20 public void build(String[] args) throws IOException ({

// cache image in a local directory ’data’ beneath Java source
23 String localDir = PathFinder.getSourceRelativePath (
2 this, "data/MONO2_HEART") ;
// create a file manager to get the file and download it if necessary

26 FileManager fileManager = new FileManager (localDir, "gz:"+dicom_url+"!/");
fileManager.setConsoleProgressPrinting (true);
28 fileManager.setOptions (FileManager .DOWNLOAD_ZIP); // download zip file first

30 // get the file from local directory, downloading first if needed
31 File dicomPath = fileManager.get (dicom_£file);

// create a DicomViewer for the file
34 DicomViewer dcp = new DicomViewer ("Heart", dicomPath.getAbsolutePath (),
null, /*check subdirectories*/false);

addRenderable (dcp); // add it to root model’s list of renderable

Lines 23-28 are responsible for downloading and extracting the sample DICOM zip file. In the end, dicomPath contains
a reference to the desired DICOM file on the local system, which is used to create a viewer on line 34. We then add the
viewer to the model for display purposes.

To run this example in ArtiSynth, select All demos > dicom > DicomTest from the Models menu. The model should load
and initially appear as in Figure 9.3.

Figure 9.3: DICOM viewer image from DicomTest
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Appendix A

Mathematical Review

This appendix reviews some of the mathematical concepts used in this manual.

A.1 Rotation transforms

Rotation matrices are used to describe the orientation of 3D coordinate frames in space, and to transform vectors
between these coordinate frames.

Consider two 3D coordinate frames A and B that are rotated with respect to each other (Figure A.1). The orientation
of B with respect to A can be described by a 3 x 3 rotation matrix Rp4, whose columns are the unit vectors giving the
directions of the rotated axes X', y’, and z’ of B with respect to A.

Rpy4 is an orthogonal matrix, meaning that its columns are both perpendicular and mutually orthogonal, so that

RpRp =1 (A1)
where I is the 3 x 3 identity matrix. The inverse of Rp, is hence equal to its transpose:

Ry =Ry (A2)

Because Rpy is orthogonal, |detRgs| = 1, and because it is a rotation, detRgy = 1 (the other case, where detRgy = —1,
is not a rotation but a reflection). The 6 orthogonality constraints associated with a rotation matrix mean that in spite of
having 9 numbers, the matrix only has 3 degrees of freedom.

Now, assume we have a 3D vector v, and consider its coordinates with respect to both frames A and B. Where necessary,
we use a preceding superscript to indicate the coordinate frame with respect to which a quantity is described, so that 4v
and Bv and denote v with respect to frames A and B, respectively. Given the definition of R4p given above, it is fairly
straightforward to show that

Ay = Rpa Bv (A.3)

and, given (A.2), that

By =RL,v. (A.4)
Hence in addition to describing the orientation of B with respect to A, Rp4 is also a transformation matrix that maps
vectors in B to vectors in A.

It is straightforward to show that
R, =R}, =Rz (A.5)

A simple rotation by an angle 6 about one of the basic coordinate axes is known as a basic rotation. The three basic
rotations about x, y, and z are:

1 0 0
R:(6)= |0 cos(6) —sin(0) |,

0 sin(0) cos(H)

cos(B) 0 sin(0)
R,(0) = 0 1 0 ;




Figure A.1: Two coordinate frames A and B rotated with respect to each other.

N

RCA

Figure A.2: Schematic illustration of three coordinate frames A, B, and C and the rotational transforms relating them.

cos(0) —sin(B) 0
R;(0) = | sin(6) cos(6) O
0 0 1

Next, we consider transform composition. Suppose we have three coordinate frames, A, B, and C, whose orientation are
related to each other by Rps, Rep, and Rea (Figure A.6). If we know Rps and Ry, then we can determine Rep from

Rcs = Ry Rea. (A.6)

This can be understood in terms of vector transforms. R¢p transforms a vector from C to B, which is equivalent to first
transforming from C to A,

AV = RCA CV, (A-7)
and then transforming from A to B:
By =Ry Av =Ry} Res“v=Rep V. (A.8)
Note also from (A.5) that R¢p can be expressed as
Rcp = RapRey. (A.9)

In addition to specifying rotation matrix components explicitly, there are numerous other ways to describe a rotation.
Three of the most common are:

Roll-pitch-yaw angles
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There are 6 variations of roll-pitch-yaw angles. The one used in ArtiSynth corresponds to older robotics texts
(e.g., Paul, Spong) and consists of a roll rotation r about the z axis, followed by a pitch rotation p about the new
y axis, followed by a yaw rotation y about the new x axis. The net rotation can be expressed by the following
product of basic rotations: R.(r) Ry (p)Ry(y).

Axis-angle
An axis angle rotation parameterizes a rotation as a rotation by an angle 0 about a specific axis u. Any rotation
can be represented in such a way as a consequence of Euler’s rotation theorem.

Euler angles

There are 6 variations of Euler angles. The one used in ArtiSynth consists of a rotation ¢ about the z axis,
followed by a rotation 6 about the new y axis, followed by a rotation y about the new z axis. The net rotation can
be expressed by the following product of basic rotations: R;(¢) R, (6)R;(y).

A.2 Rigid transforms

Rigid transforms are used to specify both the transformation of points and vectors between coordinate frames, as well as
the relative position and orientation between coordinate frames.

X

Figure A.3: A position vector pp4 and rotation matrix Rp4 describing the position and orientation of frame B with
respect to frame A.

Consider two 3D coordinate frames in space, A and B (Figure A.3). The translational position of B with respect to A
can be described by a vector pp4 from the origin of A to the origin of B (described with respect to frame A). Meanwhile,
the orientation of B with respect to A can be described by the 3 x 3 rotation matrix Rpy (Section A.1). The combined
position and orientation of B with respect to A is known as the pose of B with respect to A.

Now, assume we have a 3D point q, and consider its coordinates with respect to both frames A and B (Figure A .4).
Given the pose descriptions given above, it is fairly straightforward to show that

49 =Rps ®q+ paa, (A.10)

and, given (A.2), that
Pq =Ry ("a—pga). (A.11)

If we extend our points into a 4D homogeneous coordinate space with the fourth coordinate w equal to 1, i.e.,

q = (‘11) , (A.12)

then (A.10) and (A.11) can be simplified to

Aq*:TBABq* and B *:TEAIAq*




Figure A.5: The transform matrix T4 from B to A.

where
Ty = (Rg" "fA) (A.13)
and , ,
Tp = <R3A _RB{‘pBA) : (A.14)

Tpa is the 4 x 4 rigid transform matrix that transforms points from B to A and also describes the pose of B with respect
to A (Figure A.S).

It is straightforward to show that RZTM and leTgApBA describe the orientation and position of A with respect to B, and so
therefore
Tyi = Tas. (A.15)

Note that if we are transforming a vector v instead of a point between B and A, then we are only concerned about
relative orientation and the vector transforms (A.3) and (A.4) should be used instead. However, we can express these
using Tpy if we embed vectors in a homogeneous coordinate space with the fourth coordinate w equal to 0, i.e.,

v = (g) , (A.16)

By* = TgsAv* and 4 *:TEA]BV*.

so that

Finally, we consider transform composition. Suppose we have three coordinate frames, A, B, and C, each related to the
other by transforms Tp4, Tcp, and Tey (Figure A.6). Using the same reasoning used to derive (A.6) and (A.9), it is easy
to show that

Tcp = Ty) Tca = Tap Tea. (A.17)
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Figure A.6: Three coordinate frames A, B, and C and the transforms relating each one to the other.

A.3 Affine transforms

An dffine transform is a generalization of a rigid transform, in which the rotational component R is replaced by a general
3 x 3 matrix A. This means that an affine transform implements a generalized basis transformation combined with an
offset of the origin (Figure A.7). As with R for rigid transforms, the columns of A still describe the transformed basis
vectors X', y/, and 7/, but these are generally no longer orthonormal.

Figure A.7: A position vector pp4 and a general matrix Ag4 describing the affine position and basis transform of frame
B with respect to frame A.

Expressed in terms of homogeneous coordinates, the affine transform X5 takes the form

A
Xps = ( o pf*‘) (A.18)
with » »
X;) = (AgA AB{\"’-’“). (A.19)

As with rigid transforms, when an affine transform is applied to a vector instead of a point, only the matrix A is applied
and the translation component p is ignored.

Affine transforms are typically used to effect transformations that require stretching and shearing of a coordinate frame.
By the polar decomposition theorem, A can be factored into a regular rotation R plus a symmetric shearing/scaling

matrix P:
A=RP (A.20)




Affine transforms can also be used to perform reflections, in which A is orthogonal (so that AT A = T) but with
detA = —1.

A.4 Rotational velocity

BA

Figure A.8: Frame B rotating with respect to frame A.

Given two 3D coordinate frames A and B, the rotational, or angular, velocity of B with respect to A is given by a 3D
vector Wpa (Figure A.8). wpy is related to the derivative of Rga by

Rpa = [*0pa]Rps = Rpa[Pwrpa] (A.21)

where A@g4 and Zwp, indicate gy with respect to frames A and B and [o] denotes the 3 X 3 cross product matrix

0 -0 o
0= | o 0 —a]. (A22)
-0y Wy 0

If we consider instead the velocity of A with respect to B, it is straightforward to show that

Wap = —MpRA- (A23)

A.5 Spatial velocities and forces

Given two 3D coordinate frames A and B, the spatial velocity, or twist, ¥4 of B with respect to A is given by the 6D
composition of the translational velocity vp4 of the origin of B with respect to A and the angular velocity wp:

Vg = (VBA) . (A.24)

pA

Similarly, the spatial force, or wrench, f'acting on a frame B is given by the 6D composition of the translational force fp
acting on the frame’s origin and the moment 7, or torque, acting through the frame’s origin:

fp = (Z ) . (A.25)

If we have two frames A and B rigidly connected within a rigid body (Figure A.9), and we know the spatial velocity
Vpc of B with respect to some third frame C, we may wish to know the spatial velocity V4¢ of A with respect to C. The
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Figure A.9: Two frames A and B rigidly connected within a rigid body and moving with respect to a third frame C.

angular velocity components are the same, but the translational velocity components are coupled by the angular velocity
and the offset pg4q between A and B, so that

VAC = VBc + PBa X Wpc.
vac\ _ (1 [psal\ [ vec
WAc 0 I @pc .

The above equation assumes that all quantities are expressed with respect to the same coordinate frame. If we instead
consider V4¢ and V¢ to be represented in frames A and B, respectively, then we can show that

V4c 1s hence related to V¢ via

where [ppa] is defined by (A.22).

ac =Xpa "V5c, (A.26)
where
_ (Rpa  [psalRpa
Xps = ( 0 Ry . (A.27)

The transform Xp, is easily formed from the components of the rigid transform Tp4 relating B to A.

The spatial forces f4 and f3 acting on frames A and B within a rigid body are related in a similar way, only with spatial
forces, it is the moment that is coupled through the moment arm created by pp4, so that

Ta = Tp+Ppaa X 5.

If we again assume that f'A and fg are expressed in frames A and B, we can show that

Aty = X5, Btp, (A.28)
where
* RBA 0
X5, = ) A.29
BA ([PBA]RBA RBA) (A.29)

A.6 Spatial inertia

Assume we have a rigid body with mass m and a coordinate frame located at the body’s center of mass. If v and w give
the translational and rotational velocity of the coordinate frame, then the body’s linear and angular momentum p and L
are given by

p=mv and L=Jo, (A.30)




where J is the 3 x 3 rotational inertia with respect to the center of mass. These relationships can be combined into a
single equation
p=Myv, (A.31)

where p and M are the spatial momentum and spatial inertia:

. _ (P _(mI 0
b= (). M= (2 0) a)
The spatial momentum satisfies Newton’s second law, so that
. dp av .
i Y AV 23 (A33)

which can be used to find the acceleration of a body in response to a spatial force.

When the body coordinate frame is not located at the center of mass, then the spatial inertia assumes the more compli-

cated form | [ ]
m —m|C
(m[c1 J—mld [c]) ! (A.34)

where c is the center of mass and [c] is defined by (A.22).

Like the rotational inertia, the spatial inertia is always symmetric positive definite if m > 0.
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