ArtiSynth User Interface Guide

John Lloyd
Last update: July, 2021

ArtiSynth User Interface Guide 2

Contents
1 Introduction 3
1.1 User configurationfolder 3
2 Loading, Simulating and Saving Models 3
2.1 Loading fromthe modelmenu 3
2.2 Loadingdirectly by class e 4
2.3 Loadingfromafile 5
24 Loadingrecentmodels e 5
2.5 Setting astartupmodelo 5
2.5.1 Specifying models from the command line 6
2.6 Simulatingamodel e e e e 6
2.7 Othertoolbar controls oL e e e e 6
2.8 Savingamodel e e e 7
2.9 Setting the external classpath e e 8
2.10 The ArtiSynth working folder 8
3 The Viewer 9
3.1 Viewer Toolbar o e 9
3.2 Viewpointcontrolo e 9
3.3 Adding additional viewers L. e 10
3.4 World coordinate axeso i e e e e e e e e e e e e e 10
3.5 Orthographic vs. perspective projection Lo 10
3.6 Viewer grid 11
3.6.1 Gridunits 11
3.6.2 Axislabeling 11
3.6.3 Grid properties e e 11
3.7 Clipping planes e e e e e e 13
3.7.1 Addingand removing e e 14
372 MOVING . . . L e e e 14
373 Offsets . ..o o 14
3.7.4 Enabling/disabling L 14
3775 Slicingmode e 14
376 Otherfeatures L e e e 15
3.8 Indicating 3D positions withthe mouse L 15
3.9 VIEBWET PIOPETtIS . . . v v v v v o i i e i e e e e e e e e e e e e e e e e e e e 15
3.9.1 Viewer-specific propertieso e 17
3.10 Mouse Bindings L 17

3.11 Keyboard shortcuts e e e e e e 19

ArtiSynth User Interface Guide 3
4 Component Navigation and Selection 19
4.1 Thecomponenthierarchy 19
4.1.1 Componentnames and numbers Lo 20
4.12 Componentpathnames L 20

4.2 Navigation panel selection L e e 21
4.2.1 Large numbers of nameless components oL e 21

43 Viewerselection e 21
43.1 Clickandboxselection L 22
432 Ellipticselection e e e e 22

4.3.3 Selectionfiltering e e 22

4.4 Selectiondisplay e e e 23
4.5 Selecting parent and ancestor COMPONENLS o v v v v v v it e e e e e e e e 23
4.6 Highlighting selected components e 23
Model Manipulation 24
5.1 Dragger fiXtures e 24
5.2 Transformertools L e e e 24
5.2.1 Constrained transformationo 25

5.2.2 Transformer repoSitioning e e e e e e e 25

5.2.3 Changing the transformer base frame L oL 25

5.3 Pull manipulation e e e e e e 26
54 Markertool 26
Editing Properties 27
6.1 Property panels 27
6.1.1 Inheritable properties 28

6.2 Render propertiesl 28
6.2.1 Render property settings e 29

The Timeline 30
7.1 Probes and waypoints e e e e e e e e e e e e e 30
7.2 Basic timeline Structure e e e e e e e e e 31
7.2.1 Playcontrols 31

7.22 Tracks o e 32

7.3 Viewing and setting waypointsl 32
7.3.1 Waypoints Lo e e e 32

7.3.2 Breakpoints e 32

7.3.3 Savingandloading 33

74 Tracksandprobes L 33
7.4.1 Creating, moving, and deleting tracks L 0oL 33

742 Mutingtracks L 34

7.4.3 Expandingtracks L 34

ArtiSynth User Interface Guide 4
7.4.4 Groupingtracks 34

7.5 Numeric probe displays L e e e e e e 34
7.5.1 Setting the range and display propertieso 34

7.5.2 Visibility control Lo 34

7.5.3 Editingand scalingdata 35

7.5.4 Interpolation control L. e e e 36

7.5.5 Largedisplays 37

7.5.6 Cloning displays and exporting plots Lo 37

8 Saving and Loading Probes 38
8.1 Saving and loading probedata 38

8.2 Exporting numeric probe data L. L 39

8.3 Saving and loading all probes e e 39

9 Adding and Editing Numeric Probes 40
9.1 Adding output probes L. e e e 40
9.1.1 Creatingasimple probe 40

9.1.2 General output probes e 41

9.1.3 Usingthe probeeditor 41

9.2 Addinginputprobes 42
9.2.1 Creatingasimple probe 42

9.2.2 General input probes L. e e e 42

9.23 Usingthe probeeditor 43

9.3 Setting probe properties e 43

10 Point Tracing 44
11 Settings and Preferences 45
T11 Settings o o e e e 45
11.1.1 Interaction o o o i e e e e e e e 45

11.1.2 Simulation e 46

11.2 Preferences 47
11.3 Layoutpreferences e 48

12 Jython Interaction and Scripting 49
12.1 Querying ArtiSynth structuresand modelso oo 50
12.2 Object creation and importing classeso 51
12.3 Running simulations and SCripting e e e e 51
12.4 Using the script menu Lo e e 52
12.5 Selecting ascriptfile 53
12.6 Specifying scripts on the command line 53
12.7 Built-in functions 54

ArtiSynth User Interface Guide

13 Customizing the Model and Script Menus
13.1 Model menu editor
13.2 Scriptmenu editor. L.
13.3 MenU eNtry tYPES . . . v v v v v i e
133.1 Model
13.3.2 Package e
1333 Demofile
13.3.4 Script e
13.3.5 Scriptfolder e e
13.3.6 Submenu e
13.3.7 Label o
13.3.8 Separator
13.4 Command line OPLionNS o o e e e e e e e e e
13.5 Demo file text format L e e
13.6 XML Menu Format
13.6.1 Therootelements. i e
13.6.2 Modelelement e e
13.6.3 Packageelement e
13.6.4 DemoFileelement e
13.6.5 Scriptelement e e e e
13.6.6 ScriptFolderelement L
13.6.7 Submenuelement. L
13.6.8 Labelelement. L e
13.6.9 Separatorelement. e e e e e e

13.6.10Hiding elements e e e e e

14 Making Movies
14.1 Recordertab L e e e
14.1.1 Regiontocapture v vt v it e s e e e e e
14.1.2 Record Options o o e e e e e
14.1.3 Other options o v it e e e e e e e
14.2 Encodertab L e e
14.2.1 Encoder Options o e e e e e e e e e e
14.2.2 Customizing the encodercommand
14.3 Output Size OPHONS ottt e e e e
144 Advancedtab

14.5 Saving movie preferenceso

15 Control Panels
15.1 Creatingcontrol panels e
15.1.1 Composite property widgets e
15.1.2 Widgets for sub-properties e e
15.2 Editing control panels
153 Liveupdating L e

ArtiSynth User Interface Guide 6

16 Component Editing 75
16.1 Generic edit OPErations v v i i e e e e e e e e e e e e 76
16.1.1 Deletion. e 76
16.1.2 Duplication e e e 76
16.1.3 Undo o o o 76

16.2 Editing panels e e e e 76
16.3 Specifying position, orientation, and scalingo 77
16.4 Editing MechModels e 77
16.4.1 Adding finiteelement models 78
16.4.2 Addingrigidbodies L 78
16.4.3 Adding framemarkers 79
16.4.4 Adding particles L e 81
16.4.5 Adding axial springsand muscleso 81
16.4.6 Addingrigid body connectors e 83
16.4.7 Attaching particles to particles L. oL 84
16.4.8 Attaching particles torigidbodies oL 84
16.4.9 Collision handling e 85

16.5 Editingrigidbodies 87
16.5.1 Geometry andinertiao e 87

16.6 Editing FEM models e e 89
16.6.1 Adding FEM markers 89
16.6.2 Addingmusclebundles 90

16.7 Editingmusclebundles 90
16.7.1 Addingfibres L e 90
16.7.2 Addingelementreferences 91
16.7.3 Automatically setting elements and directionso 92
16.7.4 Removing fibres and elementreferences oo 92

16.8 Editing muscle eXCIters o v e e e e e e e e e e e 93
16.9 Editingrootmodels 93

ArtiSynth User Interface Guide 7

1 Introduction

This manual describes the ArtiSynth user interface (UI), and how it can be used to edit models and interactively monitor
and control their simulation.

1.1 User configuration folder

By default, ArtiSynth tries to store user-specific settings and configuration information in various files located under the
user configuration folder, the path to which is given by

<HOME>/ArtiSynthConfig

where <HOME> is the user’s home folder. Default instances of these files will be created when they are first accessed or
recreated if they are later found to be corrupt or missing.

2 Loading, Simulating and Saving Models

The first thing an ArtiSynth user is likely to want is to load a demonstration model, and explore and simulate it.

An ArtiSynth model is defined by a Java class which is a subclass of the ArtiSynth RootModel component. This class
builds the model, serves as the root container for all its components, and implements the advance () method which
allows the model to be simulated.

A number of predefined demonstration models come bundled with the ArtiSynth distribution and are declared within
subpackages of artisynth.demos. These are generally simple models that illustrate particular simulation capabil-
ities. More complex anatomical models, including those used in various research projects and mostly focused on
head and neck anatomy, are available in the separate project artisynth_models, which must be downloaded sepa-
rately (see www.artisynth.org/models for instructions). These anatomical models are declared within subpackages of
artisynth.models.

To run user-defined models defined within Java packages that are outside of the project artisynth_core, it is necessary
to arrange for their classpaths to be visible to the ArtiSynth application. One way to do this is to add the classpaths to
the ArtiSynth external classpath, as described in Section 2.9. If one is using an integrated development environment
(IDE) for Java compilation and execution, this linking can also be done within the IDE. More detailed information on
this topic is given in the section “Making external models visible to ArtiSynth” of the ArtiSynth Installation Guide.

2.1 Loading from the model menu

Some models can be loaded directly using the Models menu located in the ArtiSynth menu bar (Figure 1). By default,
the upper part of this menu contains a number of submenus:

Demos - all models listed in the file demoModels.txt (described below);
All Demos - every model found in artisynth.demos or its subpackages, arranged hierarchically.

In addition, if artisynth_models has also been installed, or if ArtiSynth otherwise detects the presence of the
superpackage artisynth.models, then the Models menu will also contain:

Models - all models listed in the file mainModels.txt (described below);
All Models - every model found in artisynth.models or its subpackages, arranged hierarchically.

Each submenu expands out to identify a set of models. Selecting one of the models will cause it to be loaded into
ArtiSynth and displayed in the viewer. Hovering over one of the entries will display the full classname of the associated
RootModel. The files demoModels.txt and mainModels.txt are located in the settings subfolder of the user
configuration folder (Section 1.1); default instances of these are created the first time ArtiSynth is run, and they can later
be modified by the user.

The lower part of the model menu, beneath the separator, contains entries for reloading recent models (Section 2.4),
loading a model from an explicitly specified class (Section 2.2), and customizing the upper part of the the model menu
(Section 13).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html
http://www.artisynth.org/models

ArtiSynth User Interface Guide 8

Arti Syoth Mull model {_:"I'.c(rm.l'il-:rlrd]

Flln:mdnls Scripts Fdit Settings Wiew Halp

T® Spring Mash Spring/FEM Attachment eI
All demos ¥ Higidbody Spring Articulatod FEM J
“Nle “: I spring Mek Leaf amae
& Load recent ¥ MechModel Demo Combined Shell-FEM
@ 1l L anad fram claszs .., | Multi-Paint Muscle Shell Black
P :! Edil imefi ... Hex FEM Cube RigldDody Collision
j: | FEM Locking FEM Plane Collide
F-I; Hex FEM Block= FEM Calllsian
wt| Rubush FEM Cubie FEM Muscle Arm
| Incomprassibla FER Simple FEM Muscla
| Paint FEM Attachment LM Self Collision
‘a embedded Susface Rigidiody Skinning
- Fmbedded Surface Colllde FEM Skinning
"_’_‘ﬁ Simple Coflide Phalanx Wrapping
I | Puppat Memo Talus Wrapping
4 Contact Pressure Render Torus Wrapping
{‘....- Lumbar FEM Disk Inwverse PFoint.2d
- Lumbar Framespring Inwerse Hydrostat

Malerial Bundle
Hew Framo

R

Figure 1: The ArtiSynth model selection menu.

Model menu customization is is needed to create menu entries for root models not defined within (or beneath) the
packages artisynth.demos or artisynth.models.

2.2 Loading directly by class

As mentioned above, models are defined by subclasses of RootModel. A model may therefore be loaded into ArtiSynth
by directly specifying the class that defines its RootModel. To do this, choose “Load from class ...” from the lower part of
the model menu, which will bring up a model selection dialog as shown in Figure 2.

Model package: [artisynth.demos.mech

Model class:

[»

[] GimbaljeintDemo
[] HingeJointDemo
[JLaymanBowl
LaymanDemo

[] MassSpringDemo
1 MechmModelCollide
[]MechModelDemo
[] MultiMuscleDemo
[] MultiSpringDemo
1 MusrlaArm -
|
|

Build args: |

Waypoints file: | || Browse

| Load || Cancel

Figure 2: Dialog for selecting a model class.

Users should specify the name of the package containing the model in the “Model package” field at the top. Using the

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide 9

<TAB> character in this field will invoke auto-completion based on currently know packages, while repeated use of
either <TAB> or the up/down arrows will scroll through known packages. Package entry is completed using the <ENTER>
key, and any models that appear in that package (but not its subpackages) will then be displayed in the “Model class”
panel below it. The user can then select the desired model by clicking on it. In Figure 2, the model defined by the class
artisynth.demos.mech.LaymanDemo has been selected.

If the model requires command-line style arguments to its build () method (as described in the section “Implementing
the build() method” of the ArtiSynth Modeling Guide), these can be entered in the “Build args” field near the dialog
bottom. Arguments should be separated by white space, with those containing white space placed between double
quotes ‘"’. The last field, “Waypoints file”, can optionally be used to specify a file containing simulation way points
(Section 7.3.1). As with all externally loaded waypoint data, the waypoints must match the current model structure.

When all desired settings have been made, the model can be loaded by clicking the Load button.

2.3 Loading from a file

Finally, it is possible to load a model from a file. Selecting “Load model ...” from the File menu will bring up a File
browser that lets you select and load a model from an ArtiSynth model file. ArtiSynth model files are text-based
documents that contain a hierarchical description of all the model’s components, and are typically identified by the
extension .art.

When loading a model from a . art file, it is necessary to have all classes associated with that model in the current
Java classpath. This can be an issue when loading files generated by other users using application-specific Java
code. Two possible solutions to this are: (a) bundling the application-specific code into a . jar file and adding

it to the external classpath (Section 2.9), or (b) making sure that the file was saved using only artisynth_core
components, as described in Section 2.8.

2.4 Loading recent models

After a model has been loaded by any of the methods described above, it can be reloaded by selecting “Reload model”
from the lower part of the model menu. Models which have been recently loaded can be reloaded by selecting “Load
recent” from the Models menu.

2.5 Setting a startup model

When working repeatedly with a specific model, it can be useful to set that model to automatically load when ArtiSynth
starts up. This can be done by setting the startup model, by choosing “Startup model ...” from the Settings menu. This
will open a startup model dialog as shown in Figure 3.

The model to load can be specified either by class or by file. To specify the model by class, one uses the “Model
package”, “Model class” and “Build args” fields to choose the model class and optional build () method arguments in the
same manner as described in Section 2.2. To specify the model by file, one instead uses the “Model file” field to select a
model file, as described in Section 2.3.

For either kind of model, it is also possible to use the “Waypoints file” field to specify a file of saved waypoints to be
loaded along with the model. As with all externally loaded waypoint data, the waypoints must match the current model
structure. Waypoints are described in Section 7.3.1.

* To save the startup model, click the Save button at the bottom of the dialog.

* To clear the startup model (so that no model is loaded), click the Clear button followed by the Save button.

* To load a specified model immediately, click the Load Model button.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 10

Model Package: [artisynth.demos.fem

Model class:

[v] ArticulatedFem

[] AttachDemo

[] AttachedBeamDemo
[] AttachedMuscleBeam
[I BSpline3dElementTest
[I BigBeam3d

[] BodyFemAttachment
[] CombinedShellFem

[1EmbeddedEmbeddedCollide
[l EmbeddedHeart

[|EmbeddedSphere

[e

Build args: | |
Model file: | | | Browse |
Waypoints file: | | | Browse |

|

Load Model | Clear || Cancel || Save

Figure 3: Dialog to set the startup model.

2.5.1 Specifying models from the command line

As an alternative to setting the startup model, one may instead use the -model <classOrFileName> command line
option to specify a model to load when ArtiSynth starts up. This can be useful when running ArtiSynth from a script.
The <classOrFileName> argument may be either a class name or a .art file name. If a class name is specified and
build() method arguments are also required, these may be listed within square brackets ([]) separated by white
space. For example, to load the model class projects.MyModel and pass it the build () arguments “-size 50, one
can invoke ArtiSynth from the command line using

> artisynth -model projects.MyModel [-size 50]

Models specified from the command line override the specified startup model. To ensure that no model is loaded, one
may specify

> artisynth -model none

2.6 Simulating a model

Once a model is loaded, simulation of the model can be started, paused, single-stepped, or reset using the play controls
(Figure 4) located at the upper right of the ArtiSynth window frame. Play controls are discussed in more detail in
Section 7.2.1.

step: [0.01000 0.00000 |4« [» > | ||l|‘

Figure 4: The ArtiSynth play controls. From left to right: step size control, current simulation time, and the reset, skip-
back, play/pause, single-step, skip-forward and stop-all buttons.

Play controls are also available in the ArtiSynth timeline (Section 7). Also, hitting the ‘p’, ‘s’ and ‘r’ keys from within
the viewer (Section 3.11) can be used to play/pause, single step and reset the simulation.

2.7 Other toolbar controls

The ArtiSynth application contains a toolbar that runs along the top of the frame. The right side contains the play
controls shown in Figure 4.

ArtiSynth User Interface Guide 11

When a grid is enabled in the viewer (Section 3.6), a text box appears in the center of the toolbar displaying the current
grid units (Section 3.6.1).

The left side of the toolbar contains the following buttons:

T:I:'I NavPanel: Shows or hides the navigation panel (Section 4.2)
@ Reset state: Resets the simulation state at time O to the current state.
Rerender: Rerenders all viewers and displays.
@ Enable real-time: If pressed (the default setting), forces simulations to run no faster than real time.

If real-time is enabled (via the last button), the ArtiSynth scheduler will try to make the apparent simulation speed
equal to real time. Simulations can of course run much slower than real time if they involve complex models with
many degrees of freedom (such as large finite element models). However, for simpler models, real-time can also
increase the overall simulation time, which is why the option to disable real-time is provided.

2.8 Saving a model

An ArtiSynth model can be saved to a file to be reloaded and used later. Selecting “Save model as ...” from the File
menu will bring up a dialog that lets you select the name and directory for the model file (Figure 5). If a model file has
already been specified, then one can save to it again by selecting the Save model menu item. ArtiSynth model files are
text-based and are typically identified by the extension .art.

Look In: |[J demos ‘v| E

] dicom [Jrenderables 3 wrapping

1 fem] scripts

] inverse CJtest

J mech I tutorial

File Name: Imymodel.art |
Files of Type: |ArtiSynth model files (*.art) v

Save waypoint data: []
Core components only: []

Save As || Cancel

Figure 5: The save model dialog.

When using the “Save model as ...” menu item, the user may choose the following options:

Save waypoint data:

Causes the state data for any valid waypoints (Section 7.3) to be saved (within the file) in addition to the waypoint
locations. This is optional because a large number of waypoints may significantly increase the file size for models
with a large state sizes.

Core components only:

Saves only those components which are present in the main artisynth_core package. Any non-core compo-
nents, and any other components which have a hard dependency on them, will not be written, and the user will
be advised of this via a message dialog. The root model (Section 4.1) is saved as a pure instance of RootModel,

ArtiSynth User Interface Guide 12

instead of the application-specific class that was used to build it. This means that any properties or class overrides
specific to the application root model class will not be present in the saved model. The advantage to storing a
model using only core components is that it can be loaded by any other user running the same ArtiSynth version,
without needing access to any application-specific classes.

2.9 Setting the external classpath

As mentioned above, the classpath(s) for models declared outside of artisynth_core must be made visible to
ArtiSynth so that they can be found and loaded. Detailed information on this topic is given in the section “Making
external models visible to ArtiSynth” of the ArtiSynth Installation Guide.

An easy way to make classpaths visible to ArtiSynth is to add them to the external classpath, which is a list of top-level
class folders and/or . JAR files containing the classes required to run external models. These may include both model
classes and any external Java libraries that they require.

The external classpath is contained in a file named EXTCLASSPATH in the user configuration folder (Section 1.1). This
file can be edited directly from ArtiSynth by selecting “External classpath ...” from the Settings menu, which will open
the editing dialog shown in Figure 6.

/home/lloyd/artisynth/artisynth_istar/classes

/home/lloyd/artisynth/artisynth_istar/lib/optimize.jar ‘ Add class folder ‘

‘ Add JAR file ‘

ean |

| Save H Cancel

Figure 6: The external classpath editor.

The current class folders and JAR files are listed, one per line, in the large panel at the left. If the external classpath is
empty, this panel will be blank. New class folders or JAR files can be added using the “Add class folder” and “Add JAR
file” buttons at the right, which invoke file choosers appropriate to the file type. Existing entries can be selected and then
edited, moved up or down in the list (using the up/down arrow buttons), or deleted (using the X button). When editing is
complete, the updated external classpath can be saved using the Save button at the bottom.

ArtiSynth must be restarted for external classpath changes to come into effect.

2.10 The ArtiSynth working folder

ArtiSynth maintains the notion of a working folder, which is the default folder (or directory, in Unix parlance) under
which the files used to store various types of model information are stored. This includes model files, as described
above, along with other files such as those used to store waypoints, probe configurations, or probe data (Section 8).

Chooser dialogs for these files will generally be initialized to the working folder if their files have not been previously
set.

The working folder is initialized to the system working folder from which the ArtiSynth application is started. Once
ArtiSynth is running, it can be set by choosing “Set working folder ...” from the File menu, or by calling

ArtisynthPath.setWorkingFolder (file)

in code. When a model is saved (Section 2.8), the working folder is saved with it and restored when the model file is
subsequently loaded.

ArtiSynth User Interface Guide 13

3 The Viewer

The viewer provides interactive graphical rendering of the ArtiSynth model and permits selection of its components. A
viewer is integrated into the ArtiSynth main frame; additional viewers can be created if necessary.

3.1 Viewer Toolbar

Each viewer is provided with a toolbar (Figure 7) equipped with icons for controlling the viewpoint (Section 3.2) and
clipping planes (Section 3.7). The toolbar for the main viewer appears vertically at the lower left of the main frame,
while toolbars for additional viewers appear horizontally at the top. Each is an instance of Java’s JToolBar, and so can
be moved and docked accordingly.

L |*é

Figure 7: The viewer toolbar.

3.2 Viewpoint control

The viewpoint can be controlled interactively using mouse drag actions. There are three such actions:

Rotate
Rotates the viewpoint about the viewer center point. By default, this rotation is constrained so the viewer “up”
direction remains vertical in the view plane, but this can be changed using the viewer’s rotationMode property
(Section 3.9).

Translate

Translates the viewpoint in a plane perpendicular to the line of sight.

Zoom

Zooms in or out by moving the viewpoint along the line of sight.

The mouse button and modifier key combinations required to effect these actions depend on the application’s mouse
bindings, which by default are set to either ThreeButton, TwoButton, or OneButton depending on the number of available
mouse buttons. Button/key combinations for each of these is described in the following table,

Action ThreeButton | TwoButton OneButton
Rotate MMB LMB+ALT LMB+ALT
Translate | MMB+SHIFT LMB+ALT+SHIFT | LMB4+ALT+SHIFT
Zoom MMB+CTRL LMB+ALT+CTRL LMB+ALT+CTRL

where MMB and LMB denote the middle and left mouse buttons. If a mouse wheel is present, then this can also be used to
execute zoom actions.

Mouse bindings can also be set explicitly by the user and alternative bindings are available; see Section 3.10.

Predetermined viewpoints can also be selected using the align axis button located on the viewer control bar. Clicking
on this button produces a popup icon menu showing six different axis-aligned views. Each view is indicated by the two
axes perpendicular to the line of sight, with the X, Y, and Z axes illustrated by red, green, and blue lines respectively.
Some examples are:

ArtiSynth User Interface Guide 14

L

Front: 7 axis up, X axis to the right.
J Back: Z axis up, X axis to the left.

I— Top: Y axis up, X axis to the right.
r Bottom: Y axis down, X axis to the right.
L

Left: Z axis up, y axis to the right.

.

The align axis button itself displays the most recently selected axis-aligned view, and the popup menu shows this view
together with five alternates which are chosen based on the current view. Reselecting the current view will realign the
viewer’s viewpoint to the current view; hitting the ‘v’ key from within the viewer (Section 3.11) will do the same.

Right: Z axis up, y axis to the left.

3.3 Adding additional viewers

Additional viewers can be created by selecting View > New viewer from the main menu. Each viewer provides indepen-
dent viewing and selection control for the current model.

3.4 World coordinate axes

Hitting the "a’ key from within the viewer enables or disables drawing of the world coordinate axes. By default,

these are drawn as simple lines, with the x, y and z axes colored red, green and blue, respectively, and the axis length
computed automatically based on the model size.

Figure 8: RigidBodyDemo with world coordinate axes drawn as simple lines (left) and solid arrows (right).

Axes can also be rendered as solid arrows by setting the axisDrawStyle property (Section 3.9) to ARROW instead of LINE,
and the axis length can be set explicitly using the axisLength property (Section 3.9.1). Axes are not drawn if either
axisLength is 0 or axisDrawStyle is set to OFF.

3.5 Orthographic vs. perspective projection

The user can toggle between orthographic and perspective projection by selecting View > Orthographic view or View >
Perspective view from the main menu. Toggling can also be achieved using the ‘o’ key shortcut (Section 3.11) within the
viewer.

ArtiSynth User Interface Guide 15

Grid: 1/10

Figure 9: Viewer showing the grid.

3.6 Viewer grid

Hitting the ‘g’ key within the viewer enables or disables a grid (Figure 9). Grid cells are square and appear in two
resolutions, with major cells subdivided into a number of minor cells. Major cells are typically rendered more brightly
than minor cells. By default, the grid computes the cell sizes automatically based on the current viewer zoom-level.
However, it is possible to set an explicit grid resolution (see 3.6.1).

The grid is located in the plane perpendicular to the line of sight of the most recently selected axis-aligned view. To
change the grid plane, select a new axis aligned viewpoint (Section 3.2).

3.6.1 Grid units

When the grid is enabled, a box labeled Grid: appears in the toolbar on top of the main ArtiSynth frame which gives
the current resolution of the grid, displayed as S/N, where S is the size of each major grid cell and N is the number of
subdivisions per cell. If there are no subdivisions, then the /N is omitted. For example, in Figure 9, this appears as
Grid: 1/10, which means that the major grid cells have a size of 1.0 and are each divided into 10 subdivisions. The
numeric value of the ratio S/N gives the minor cell size.

By default, the grid automatically resizes itself to the current viewer zoom level, choosing well-rounded numbers for the
grid cell size. Auto-sizing can be enabled or disabled by right-clicking on the Grid: label and choosing Turn auto-sizing
on or Turn auto-sizing off, as appropriate. The user can also specify an explicit value for the grid resolution by entering
the desired S/N value (or just an S value) into the Grid: box. Specifying an explicit value will disable auto-sizing,
unless S is specified as 0 or the special value * is entered, both of which will re-enable auto-sizing.

3.6.2 Axis labeling

Hitting the ‘1’ key within the viewer enables or disables labeling of the major divisions along the horizontal and vertical
axis (Figure 10). The division lines along which these labels appear are automatically adjusted so as to ensure proper
label visibility, and do not necessarily correspond to the x, y, or z axes.

It is possible to control various properties associated with axis labeling, such as which axes are labeled, and the label
size and color. See the next section on Grid properties.

3.6.3 Grid properties

The grid has a number of properties that can be set by right-clicking in the viewer and choosing Set viewer grid
properties (or by right-clicking on the Grid: label and choosing Set properties). This will bring up a property dialog,

ArtiSynth User Interface Guide 16

Figure 10: Viewer grid with axis labels visible.

such as that shown in Figure 11.

Properties that can be set include:

resolution

Grid resolution, as described above.

autoSized

If true, causes the grid resolution to be recomputed as the user adjusts the view position, orientation, and zoom.

minCellPixels

Minimum number of pixels that should appear in a minor cell division when autosizing.

majorColor

Color to use for the major axis lines.

minorColor

Color to use for the minor axis lines.

xAxisColor

Color to use for the grid line that corresponds to the world y axis, or the horizontal axis if lockAxesToWorld is
false.

yAxisColor

Color to use for the grid line that corresponds to the world y axis, or the vertical axis if lockAxesToWorld is false.

zAxisColor

Color to use for the grid line that corresponds to the world z axis.

lineWidth
Width of the grid lines, in pixels.

position

Translation position of the grid, in world coordinates.

ArtiSynth User Interface Guide 17

resolution [10/5
minSize 92.03] =}

autoSized

minCellPixels 10

—— Y

minorColor | null || cl... || Set |
yAxisColor | null || cl... || Set |

linewidth 1

position [0010
orientation [10000
lockAxesToWorld

useWorldOrigin

xAxisLabeling

yAxisLabeling
labelSize 15.000] =}

labelColor | null || Cl... || Set |

Figure 11: Dialog to control the grid properties.

orientation

Orientation of the grid, in world coordinates.

lockAxesToWorld

If true, forces the grid to stay aligned with the orientation and position of the world axes. In particular, the
horizontal and vertical axes will always be parallel to one of the x, y, or z world axes, the grid center will be a
multiple of major cell sizes from the origin, and axis labels will be set relative to the world origin.

useWorldOrigin

If true, causes the principal horizontal and vertical axes to be aligned with the world origin. Otherwise, the axes
will be aligned with the grid center. This property can only be t rue if lockAxesToWorld is also true.

xAxisLabeling

Enables labeling of the x axis.

yAxisLabeling
Enables labeling of the y axis.

labelSize

’em’ size of the label text, in pixels.

labelColor
If set, specifies the color used to draw the label text. Otherwise, the major axis color is used.
3.7 Clipping planes

The user can add clipping planes to the viewer. These are useful for restricting what is rendered and allowing a better
view of interior structures, as shown in (Figure 12).

ArtiSynth User Interface Guide 18

Figure 12: Clipping plane showing interior of tongue model (left), disabled (center), and in slice mode (right).

3.7.1 Adding and removing

+
To add a clipping plane, left click on the add clip plane button /‘b located on the viewer toolbar. This will create a
clipping plane located in the plane perpendicular to the current line of sight.

It will also add to the viewer toolbar a clip plane icon | ’é for controlling the clipping plane. Right-clicking on this icon
will bring up an option menu.

To delete a clipping plane, right-click on its icon and select Delete.

3.7.2 Moving
A clip plane is associated with a coordinate system and can be moved and/or rotated by dragging on the trans-rotate
transformer located at its coordinate system origin. The clip region is the half space lying in the direction of the +z axis.

The transformer itself can be made invisible/visible by right-clicking on the clip plane icon and selecting Hide trans-
former or Show transformer.

3.7.3 Offsets

The clipping region is the half space lying in the direction of the +z axis of the plane’s local coordinate system. By
default, clipping is actually offset by a small distance along the +z axis, so that small objects (such as points) lying in the
x-y plane remain visible. The amount of this offset is controlled by the plane’s offset property, which is set to a nominal
default value. To control this property directly, right-click on the clip plane icon and select Set properties. This will
bring up a panel which allows the offset to be adjusted.

3.7.4 Enabling/disabling

Left clicking on the clip plane icon will enable/disable clipping. Disabling clipping allows the plane to be used as a

regular movable grid. When clipping is disabled, the icon will change to the form | .

3.7.5 Slicing mode

Clipping planes can be placed in a slicing mode, whereby half-spaces in both the positive and negative z directions are
clipped. The result is a small slice about the local x-y plane (Figure 12, right). The width of this slice is controlled by
the plane’s offset property, as described above.

To enable or disable slicing, right-click on the clip plane icon and select Enable slicing or Disable slicing.

ArtiSynth User Interface Guide 19

3.7.6 Other features

Properties
Various properties associated with the plane, such as its color, line width, cell resolution, etc., can be set explicitly
by the user. To do this, right-click on the icon, select Set properties, and edit the resulting property panel. Most
properties are the same as those described for the main viewer grid in 3.6.3.

Grid visibility
To make the grid invisible/visible, right-click on the icon and select Hide grid or Show grid.

Alignment with world axes
The clip plane can be aligned so that it’s normal lies along the positive or negative direction of either the x, y, or z
world axes. Right-click on the icon and select the appropriate option. Clipping is performed so that the half-space
lying in the direction of the normal is clipped.

Alignment with current line of sight

To align the clipping plane so that it is perpendicular to the current line of sight, right-click on the icon and select
Reset.

3.8 Indicating 3D positions with the mouse

It is possible to use a viewer in combination with a mouse to specify the position of a 3D point in space. This is
commonly employed in the editing operations described in Section 16.

To specify a point, the user left-clicks the mouse in the viewer, at the screen position located over the point’s desired
position. The 3D position is then determined by intersecting the ray indicated by the mouse clock with some appropriate
surface or plane. Typically, a plane perpendicular to the viewing direction and passing through the model’s center is
used. Alternatively, some interactions provide a constrain to plane option, which causes the ray to be intersected with

a viewer clipping plane (Section 3.7), providing more precise control over the point’s position. This requires that the
viewer presently contain at least one clipping plane. If more than one clipping plane is present, the first one is used.

In other applications, the desired point may be known to lie on a 3D surface, in which case the position is determined by
intersecting the ray with a 3D surface mesh.

3.9 Viewer properties

Viewers export a number of properties that control various aspects of their look and feel. Some of these can be modified
collectively for all viewers by choosing “Settings > Viewers ...” from the main menu, which opens a viewer settings
dialog (Figure 13).

Various properties can be set by this dialog, as described below. Clicking the Save button will save the current settings
to the user’s preferences (Section 11.2) so that they will be set automatically when ArtiSynth is restarted.

Properties set by the viewer settings dialog include:

backgroundColor

Color of the viewer background.

selectionColor

Color used to highlight selected items.

axisDrawStyle
Controls how world coordinate axes are drawn (Section 3.4), with LINE and ARROW specifying simple lines and
solid arrows, respectively.

axisRadiusRatio

A ratio which can be used to determine the radius for an axis when the radius is not explicitly specified. The
radius is computed by multiplying the ratio by the axis length. This is typically used when rendering coordinate
axes as solid arrows and has a default value of 0.016.

ArtiSynth User Interface Guide 20

backgroundColor -
selectionColor I:l

axisDrawStyle LINE =
axisLengthRadiusRatio &0

rotationMode [FIXED_VERTICAL | v |
defaultAxialView =
ellipticCursorSize | 1010

surfaceResolution 32

transparencyFaceCulling []
transparencyBlending []

blendSourceFactor |GL_SRC_ALPHA |v|

blendDestFactor |GL_ONE_MINUS_CONSTANT_ALPHA | v |

cance | [_oane

Figure 13: Viewer settings dialog.

rotationMode

Controls how the eye-to-world rotation is adjusted when the mouse is used to perform a rotate action (Section
3.2). The default value is FIXED_VERTICAL, which constrains the viewer’s “up” vector to remain vertical with
respect to the view plane, at the expense of preventing the eye-to-world rotation from being adjustable to an
arbitrary value. The alternate value is CONTINUOUS, which enables a track-ball type rotation that does allow
arbitrary adjustment of the eye-to-world rotation.

defaultAxial View

Sets the default axis alignment indicating how the 3D world axes correspond to the horizontal “right” and vertical
“up” view plane directions. Each setting takes the form R_U, where R is the world axis pointing right and U is the
axis pointing up, and R and U can each be either X, Y, Z, NX, NY, or NZ, indicating the positive or negative x, y or z
axis.

ellipticCursorSize

Size of the elliptic cursor (Section 4.3.2) in the horizontal and vertical directions. The default value is (10, 10).

surfaceResolution

Controls the number of faces or segments used for rendering built-in curved primitives, such as cylinders and
spheres. For cylinders, it controls the number of sides, while for spheres it controls the number of longitudinal
slices. A larger number produces a smoother effect at increased graphical cost. The default value is 32.

For OpenGL based viewers, the following properties are also provided to control how transparency is rendered:

transparencyFaceCulling

Enables or disables face culling when rendering transparency.

transparencyBlending

Enables or disables transparency blending (via glEnable () or glDisable () using GL_BLEND) when rendering
transparency.

blendSourceFactor

Specifies the first (source) argument to glBlendFunc ().

blendDestFactor

Specifies the second (destination) argument to g1BlendFunc ().

ArtiSynth User Interface Guide 21

3.9.1 Viewer-specific properties

Viewer properties can also be set on a per-viewer basis. To do this, invoke the context menu (usually right-click) in the
viewer when nothing is selected, and choose Set viewer properties. Individual properties include all those described
above, along with the following:

axisLength

Axis lengths used to render the world axes (Section 3.4).
eye

Location of the eye position, in world coordinates.

center

Location of the viewing frustum center, in world coordinates.

viewRotationEnabled

Enables or disables the ability to use a mouse to rotate the viewpoint.

Setting a viewer-specific property, such as the background color, will generally cause it to have a value that differs
from its counterpart in the viewer settings (because the value was set for only a single viewer). On the other hand,
properties set in the viewer settings will be applied to all open viewers.

3.10 Mouse Bindings

The ArtiSynth GUI was originally designed for a three-button mouse, in which the left button is used for selection,
the middle button controls the viewpoint, and the right button is used to activate the context menu. These are used in
conjunction with the modifier keys SHIFT and CTRL to effect different actions.

For systems that do not have a three-button mouse, ArtiSynth by default detects the number of mouse buttons and
adjusts the mouse bindings so that the ALT key emulates the middle button and the META key emulates the right button.

The META key is usually associated with either the COMMAND key (Mac) or the WINDOWS key.

Mouse bindings can also be explicitly set by the user, by choosing “Settings > Mouse ...” from the main menu, which
opens a mouse bindings dialog (Figure 14). This allows the user to change the bindings, and also for any given binding
describes the button/key combinations to effect various actions. If the “Auto detect” checkbox is selected, then the
bindings are determined automatically from the number of available mouse buttons. Unchecking this box allows the
bindings to be set explicitly using the Bindings selector. The dialog also allows control of the scale factor used for mouse
wheel zoom actions.

Clicking the Save button in the mouse bindings dialog will save the current bindings to the user’s preferences (Section
11.2) so that they will be set automatically when ArtiSynth is restarted. Mouse bindings can also be specified explicitly
at startup using the -mousePrefs <bindings> command line option.

Currently, there are five bindings available:

ThreeButton

Default bindings for a three-button mouse.

TwoButton

Default bindings for a two-button mouse. The middle mouse button is emulated with the ALT key.

OneButton
Default bindings for a one-button mouse. The middle and right mouse buttons is emulated with the ALT and META
keys.

Laptop

Legacy bindings for a two-button mouse.

ArtiSynth User Interface Guide

22

Mac

Auto detect
Viewpoint control:

Rotate view MMB
Translate view MMB+ SHIFT
Zoom view MMB+CTRL
Component selection:

Select components |LMB
Multiple selection LMB+ CTRL
Elliptic deselect LMB+SHIFT
Resize elliptic cursor LMB+SHIFT+CTRL
Context menu RME
Manipulator controls:

Move dragger LMB
Dragger constrain |LMB+SHIFT
Dragger reposition |LMB+CTRL

(LMB, MMB, RMB = left, middle, right mouse buttons)

Wheel zoom scale 10
[_concer] [_oane

Figure 14: Mouse bindings dialog.

Legacy bindings for a Mac type one-button mouse.

Tables showing the button and modifier key combinations that effect different actions for each of these are given below,
with LMB, MMB, and RMB denoting the left, right and middle mouse buttons. Actions marked with an asterisk (*) are drag

actions which can have their modifier keys invoked or removed during a drag operation. Button/key combinations for

ThreeButton, TwoButton, and OneButton are:

| Action | ThreeButton | TwoButton | OneButton
Viewpoint control (Section 3.2)
Rotate view MMB LMB+ALT LMB+ALT
Translate view MMB+SHIFT LMB+ALT+SHIFT LMB+ALT+SHIFT
Zoom view MMB+CTRL LMB+ALT+CTRL LMB+ALT+CTRL
Component selection (Section 4.3)
Select components LMB LMB LMB
Multiple selection LMB+CTRL LMB+CTRL LMB+CTRL
Elliptic selection LMB LMB LMB
Elliptic deselection® LMB+SHIFT LMB+SHIFT LMB+SHIFT
Resize elliptic cursor | LMB+SHIFT+CTRL | LMB+SHIFT+CTRL | LMB+SHIFT+CTRL
Context menu RMB RMB LMB+META
Manipulator controls (Section 5.2)
Move dragger LMB LMB LMB
Dragger constrain* LMB+SHIFT LMB+SHIFT LMB+SHIFT
Dragger reposition* LMB+CTRL LMB+CTRL LMB+CTRL

while those for Laptop and Mac are:

ArtiSynth User Interface Guide

23

| Action | Laptop Mac
Viewpoint control (Section 3.2)
Rotate view LMB LMB+ALT
Translate view LMB+SHIFT LMB+ALT+SHIFT
Zoom view LMB+ALT LMB+ALT+META
Component selection (Section 4.3)
Select components LMB+CTRL LMB
Multiple selection LMB+SHIFT+CTRL | LMB+META
Elliptic selection LMB+CTRL LMB
Elliptic deselection® | LMB+SHIFT+CTRL | LMB+SHIFT
Resize elliptic cursor | LMB+SHIFT+CTRL | LMB+SHIFT+CTRL
Context menu RMB LMB+CTRL
Transformer control (Section 5.2)
Move dragger LMB LMB
Dragger constrain® LMB+SHIFT LMB+SHIFT
Dragger reposition*® LMB+ALT LMB+ALT

3.11 Keyboard shortcuts

When the viewer has the keyboard focus, the following key shortcuts are available:

Key Operation

q quit ArtiSynth

t toggle time line visibility
z undo last command

Play controls (Section 2.6):

por SPC | play/pause
S single step
r reset

Viewer controls:

HQ ® O <

reset view (Section 3.2)
toggle orthographic/perspective view (Section 3.5)
toggle visibility of axes showing world coordinates
toggle viewer grid (Section 3.6)
toggle viewer grid labels

Selection and transformer (Sections 4.3 and 5.2):

o = Qo Q

ESC select parent of last selection
clear selection

reset elliptic cursor size to default

set current transformer frame to world coordinates

set current transformer frame to body/local coordinates

4 Component Navigation and Selection

An ArtiSynth model is composed of a hierarchical arrangement of model components (each of which implements the

interface ModelComponent), some of which may themselves be models. The graphical interface allows users to navigate

this hierarchy and select individual components. Selected components can then be edited, or have specific properties

modified or attached to probes or control panels.

4.1 The component hierarchy

An example component hierarchy is shown in Figure 15. At the top is a root model (class RootModel), in this case
named Rigid Body Spring. The root model in turn contains a list of models, one of which is a mechanical model

named msmod, which here contains particles and rigid bodies.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide 24

Rigid Body Spring

monitors models controlPanels
msmod
particles rigidBodies
N N
0 red 0 1

Figure 15: A sample component hierarchy.

It is important to node that in the component hierarchy, any collection of components is itself a component (usually
an instance of ComponentList). This provides automatic “grouping” of components of like type, but does introduce
additional levels into the hierarchy. Hence the particle red is a child not of msmod, but rather the component list
particles.

4.1.1 Component names and numbers
Model components may be assigned a string name; at the time of this writing names may not begin with a digit, have

zero length, contain the characters *.” or ‘/’, or equal the reserved word this. Components which do not have an
assigned name are called nameless.

All components have a number, even if they do not have a name. The number is assigned automatically when the
component is added to the parent, and is guaranteed to be persistent until the component is removed from the parent.

4.1.2 Component path names

The names and/or numbers of a component’s ancestors can be used to form a component path name. This path has

a construction completely analogous to Unix file path names, with the ‘/’ character acting as a separator. Absolute
paths start with ‘/° and begin with the root model. Relative paths omit the leading ‘/’ and can begin lower down in the
hierarchy. The absolute path name of the red particle in Figure 15 would be

/Rigid Body Spring/models/msmod/particles/red

For nameless components in the path, their numbers can be used instead:

/Rigid Body Spring/models/msmod/rigidBodies/1

Numbers can be used even for components that have names. Hence a path name consisting only of numbers, as in

/0/0/0/3/1

is legal, although it most likely to appear only in machine-generated output.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ComponentList.html

ArtiSynth User Interface Guide 25

RigidBody Spring
¥ models
¥ msmod
¥ particles
red
0 {Particle}
¥ rigidBodies
B 0 {RigidBody}
P 1 {RigidBody}
frameMarkers
attachments
axialSprings
collisionManager

yFvVYvyYyY

Figure 16: An typical navigation panel display.

92 {FemMNode3d}
93 {FemMode3d}
94 {FemMode3d}
95 {FemMode3d}
96 {FemMNode3d}
97 {FemMNode3d}
98 {FemMNode3d}

92 {FemMode3d}
93 {FemMode3d}
94 {FemMode3d}
95 {FemMode3d}
96 {FemMode3d}
97 {FemMode3d}
98 {FemMode3d}

99 {FemMNode3d} 99 {FemMode3d}

m e e i
B clements 100 {FemMode3d}
P meshes 101 {FemMode3d}

» collisionManager 102 {FemMode3d}
b controlPanels 103 {FemMode3d}

Figure 17: Expansion of nameless components in the navigation panel.

4.2 Navigation panel selection

A navigation panel in the main ArtiSynth frame allows direct navigation of the component hierarchy. The panel can be

T
[

open or closed by clicking on the main toolbar icon

Figure 16 shows an navigation panel containing a superset of the hierarchy diagrammed in Figure 15.

Left clicking on any component in the navigation panel selects that component. Clicking while pressing the CTRL key
(or the CMD key on some platforms, such as Mac) allows selection of multiple components. Clicking while pressing the
SHIFT key allows selection of a range of components.

4.2.1 Large numbers of nameless components

In some cases, such as finite element models, the number of child components can be very large (on the order of
thousands). In order to keep the navigation panel size manageable, the number of nameless children displayed is limited
to a set number (currently 100). If the number of nameless children exceeds this number, the display will be augmented
with an expand icon >>>. Clicking on this will expand the display to include all nameless components, and the expand
icon will be replaced by a contract icon <<<. Clicking on the contract icon will cause the extra nameless components to
be hidden again. This is illustrated in Figure 17.

4.3 Viewer selection

Components that are rendered in the viewer can generally be selected by variety of methods (the exception is for a few
renderable components that do not support selection). These methods include click, box, and elliptic selection. The top

ArtiSynth User Interface Guide 26

two icons in the selection toolbar at the left of the ArtiSynth frame control the current selection method. In addition,
hitting the ‘c’ key from within the viewer (Section 3.11) clears the current selection.

4.3.1 Click and box selection

Click and box selection are enabled by the arrow icon at the top of the selection toolbar:

3

Click selection involves left clicking on a component, causing it to be selected. Selection of multiple components is
enabled by left clicking with a modifier key, which is usually CTRL but may be different for some legacy mouse bindings
(Section 3.10).

Click selection selects only those components which are actually visible to the viewer; components which are
hidden cannot be selected this way.

Box selection is effected by left-clicking and dragging in the viewer, causing the selection of all components rendered
within the resulting drag box. Because this often results in the selection of more components than desired, it may be
useful to employ a selection filter (Section 4.3.3). Any components within the drag box which are already selected will
be deselected.

Box selection acts on all (filtered) components within the view frustum defined by the drag box, including those
which are hidden from view.

4.3.2 Elliptic selection

Elliptic selection is enabled by the elliptic icon near the top of the selection toolbar:

o

This causes an additional elliptic cursor (which defaults to a circle) to be drawn around the mouse cursor. Selection is
effected by dragging, and causes all visible objects within the ellipse to be selected. The selection process is cumulative,
with subsequent drags selecting additional components. As with all selection operations, a filter can be set to restrict the
components that are selected (Section 4.3.3). Generally, the drag select operation requires no modifier keys, although it
may with some legacy mouse bindings (Section 3.10).

It is also possible to deselect components in the same way, by using the SHIFT modifier key to cause drag operations to
cumulatively deselect components.

Elliptic selection selects only those components which are actually visible to the viewer; components which are
hidden cannot be selected this way.

The elliptic cursor used for selection can be resized, either interactively, or by setting the ellipticCursorSize
property of the viewer (Section 3.9). To interactively change the cursor size, initiate a drag operation with the CTRL and
SHIFT modifiers. Finally, the ‘d’” key shortcut within the viewer will cause the cursor to be reset to its default size.

4.3.3 Selection filtering

It is possible to limit viewer selection to components of a specific type. This can be done using the selection filter widget
at the bottom left of the main ArtiSynth frame Figure 18.

To enable filtering, type into the widget text box the class name of the component type you wish to restrict filtering to.
It is generally only necessary to enter the leaf name of the class (e.g., Particle or AxialSpring), and the system will
then find the full class name by searching the ArtiSynth class path.

ArtiSynth User Interface Guide 27

|T|th.|:|:|re.mechmndEIS.F‘ar‘ticlel

Figure 18: The selection filter widget.

E modelsfmsmod/particles)2 |
I

Figure 19: The selection display widget.

Once filtering is enabled, only components which are instances (including subclasses) of the specified type will be
selectable.

Previously selected filters can be recalled using a history list accessible using the leftmost arrow button on the selection
widget.

To remove selection filtering, enter the special filter *, either by typing this in the text box, or using the history list.

4.4 Selection display

The selection display Figure 19 at the bottom of the main ArtiSynth frame shows the full path name of the last compo-
nent added to the selection list. This is useful for identifying components in detail.

If no components are selected, then the selection display is blank.

The selection display is useful for disambiguating situations where it is not clear what component we have actually
selected in the viewer. For example, FEM models keep their surface mesh contained within a descendant component.
Selecting the surface mesh will cause this container component to be selected and highlighted, making it appear as
though the FEM model itself is selected rather than the container. Checking the selection display makes it clear what
component has actually been selected. If desired, one can easily navigate to one of the ancestor components using parent
selection, as described in the next section.

4.5 Selecting parent and ancestor components

Sometimes, when you select a component, you actually want to select one of it’s ancestor components.

There are several ways to do this:

1. Hit the escape (ESC) key within the viewer window. This will select the parent of the currently selected compo-
nent. Hitting escape repeatedly is a fast way to proceed up the component hierarchy.

2. Click on the “up” arrow located at the left of the selection display (Figure 19). This will also select the parent of
the currently selected component.

Parent selection is particularly useful in the commonly occurring situation where a composite component is not rendered
and therefore not selectable in the viewer. For instance, suppose we wish to select a FEM model. One can select any
renderable descendant of the model, such as a node, element, or its surface mesh (if displayed), and then use repeated
parent selection until the model itself is selected.

4.6 Highlighting selected components

Selected components are rendered in the viewer using a special selection color (yellow at the time of this writing). It is
important to note that descendants of a selected component are not presently rendered in any special way. For instance,
if an FEM is selected, it’s nodes and elements will be rendered normally.

While this has the potential to be confusing, we have not yet found this to be problematic, as the navigation panel and
selection display provide alternative indicators as to what is currently selected.

ArtiSynth User Interface Guide 28

Figure 20: Dragger fixtures: translator, rotator, and transrotator.

5 Model Manipulation

Various tools located within the selection toolbar at the left of the main ArtiSynth frame allow models to be manipulated
in various ways. These include modifying component locations, orientations, and geometry using the transformer tools
(Section 5.2), exerting point forces on selected components using the pull controller (Section 5.3), and adding marker
points to certain components types (Section 5.4).

The behavior of these tools is somewhat context dependent. For example, the transformer tools will only transform
those transformable components which implement the TransformableGeometry interface. The behavior may also vary
depending on whether or not simulation is in progress.

5.1 Dragger fixtures

The transformation tools employ the dragger fixtures shown in Figure 20, which allow 3D geometrical transformations
to be performed within the viewer.

Translator

Effects a translation. The X, y, and z axes are indicated by red, green, and blue lines. Dragging any line causes a
one-dimensional motion along the associated axis. Dragging one of the boxes causes a two-dimensional motion in
the associated plane.

Rotator

Effects a rotation. Rotation about the X, y, and z axes is indicated by red, green, and blue circles. Selecting and
dragging along one of these circles produces a rotation about the corresponding axis.

TransRotator

Combines the translator and rotator into a single tool. One difference is that the axes of the transRotator move
with any rotation, and so operations are done with respect to the transRotator coordinate frame at the beginning of
the drag.

Under the default mouse bindings, the basic drag operations involving these fixtures are invoked using the left
mouse button with no modifier keys. Additional modifier keys allow constrained transformation or repositioning of
the fixture, as described below.

5.2 Transformer tools

A number of transformer tools use the dragger fixtures described above to translate, rotate, and scale components.

Once a tool is activated, then selecting one or more transformable components will cause the corresponding dragger
fixture to appear in the viewer at the components’ location. If a single component is selected and that component is
associated with a coordinate frame (by implementing the HasCoordinateFrame interface), then the dragger’s initial
position and orientation are aligned with this coordinate frame. Otherwise, the dragger is initially placed at the center of
the components’ bounding box and its orientation is aligned to world coordinates.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/TransformableGeometry.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/HasCoordinateFrame.html

ArtiSynth User Interface Guide 29

To request that a dragger’s initial orientation is always aligned with world coordinates, choose “Interaction ...” from the
Settings menu and set initDraggersinWorld to t rue.

E Translation:

Translates selected components using the translator dragger.

~4
% | Rotation:
Rotates selected components using the rotator dragger.

@ TransRotation:

Translates and rotates selected components using the transRotate dragger. The transformation reference frame moves
with the tool.

* Constrained translation:

Translates selected components using the translate dragger while ensuring that they are constrained to remain on a
surface mesh. Only components with an associated surface mesh (such as FrameMarkers attached to a RigidBody) can
be transformed this way.

Scaling:

Scales selected components using the transrotator fixture. Instead of translating, translational drag operations scale the
component along the X, y, or z axes, or in the x-y, y-z, or z-x planes. Rotational operations, if used in conjunction with
an appropriate modifier key, can be used to change the orientation of the scaling axes, as described in 5.2.2.

5.2.1 Constrained transformation

Under the default mouse bindings, pressing the SHIFT modifier key causes drag operations to be constrained to discrete
step sizes. Rotation operations are constrained to intervals of five degrees, while translation operations are constrained
to either the grid spacing (if a grid is selected, see 3.6), or to a suitable well-rounded number depending on the viewer’s
zoom level.

5.2.2 Transformer repositioning

Under the default mouse bindings, pressing the CTRL modifier key causes the dragger fixture to move independently
of the selected objects. This allows its position and orientation relative to the selected objects to be changed. This is
particularly useful for changing the orientation of the scaling directions in the scaling tool.

5.2.3 Changing the transformer base frame

By default, a transformer is assigned a local coordinate frame for the object(s) that it is positioning, based on either the
object’s own body frame (if it has one), or the objects’ bounding box. This frame will then move with the transformer,
and may also move relative to the object(s) if the transformer is repositioned (Section 5.2.2).

Sometimes, it may be desirable to explicitly reset the transformer’s frame. This may be done using the following
shortcut keys in the viewer:

Set the transformer frame to the world coordinate system, allowing subsequent transformations to be performed in
world coordinates;

Reset the transformer frame to the original local frame for the object(s), based on either the object’s body frame or
the objects’ bounding box.

ArtiSynth User Interface Guide 30

5.3 Pull manipulation

e
Pull tool:

Pulls on certain components using a spring-like force when simulation is running.

Figure 21: Applying pull manipulation (blue arrow) to a rigid body attached to a multi-point spring.

Selecting the pull tool allows a user to interactively apply a spring-like force to certain component types by clicking on it
and then dragging (Figure 21). Double clicking on the component adds a pull point that persists between mouse clicks;
to remove the pull point, double click on the viewer background.

The pull tool works on points, rigid bodies, FEM models, or any other component that implements the PointAttachable
interface and has a surface mesh. Pull manipulation is only effective when simulation is running. It works by adding a
special PullController to the current root model’s set of controllers. When attached to the root model, the controller
attempts to estimate an appropriate spring stiffness based on the overall mass and dimensions of the first underlying
MechModel.

If necessary, the pull tool’s stiffness setting can also be adjusted manually by selecting PullController > properties in the
Settings menu. Render properties for the pull controller can be set from this menu also.

5.4 Marker tool

9 Marker tool:
Adds point markers to certain components.

Selecting the marker tool allows a user to interactively add point markers to various components in the model.

Markers can be added by double-clicking on rigid bodies, FEM models, and other components that implement the
IsMarkable interface.

Markers are typically added to a component’s surface mesh, and in such cases it is necessary that this surface mesh
be visible. For FEM models in particular, the surfaceRendering property should be set to something other than
None. To ensure this is the case, select the FEM model, right-click and choose “Edit properties ...", and examine

the setting for surfaceRendering. An FEM model can sometimes appear to have a visible surface mesh, even if it
doesn’t, if its elementWidgetSize property is close to 1.

The markers themselves are added to the current root model at a location that depends on the component being marked:

* Rigid bodies: marker is added to the frameMarker list for the body’s parent MechModel;

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/PointAttachable.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/IsMarkable.html

ArtiSynth User Interface Guide 31

¢ FEM models: marker is added to the FEM model’s marker list;

» IsMarkable components: marker is added to the root model’s marker list (which is created on demand if needed).

In order for added markers to be visible, the component list into which they are placed needs to be visible, with its

point rendering properties set to appropriate values. That usually means that pointStyle is set to SPHERE or CUBE, with
pointRadius set to a value commensurate with the model’s dimensions, or pointStyle is set to POINT, with pointSize set
to a sufficiently large value in pixels. If not set within the list itself, the point rendering properties will be inherited from
ancestor components. For example, if a MechModel’s point render properties are set for good visibility, then all points
within subcomponents will be visible unless these setting have been overridden at a lower point in the hierarchy.

If markers are not appearing when using the marker tool, use the navigation panel to open the component list to
which the markers are added (as described above). Verify that markers are actually being appended to the end
of the list. If they are not, ensure that the component’s surface mesh is visible. If they are, select the list itself,
right-click, and choose “Edit render props ...". Check that visible is true, and that pointStyle and pointRadius (or
pointSize) are set appropriately.

Once created, markers can be removed by selecting them and choosing Delete from the context menu.

6 Editing Properties

Most ArtiSynth model components have properties which can be changed onscreen through the graphical interface.
Properties include a diverse set of attributes ranging from stiffness and damping for AxialSprings, position and velocity
for particles and rigid bodies, or whether or not a component is dynamic.

The underlying software architecture of the property interface is described in the Properties chapter of the
Maspack Reference Manual.

6.1 Property panels

To edit properties for a set of components, select the components in question, then right-click in either the viewer or the
navigation panel, and select Edit properties. This will create a property panel for all properties which are common to the
selected components. All typical property panel is shown in Figure 22.

Property panels are initialized with the current values of the selected components, providing a view of the current prop-
erty state. A blank property value will be displayed when more than one component is selected and the corresponding
property value differs across components.

Some properties are read only. In this case, the corresponding widget in the property panel will display the value but
will be disabled.

name |Ia\aman

maxstepSize 000500000
gravity G BO000

integrator |Ba|:kwardEuIer | - |
matrixSolver |Pardisu |v|
profiling O

[T frameDamping 0.500000
[rotaryDamping 00100000
24 pointDamping 0

@ | OK || Cancel |

Figure 22: A typical property panel.

Property panels are non-modal and persistent. They can be deleted by closing them or clicking the OK button. Clicking
the Cancel button will cause the properties to be reset to their values at the time to panel was created.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf

ArtiSynth User Interface Guide 32

name [| name [|
2 YoungsModulus 200000 [J YoungsModulus 50000
2 PoissonsRatio 0.400000 L PoissonsRatio 0.400000
2 density 1000.00 L density 1000.00

Figure 23: Property panel showing YoungsModulus as inherited (left) and explicitly set (right).

Normally, a property panel will refresh its widget values whenever the model view is rerendered. In particular, this will

happen repeatedly while simulation is running. To disable the automatic refresh, click the live updating button C at
the lower left of the panel.

6.1.1 Inheritable properties

Some properties are inheritable. The value of an inheritable property can be explicitly set or it can be inherited. If
inherited, then it inherits its value from ancestor components further up the hierarchy. More specifically, if a property’s
value is inherited, then the value is obtained from the nearest ancestor in which the same property exists and is explicitly
set. If no such ancestor exists, then the property is set to a default value.

The inherited/explicit status of an inheritable property is controlled by an additional button placed at the left of the
property widget (Figure 23). Clicking this button toggles the inherited/explicit status. If set to inherited, then the
property’s value is determined from the hierarchy and the updated value is placed in the widget. Setting the value in
the widget itself will cause the inheritable status to be set to explicit, and the value of inherited instances of the same
property in descendant nodes will be updated accordingly.

6.2 Render properties

Render properties are associated with any component that is renderable. They are defined in the class RenderProps.
Because of their complexity, they are adjusted through a separate panel from the standard property panel.

To adjust the property panel for a set of components, select the components in question, using either the viewer window
or navigation panel, and then right click in either the viewer or the navigation panel. Several options may appear in the
context menu:

Edit render props
This will create a special property panel allowing the render properties for the selected components to be set (see
Section 6.2.1 and Figure 24).

Clear render props

This will actually remove the render properties from the selected components (i.e., their render properties

will be set to null). Nominally, this means that the components will not be rendered, unless their parents

take responsibility for rendering children without render properties. The latter behavior is common for lists of
particles, springs, finite elements, etc., in order to avoid the need for defining render properties in a large number
of objects.

Set visible
This option will appear if any of the selected objects are invisible. Selecting it will set the render properties so that
all components are visible.

Set invisible

This option will appear if any of the selected objects are visible. Selecting it will set the render properties so that
all components are invisible.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/RenderProps.html

ArtiSynth User Interface Guide 33

Svisible [¥]
i alpha | 1.000000| ¢ L)
2 shading FLAT |v

Loshininess | 32,000 ':C

_:'lspecular | null || cl., || Set |

Texture mapping ...

expand ... [¥
FaCES .
L faceStyle [FRONT |v||
& faceColor -
& backColor | null || el || Set |
B drawEdges”D .
Edges ..

Aedgerdth ,7
.AedgeCnlur null | || Set |

Lines ...

[T lineStyle CYLINDER -

[T lineColor |:|
AlineWidth C '

7 lineRadius 0.50000] ¢ -,

Points ...

[0 pointStyle |SPHERE |w
soncoe ot

4 pointSize
D pmntRadlus 2, 5000 : . 1

| Done || Reset |

Figure 24: A typical panel for adjusting render properties.

6.2.1 Render property settings

There are a large number of render property settings. Loosely speaking, they are divided into generic settings, along
with those related to faces, lines, and points. How these are used depends on what is being rendered. Mesh rendering
typically uses the face settings, along with the line settings to render edges if the drawEdges property is set true. Line
settings are also used for rendering axial springs and the edges of FEM elements. Point settings are used for rendering
any subclass of Point, including Particle and FemNode.

Not all render properties may appear in a render panel; usually, only those properties relevant to the selected components
will be presented.

Generic properties:

visible: Whether or not the component is visible.
alpha: The transparency for polygonal faces (range O to 1. Default is 1, for opaque).

shading: How polygons are shaded (FLAT, SMOOTH, METAL and NONE). For viewer implementations there may be
no difference between SMOOTH and METAL.

shininess: Shininess parameter for polygons (range 0 to 128). Default is 32.

specular: If not null, specifies the specular reflectance color.
Face related properties:

faceStyle: Which polygonal faces are drawn (FRONT, BACK, FRONT_AND_BACK, NONE).
faceColor: Color used for drawing faces.
backColor: Color used for drawing backs of faces. If null, faceColor is used.

drawEdges: If true, face edgesof the polygons are drawn explicitly.

ArtiSynth User Interface Guide 34

Texture mapping properties:

colorMap: If not null, specifies the image source file and properties for color mapping.
normalMap: If not null, specifies the image source file and properties for normal mapping.

bumpMap: If not null, specifies the image source file and properties for bump mapping.
Edge related properties:

edgeColor: The color for edges.
edgeWidth: Edge width in pixels.

Line related properties:

lineStyle: How lines are drawn (CYLINDER, LINE, or SPINDLE).
lineColor: The color for lines.

lineWidth: Line width in pixels when LINE style is selected.

lineRadius: Cylinder radius when CYLINDER or SPINDLE style is selected.

Point related properties:

pointStyle: How points are drawn (SPHERE or POINT).
pointColor: The color for points.
pointSize: Point size in pixels when POINT style is selected.

pointRadius: Sphere radius used when SPHERE style is selected.

A typical panel for editing render properties is shown in Figure 24. Texture mapping properties, if present, are normally
hidden by default and can be exposed by clicking on the expand... button.

7 The Timeline

The timeline is a panel that provides “play” controls for starting and stopping the simulation, and allows the user to
graphically arrange temporal sequences of probes and waypoints to control and monitor the simulation. If not initially
visible, its visibility can be toggled by hitting the ‘t’ key from within the viewer (Section 3.11).

7.1 Probes and waypoints

ArtiSynth allows models to connect to special components, known as probes, which can either supply input values or
monitor output values over time as the simulation proceeds. Probes attached to simulation inputs are known as input
probes (class InputProbe), while those attached to outputs are known as output probes (class OutputProbe). Each probe
has a start time and a stop time, and implements an apply(t0,t1) method that supplies (or collects) data for the simulation
step between time t0 and t1. Probes are described in more detail, along with specifics about how to code them into
applications, in the “Simulation Control” chapter of the ArtiSynth Modeling Guide.

The most commonly used probe subclasses are NumericInputProbe and NumericOutputProbe, each of which is
associated with a vector of floating point values that are interpolated over time. This data is usually connected to
various model component properties, and used to either set (for input probes) or collect (for output probes) the values of
those properties. The size of the vector is known as the probe’s vector size and matches the properties that the probe is
connected to. For example, a probe controlling a single muscle excitation value will have a vector size of one, whereas a
probe collecting the 3D velocity of a point will have a vector size of three.

Within a numeric probe, data is defined by a temporal sequence of knots points which give the vector values at pre-
scribed times, with values in between determined by interpolation (Section 7.5.4). For input probes, the knot density
is often sparse, whereas for output probes it matches the sample rate at which data is collected, which is usually the
simulation step size.

Input and output probes are arranged and displayed graphically in the timeline, within a set of tracks (Section 7.4). Each
probe is displayed as a bar within one of these tracks. The display for numeric probes can also be expanded to show a
graph of the numeric data (Section 7.5).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/InputProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/OutputProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/Probe.html#apply-double-
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericInputProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericOutputProbe.html

ArtiSynth User Interface Guide 35

ArtiSynth allows models to set temporal waypoints, which are designated times at which the model state is saved during
simulation. This allows the simulation to be later reset to that time without having to recompute the simulation from

the beginning. A special type of waypoint is known as a breakpoint, which causes the simulation to pause when it is
reached. The timeline displays the waypoints, and allows them to be created and edited (Section 7.3).

7.2 Basic timeline structure

The basic structure of the timeline is shown in Figure 25.

& B C D
_|o) x|
Current Time: 0.000000 s Time Step: 10msec ———E
1 -~
IIIIEID 2 .IIIIDD 4.IZ|IDD] .DIDD g .DIDIII |
b][u] F
>0 G
DICI
H
B -
~|
A] [»]

Figure 25: The timeline panel, containing: (A) zoom controls, (B) play controls, (C) save button, (D) time cursor, (E)
toolbar, (F) waypoint track, (G) input track, (H) output track.

The toolbar at the top contains the following widgets:

Zoom controls

Shrinks or expands the timescale.

Play controls

Starts, pauses, or resets the simulation.

Save button

Saves the data for all output probes with attached files.

Time box

Shows the current simulation time.

Time step box

Shows the length of time associated with a “single step” command.

7.2.1 Play controls

The play controls are in turn comprised of the following buttons:

ArtiSynth User Interface Guide 36

va
.llllzl
- oo
m

Figure 26: Waypoints (blue) and breakpoints (red) arranged in the waypoint track.

L
Reset: Resets the simulation to the beginning at time 0.
Skip-back: Moves the simulation time backward to the previous valid waypoint (see Section 7.3).
} Play: Starts the simulation.
Il N
Pause: Takes the place of the play button and pauses the simulation.
| N . o
Single-step: Advances the simulation by a single step, specified in the time step box.
Skip-forward: Moves the simulation time forward to the next valid waypoint (see Section 7.3).
N N . . .
Stop-all: Stops the simulation and any currently running Jython commands and scripts (Section 12.3).
7.2.2 Tracks

The timeline proper is divided into a number of tracks. At the top is the waypoint track, which is used to arrange
waypoints and breakpoints. Below that are a variable number of input and output tracks, which are used respectively for
arranging the input and output probes.

7.3 Viewing and setting waypoints

7.3.1 Waypoints

Waypoints are arranged along the waypoint track at the top of the timeline and are indicated by a small rectangular blue
box (Figure 26). A solid box indicates a waypoint that contains a valid state and thus can be advanced to using the fast
forward/backward buttons.

To add a waypoint, right-click on the waypoint track. A popup menu will show a number of options, including Add
waypoint here, which adds a waypoint at the current location of the time cursor, and Add waypoint(s), which will bring
up a dialog prompting for a specific time to add a Waypoint. The "Add Waypoint" dialog also contains a repeat field,
which will cause additional waypoints to be added with a spacing indicated by the time value, and an option to create
breakpoints instead of waypoints.

Once created, waypoints can be moved by dragging them. They can also be deleted by right-clicking on them and
selecting the Delete waypoint option.

To delete all the waypoints, select Delete waypoints, either from the main File menu, or after right-clicking on the
waypoint track.

7.3.2 Breakpoints

Breakpoints are waypoints that also cause the simulation to stop. They are displayed in red instead of blue.

ArtiSynth User Interface Guide 37

Breakpoints can be added in the same way as waypoints, i.e., by right clicking on the waypoint track and selecting Add
breakpoint here or Add waypoint(s).

Waypoints can be converted into breakpoints (and vice versa) through the context menu.

7.3.3 Saving and loading

It is possible to save and load waypoints to and from an external file. The following menu options may be selected to do
this, either from the main File menu, or after right-clicking on the waypoint track:

Save waypoints as ...
Brings up a file chooser that allows the user to specify a file for saving all waypoints and their state data. Clicking
Save As completes the operation.

Save waypoints
If a waypoint file has already been specified using either “Save waypoints as ...” or “Load waypoints ...”, then all
waypoints and their state data are saved to that file.

Load waypoints ...

Brings up a file chooser that allows the user to specify a file from which waypoints and their state data will be
loaded. Clicking Load completes the operation. The new waypoints are added to any existing ones, but previously
waypoints are not deleted. Checks are made to help ensure that the waypoint data is consistent with the model’s
current state.

Reload waypoints

Identical to “Load waypoints ...”, except that it uses a file that has already been specified using either “Save
waypoints as ...” or “Load waypoints ...".

Delete waypoints

Deletes all waypoints except the one at time zero.

Waypoint files are currently stored as binary files. The reason for this is that the required storage is about 1/2 of that
required for text files, while the writing and parsing times are as much as 10x faster.

7.4 Tracks and probes

Probes are arranged on tracks located beneath the waypoint track. Input probes must be placed on input tracks and
output probes must be placed on output tracks. Furthermore, probes on the same track are not allowed to overlap.

Note:
In the future, additional restrictions may be placed on what type of probe can be placed on what track.

Probes can be moved horizontally to different times as well as vertically onto different tracks. They can also be stretched
by dragging the edges of the probe and cropped by holding the control key while stretching.

On the left side of the timeline is the track panel, which contains a number of track control widgets (Figure 27).

7.4.1 Creating, moving, and deleting tracks

New tracks may be added by right-clicking in the waypoint track and selecting Add input track or Add output track.

The vertical location of a track can be moved by left clicking on it in the left panel and dragging it up or down to a new
location.

A track can be deleted by right-clicking on the track in the track panel and selecting Delete track.

ArtiSynth User Interface Guide 38

|@£”@4‘| I Current Time:| 1.610000 5

1E
1 1 1 1 1 1 1 I 1 1 1 1
A InrJln 2000 4.000 £

e IC1
[»][«] 0 0
D—t{®[[=] 0 0

e —| o] 1 i

Figure 27: Close up of the track panel, showing: (A) track panel, (B) expand all button, (C) mute all button, (D) expand
button, (E) mute button.

7.4.2 Muting tracks
A track can be muted or unmuted by clicking on its gray mute button in the track panel (Figure 27). All probes on a
muted track are ignored during simulation.

All tracks can be muted, thus disabling all probes, by clicking on the mute all button in the gray panel above the tracks.

7.4.3 Expanding tracks

A track can be expanded or collapsed by clicking on its green expand button in the track panel (Figure 27). Expanding
a track creates an additional area in which the data associated with the track’s probes may be displayed (see Figure
28). The way in which this data is displayed is probe-specific. Probes containing numeric data usually show their data
graphically, as described in Section 7.5.

7.4.4 Grouping tracks

Multiple contiguous tracks can be selected by clicking on them while holding the control key. Furthermore, they can
be grouped together or ungrouped by selecting the appropriate option from the context menu. Grouped tracks can be
collapsed, moved simultaneously and muted together.

7.5 Numeric probe displays

Data associated with numeric probes is displayed as a graph within the display (Figure 28), with each entry in a probe’s
data vector drawn as a separate trace. If the probe’s vector size is greater than one, each trace is drawn using a different
color (up to a limit, after which colors are recycled).

7.5.1 Setting the range and display properties

The range and other properties of the display can be set by right clicking in the display and selecting “Edit range and
properties .., which creates a dialog that allows these to be adjusted. If the autoRanging property is set to true, then the
display range automatically expands as needed to accommodate new data. Display ranges can also be adjusted to fit the
current data by right-clicking in the display and selecting Fit ranges to data.

Large data displays (Section 7.5.5) contain additional GUI-based features to adjust the display range.
7.5.2 Visibility control
As mentioned above, each entry in a numeric probe’s data vector is rendered in a different color (up to a limit). If the

vector size is large (say more than three or four), or if there is much overlapping of values, then the result can be difficult
to visualize.

ArtiSynth User Interface Guide 39

][] 1
=] o

=]« o g |

] 1 I

Figure 28: Expanded input and output tracks showing numeric data.

B pisplay legend o [4]

color visible

particles/0:position.x -
particles/D:position.y -
particles/0:position.z -

Figure 29: Legend tool for controlling display visibility.

To manage this problem, numeric displays provide a legend tool that allows the user to control the color, drawing order,
and visibility for each vector entry (Figure 29).

To create the legend tool, right-click in the display panel and select Show legend. Each row in the legend tool is
associated with an entry in the data vector. The dimensions of the vectors are listed, followed by the color the entry is
drawn in and a toggle controlling its visibility. Entries are rendered in bottom-to-top order, so those at the top will be
most visible.

» To change an entry’s color, click the Set button, which will bring up a color menu.

* To make an entry visible or invisible, use the Visible toggle box.

* To change the order in which an entry is drawn, click and drag the entry vertically within the panel.

7.5.3 Editing and scaling data

As mentioned in Section 7.1, numeric probe data is described by a temporal sequence of knots, between which data is
interpolated as described in Section 7.5.4.

Knot points can be made visible or invisible by setting the display’s knotsVisible property. This can also be done by
right-clicking in the display and selecting Show knot points or Hide knot points. The rendered size of the knot, in pixels,
is controlled by the knotSize property.

Since output probes typically have a very high knot density, their knots are set to be invisible by default.

For input probes, knot points (when visible) can be edited by moving, adding, or deleting them:

* To move a knot point, left click on the knot and drag it.

* To add a knot point, place the mouse at the desired location and double left-click.

ArtiSynth User Interface Guide 40

wh ' '2.0:00 t '4.0:00 's.n:nn 'sn:nn t m:nnn'
[»]«]
[=]=] o o |
/’"\\ /"
/ ‘\./ Edit range and properties ...
Hide knot points
IE‘ 1 1 | Show legend ...
Interpolation } Step
> Scale data Linear
Reset ranges Cubic
/ / ~ CubicStep
(b=l o 0

Figure 30: Two expanding tracks with probes showing cubic interpolation (upper) and linear interpolation (lower).

* To delete a knot point, right-click on the knot and select Delete knot point.

* To edit a knot point data value, right-click on the knot and select Edit knot point.

The data for all numeric probes (input or output) can be scaled by right-clicking in the display and selecting “Scale data
...". This allows the user to enter a scaling factor that is applied uniformly to all the knot points.

7.5.4 Interpolation control

The data between knot points in a numeric probe is interpolated, using one of the interpolation orders described below,
with the default interpolation order being Linear. Linear interpolation is almost always sufficient for output probes,
which typically have a close spacing between knots that equals the simulation step size. Input probes, on the other hand,
often have a much sparser knot spacing and so different interpolation orders can be useful. The interpolation order of
input probes can be set by right-clicking in the display and selecting the Interpolation menu item. This is illustrated in
Figure 30, which shows two input probes, one using Cubic interpolation and the other using Linear interpolation.

The interpolation options for a numeric probe include:

Step

Values are set to the values of the closest previous knots points.

Linear

Values are set by linear interpolation of the closest surrounding knot points.

Cubic

Values are set by cubic Catmull interpolation between the surrounding knot points.

CubicStep

Values are set by cubic Hermite interpolation between the surrounding knot points, with the slopes at knot points
set to zero.

SphericalLinear

When interpolating quaternions or 4 x 4 rigid transformation matrices, 3D rotation values are set by piecewise
spherical linear interpolation (i.e., "slerp", as described by Shoemake’s 1985 SIGGRAPH paper). Otherwise,
interpolation is linear. Quaternions are assumed if the vector size of the numeric probe is 4, and 4 x 4 rigid
transformation matrices are assumed if the vector size is 16.

SphericalCubic

When interpolating quaternions or 4 x 4 rigid transformation matrices, 3D rotation values are set by spherical
cubic interpolation (i.e., "slerp”, as described by Shoemake’s 1985 SIGGRAPH paper). Otherwise, interpolation
is cubic. Quaternions are assumed if the vector size of the numeric probe is 4, and 4 x 4 rigid transformation
matrices are assumed if the vector size is 16.

All of the above interpolation orders are instances of the enumeration type Interpolation.Order.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/interpolation/Interpolation.Order.html

ArtiSynth User Interface Guide 41

;f&;&i'eﬂi !>i|;i & o Tipmes | 0,000000

=

=l 0

= o

Figure 31: A large display for a numeric probe.

7.5.5 Large displays
A large display for a numeric probe can be created by right-clicking on the probe icon and selecting Large Display. This
will create a large numeric display in a separate panel, allowing more precise inspection of data (Figure 31).

In addition to the functionality of the smaller displays, large displays have additional buttons, located across the top, for
controlling the display range and other items. The first four of these are mode buttons:

L\n} Select: Places the display into selection mode, allowing knots (when visible) to be edited as described
in Section 7.5.3.

® | Zoomin: Places the display into zoom in mode, in which the user can zoom in by either drag-selecting a
region, or by left clicking on a point of interest. The mouse wheel can also be used to zoom in
or out.

& | Zoom out: Places the display into zoom out mode, in which the user can zoom out by left clicking on a

point of interest. The mouse wheel can be also used to zoom in or out.

{ﬂ'? Translate: Places the display into translate mode, in which the user can translate a (zoomed-in) display
using the left mouse button. The mouse wheel can also be used to zoom in or out.

There are also several additional buttons:

Increasey: Increases the vertical y range.

Decrease y: Decreases the vertical y range.

Decrease x: Decreases the horizontal x range.

Increase x: Increases the horizontal x range.

Fit Range: Fits the vertical and horizontal ranges to the current data.

Grid: Enables or disables visibility of a grid that aligns with the x and y axis tick marks.

O B T €2

Auto range: Enables or disables auto-ranging, in which the y axis is automatically adjusted to fit new data.

7.5.6 Cloning displays and exporting plots

Large data displays can be cloned by right-clicking in the display and selecting Clone display. This creates a duplicate
display (Figure 32) containing a copy of all the data currently in the probe. However, the duplicate display is not
attached to the probe, and so the data does not change when the probe is reset or additional data is added to the probe.
This is useful for comparing outputs between different simulations.

In addition, it is possible to export a large display’s plot to an image file. Right-click in the display, choose “Export
image as .., and enter the desired file name and file type in the chooser. The file’s type is indicated by its extension. A

ArtiSynth User Interface Guide 42

o

Figure 32: A large display of an output probe and its clone.

range of image file types are supported, including JPEG (. jpg, .jpeg), PNG (.png), scalable vector graphics (. svg),
and encapsulated PostScript (.eps).

8 Saving and Loading Probes

8.1 Saving and loading probe data

Each ArtiSynth probe can be associated with an attached file to (or from) which its data can be saved (or loaded). The
attached file is specified by the probe’s attachedFile property, which is a string giving the file’s path name. An absolute
path locates the file relative to the system root folder, while a relative path locates it relative to the current value of
ArtiSynth’s working folder (Section 2.10). If the attachedFile property is null, then the probe does not have an attached
file.

For numeric probes, the file format used to save and load data is described in the “Data file format” subsection of the
“Simulation Control” chapter of the ArtiSynth Modeling Guide.

Data for an individual probe can be saved or loaded by first selecting it (either within the navigation panel or by left-
clicking on its timeline display bar), and then right-clicking and choosing one of the following options from the resulting
pull-down menu:

Save data
If the probe has an attached file, saves its data to that file.

Save data as ...

Brings up a file chooser allowing the user to specify an attached file for the probe. Clicking the Save As button
then sets the attached file and saves the probe’s data in it. The probe’s attachedFile property will be set to a
relative path name if the file is located beneath the current ArtiSynth working folder (Section 2.10), and an
absolute path name otherwise.

Load data
If the probe has an attached file, loads its data from that file.

Load data from ...

Brings up a file chooser allowing the user to specify an attached file for the probe. Clicking the Load button then
sets the attached file and loads the probe’s data from it. The probe’s attachedFile property will be set to a relative
path name if the file is located beneath the current ArtiSynth working folder, and an absolute path name otherwise.

In addition, data can be saved for all output probes that have attached files by either selecting “Save output probe data”
from the ArtiSynth File menu, or by clicking on the timeline’s save button (C in Figure 25).

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 43

Look In: ‘lj mech |" E

[y MechModelDemo.txt [} springMeshDemo.txt
[y muscleArmActivation.txt [} springMeshin.txt
[y rigidBodyDemo. txt [} springMeshout.txt

File Name: [springMeshout. txt |

Files of Type: |Text format (*.txt) |v|

numeric format: |%g |
include time data:

| Export As || Cancel |

Figure 33: The export probe data dialog.

8.2 [Exporting numeric probe data

The data associated with a numeric probe can also be exported to either a CSV file (*.csv) or a regular text file (*.txt).

Each line in the file describes the numeric data associated with one of the probe’s knot points, and consists simply of a
sequence of n numbers, where n is the probe’s vector size. For CSV files, the numbers are separated by commas, while
for text files they are separated by spaces. If “include time data” is selected in the export dialog (see below), then the
knot’s time value is also included at the beginning of the line, so that the complete sequence includes n + 1 numbers.

The time values exported with a probe are probe relative, so that t = 0 corresponds to the probe’s start time and any
scaling is ignored.

To export a probe’s data, first select the probe (either within the navigation panel or by left-clicking on its timeline
display bar), and then right-click and choose “Export data as ...” from the resulting pull-down menu.

This brings up a dialog (Figure 33) that allows the user to specify the file name and output file type (CSV or text). It also
allows the user to specify export-specific properties, such as:

numeric format

A printf-style format string specifying the formatting for floating point data. The default value is $g, which means
all numbers will be written to full precision with a variable length and using scientific notation if needed. Other
allowed formats are described in the documentation for maspack.util. NumberFormat.

include time data

A Boolean value which if true indicates that time data should be included along with the numeric values. Not
including time data may be appropriate when the data is spaced at a known time interval.

8.3 Saving and loading all probes

The model’s entire configuration of input and output probes can be saved to (or loaded from) a single file. This file
stores, in an ASCII text format, complete information about each probe, including its start and stop times, location
within the timeline, which model properties it connects to, the name of its attached file (if any), and its current data. The
file also stores the current waypoint locations, but does not store waypoint data.

Once saved, a probe file can be later loaded to reset the entire probe configuration.

Probes can be saved or loaded by either opening the ArtiSynth File menu, or by right-clicking on the timeline’s waypoint
track, and selecting one of the following:

Save probes as ...

Brings up a file chooser that allows the user to specify a file for saving the current probe configuration. Clicking
Save As completes the operation.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/util/NumberFormat.html

ArtiSynth User Interface Guide 44

Save probes
If a probe file has already been specified using either “Save probes as ...” or “Load probes ...", then the current
probe configuration is saved to that file.

Load probes ...

Brings up a file chooser that allows the user to specify a file from which the probe configuration will be loaded.
Clicking Load completes the operation.

9 Adding and Editing Numeric Probes

Numeric input and output probes can be interactively added to a simulation. Output probes allow you to record a vector
of values derived from one or more model component properties. Input probes allow you to use a vector of input data to
drive one or more model component properties.

9.1 Adding output probes

To add a numeric output probe, go to the main menu and choose edit > add output probe. This will create a numeric
output probe editor, as shown in Figure 34.

Component Property i Formula

[=T4] E‘|modelsfmsmodfpar‘ticlesml | |v|
name display range min: max:
start time 0.0000 update interval 0.0100

end time 5.0000 attached file | H Browse

‘ Done H Cancel |

Figure 34: Probe editor for an uninitialized numeric output probe.
The editor contains three main panels:

* A property panel at the upper left in which allows you to add or edit the properties of model components whose values
will be used in computing the final output probe value. Each property is associated with a component/property widget,
which allows you to first select a component and then choose one of its properties.

* A formula panel at the the upper right which allows you to add or edit formulae which convert the values from the
properties into numeric values for the output probe.

* A probe property panel at the bottom which allows properties of the probe itself to be set.

9.1.1 Creating a simple probe

Creating an output probe that simply records the value of a single numeric property is fairly easy. Starting with the
output probe editor in Figure 34:

1. Select a component, either externally through the navigation panel (Section 4.2), the viewer (Section 4.3), or
the selection display (Section 4.4), or by entering its path name into the component/property widget. Once a
component is selected, the left-most “up” arrow can be used to select that component’s parent.

2. Select a property for the component from the property selection box at the right of the component/property
widget.

3. Adjust any required properties for the probe itself (Section 9.3).
4. Click Done.

ArtiSynth User Interface Guide 45

Property A —=p0 Formula 0 —=

Property B —=p1 —— —Formula 1 —

L]

Property C —p2

o
_’ -]
-]
) Formulam —=

Output
Vector

Property X —= pn

Figure 35: General mapping for an output probe.

9.1.2 General output probes

The incorporation of Jython formulae into output probes as described in this section can be difficult to implement
in code. Instead, users are encouraged to use NumericMonitorProbes to create output probe data based on general
functions. See the section “Numeric monitor probes” in the ArtiSynth Modeling Guide.

In general, output probes define a general map from the numeric values of n model component properties to a general-
ized output vector formed by the concatenation of m-subvectors formed by m formulae, as shown in Figure 35. In the
simple case of Section 9.1.1, there is a single property, one sub-vector equal to the output vector, and a formula which is
just the property value itself.

Each of the n properties has a numeric value which is represented by a variable p; and which is a vector of some
dimension (scalars being considered vectors of dimension 1). The dimension of the p; depends on the property and is
displayed to the right of the property selection box on the component/property widget.

Each of the m formulae is an arithmetic expression, implemented in Jython (Section 12), which may involve one or
more of the variables p;. The output from each formula is itself a vector of dimension d, which is displayed at the right
of each formula panel. The simplest formula is just a single variable p;, in which case d; equals the dimension of p;.
The concatenation of all the output vectors from all the formulae produces the output vector associated with the probe,
which has a dimension), d;.

9.1.3 Using the probe editor

What the probe editor allows you to do is create the above mentioned map by selecting the properties of model compo-
nents, assigning variable names to them, and creating formulae using these variables. When all the selected components
form a coherent mapping, the Done button will be enabled and the probe can be completed. When one or more parts

of the mapping is unspecified or incomplete, the associated widgets will be highlighted and the Done button will be
disabled.

Extra properties can be added by requesting additional component/property widgets using the "+" button in the property
panel. Similarly, extra formulae can be requested using the add button in the formula panel.

Properties and formulas can also be deleted; simply right click on the associated widget and choose delete.

Property variable names appear in a box at the left of the component/property widget. Variable names can be changed by
editing this box. Name changes will be propagated into the formulae.

In order to streamline the probe creation process, the editor will try to guess certain desired actions. In particular, when
the user chooses a property with a given component/property widget for the first time, the editor assigns a variable
name to that property and creates a formula panel containing that variable. The variable name and formula panel can be
changed if necessary.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericMonitorProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 46

Mame Dim | Formula Component Property

|E| |m0de|5fmsm0dfparticlesf4 | | |v‘

name scale 1
start time 0.0000] | attached file | | | Browse
end time 5.0000

‘ Done H Cancel ‘

Figure 36: Probe editor for an uninitialized numeric input probe.

Note:

The selection manager is connected to at most one component/property widget at a time. The component field
for this widget is indicated with a blue border; external selections will affect only that widget. Left clicking on a
component/property widget will cause it to be connected to the selection manager.

9.2 Adding input probes

To add a numeric input probe, go to the main menu and choose edit > add input probe. This will create a numeric input
probe editor, as shown in Figure 36.

The editor contains three main panels:
* An input panel at the upper left which allows you to add or edit input variables. Each of these variables represents a
sub-vector of the probe’s numeric input vector.

* A formula/property panel at the the upper right which allows you to add or edit numeric properties (using componen-
t/property widgets), along with formulae to determine values for these properties based on the input variables.

* A probe property panel at the bottom which allows properties of the probe itself to be set.

9.2.1 Creating a simple probe

Creating an input probe that simply sets a single numeric property from the probe’s input vector is fairly easy, and is
exactly analogous to creating a simple output probe (Section 9.1.1). Starting with the input probe editor in Figure 36:
1. Select a component, either externally, or using the component/property widget.

2. Select a property for the component from the property selection box at the right of the component/property
widget.

3. Adjust any required properties for the probe itself (Section 9.3).

4. Click Done.

9.2.2 General input probes

The incorporation of Jython formulae into input probes as described in this section can be difficult to implement in
code. Instead, users are encouraged to use NumericControlProbes to create general control inputs based on input
probe data. See the section “Numeric input probes” in the ArtiSynth Modeling Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericControlProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 47

—= p0 Formula 0 —= Property A

—pT — — Formula1 — Property B

. Formula 2 — Property C
-/ :
—- pn °
Input Formula m —= Property X

Vector

Figure 37: General mapping for an input probe.

In general, input probes define a general map from the probe’s input vector (which is subdivided into n input variables
of dimension d;) to the values of m properties, where each value is determined by an independent formula based on the
input variables (Figure 37). In the simple case of Section 9.2.1, there is one input variable which equals the input vector,
and it drives a single property using a formula which is just the value of the input vector.

Each input variable is a vector of dimension d; (scalars being considered vectors of dimension 1), and the sum of all the
d; equals the dimension of the input vector.

Each of the formulae controlling the properties is an arithmetic expression, implemented in Jython (Section 12),

which may involve one or more of the input variables p;. The output from each formula is itself a vector whose
dimension must match the associated numeric property. The simplest formula is just a single variable p;, in which case
its dimension equals the dimension of p;.

9.2.3 Using the probe editor

The probe editor allows you to create the above mentioned map by creating input variables, selecting properties, and
creating formulae to drive these properties. When all the selected components form a coherent mapping, the Done
button will be enabled and the probe can be completed. When one or more parts of the mapping is unspecified or
incomplete, the associated widgets will be highlighted and the Done button will be disabled.

Extra properties can be added by requesting additional component/property widgets using the "+" button in the formu-
la/property panel. Similarly, extra input variables can be requested using the add button in the formula panel.

Properties and input variables can also be deleted; simply right click on the associated widget and choose delete.

Each input variable is associated with a widget containing two text fields, the left one defining the variable’s name and
the right one its dimension. The name or dimension can be changed by editing these fields. Changes will be propagated
into the formulae; formulae that are found to be incompatible with the changes will be cleared.

In order to streamline the probe creation process, the editor will try to guess certain desired actions. In particular,

when the user chooses a property with a given component/property widget for the first time, the editor creates an input
variable whose dimension matches the property, and a simple formula consisting solely of the input variable. The input
variable and formula can be changed if necessary.

Note:

The selection manager is connected to at most one component/property widget at a time. The component field
for this widget is indicated with a blue border; external selections will affect only that widget. Left clicking on a
component property widget will cause it to be connected to the selection manager.

9.3 Setting probe properties

The lower part of the probe editor contains a set of fields for editing various probe properties.

ArtiSynth User Interface Guide 48

name

The name of the of the probe.

start time

Start time for the probe, in seconds.

stop time

Stop time for the probe, in seconds.

scale

Specifies the scale s for this probe, which relates the internal probe time #,, to the external simulation (or timeline)
time #. If #,y is the time at which the probe starts on the timeline, then ¢ = 7,5 + fygart.

attached file
Names the attached file for this probe, used for storing the probe’s date. See Section 8.1.

display range

Minimum and maximum range values used for the graphical display of the probe’s data. If these values are left
blank, then the range is computed automatically.

update interval

(Output probes only). A time interval, in seconds, specifying how often data should be output to the probe.

10 Point Tracing

Tracing can be enabled for individual points within an ArtiSynth model, allowing their paths to be recorded and
visualized over the course of a simulation.

Within the GUI, tracing can be enabled to selecting one or more points and choosing “Enable tracing” from the context
menu. This will create a tracing probe for each point, which is an output probe that stores the point’s position over
time and uses this to render the path in the viewer. The default tracing probe has a start time of 0 and a duration of 10
seconds. To create tracing probes that have different start times or durations, or other property settings that differ from
the default, one may instead choose “Add tracing probe”. This will open a select tracing dialog (Figure 38) that allows
various properties of the tracing probe to be explicitly set.

traceable
name I—
startTime 0.0000
duration 5.0000
updatelnterval Im

active

renderinterval 0.050000|) 1

pointTracing []

| oK H Cancel

Figure 38: Dialog to explictly set properties for a new tracing probe.

Once created, tracing probes can be viewed and inspected within the timeline (Section 7). They can also be selected
either by clicking on their traces within the viewer, or by clicking on their navigation panel entry under the root model’s
outputProbes list.

A trace is rendered in the viewer as a curve formed from line segments between adjacent positions in the point’s path
history. Its appearance can be controlled using the tracing probe’s render properties (Section 6.2.1), which can be
adjusted by selecting the probe and choosing “Edit render props ...” in the context menu. Setting the lineStyle, lineColor,
lineWidth and lineRadius properties will control the line style, color and width used to render the trace path. By default,
trace curves are rendered using a lineStyle set to LINE, a lineWidth of 3 (pixels), and a lineColor set from the point’s

ArtiSynth User Interface Guide 49

Figure 39: Point tracing rendered using the render properties for the tracing probe (left), and with lineStyle, lineColor,
and lineWidth set to CYLINDER, pale blue and 0.6 (right).

color. Figure 39 shows the demo artisynth.demos.mech.SpringMeshDemo after about 4 seconds of simulation with
tracing enabled for point 4, using both the default and custom render properties set for the tracing probe.

Trace data is cleared when the simulation is restarted from time 0. It can also be cleared by selecting the corresponding
point(s) and choosing “Clear trace” in the context menu.

Tracing can be removed from a point by deleting its tracing probe, which can be done either through the normal
component deletion mechanism (selecting the probe and choosing Delete in the context menu), or by selecting the
point(s) and choosing Disable tracing. The latter will remove all tracing probes associated with the point(s), including
those created via “Add tracing probe”.

11 Settings and Preferences

A variety of settings are available to adjust attributes related to the viewer, mouse bindings, and model interaction
and simulation. Many of these settings can also be saved as preferences (Section 11.2) to provide initial values when
ArtiSynth is started up.

11.1 Settings

Settings for the viewer and mouse are discussed in Sections 3.9 and 3.10. Settings related to model interaction and
simulation as discussed in the sections below.

11.1.1 Interaction

Interaction settings involve attributes related to the graphical interface and model interaction. They can be adjusted by
selecting “Interaction ...” from the Settings menu, which opens an interaction settings dialog (Figure 40). Clicking the
Save button will save the current settings to the user’s preferences (Section 11.2) so that they will be set automatically
when ArtiSynth is restarted. Interaction settings include:

articulatedTransforms

If true, attempts to preserve joint constraints when rigid bodies are moved using the manipulator controls
(Section 5.2). The default value is false.

ArtiSynth User Interface Guide

50

articulatedTransforms []

frameRate 20

initDraggersinWorld []

realTimeScaling 1

navigationPanelLines []

‘ Save ‘ | Cancel || Done ‘

Figure 40: Interaction settings dialog.

frameRate

Controls the rate, in frames per second, at which the viewer renders the simulation as it proceeds. The default
value is 20.

If r denotes the frame rate, it is usually best to set such that 1/r is an integer multiple of the simulation
step size. Otherwise, additional steps will be added to the simulation, at irregular intervals, in order to
accommodate the requested rate.

realTimeScaling

This is a scaling factor for the viewer simulation speed.

initDraggersInWorld

If true, sets the initial orientation of transformer tools to be aligned with world coordinates, as described in
Section 5.2. The default value is false.

navigationPanelLines

If true, causes lines to be drawn linking components in the navigation panel (Section 4.2).

11.1.2 Simulation

maxStepSize 0.01

stabilization |GlnbaIMass |v‘
colliderType TRI_INTERSECTION | v |
abortOninvertedElements
hybridSolvesEnabled]

numSolverThreads -1
| Cancel H Done |

Figure 41: Simulation settings dialog.

Simulation settings involve attributes related to model simulation. They can be adjusted by selecting “Simulation ...” from
the Settings menu, which opens a simulation settings dialog (Figure 41). Clicking the Save button will save the current

settings to the user’s preferences (Section 11.2) so that they will be set automatically when ArtiSynth is restarted.

Note that simulation settings do not take effect until the next model is loaded or reloaded.

Simulation settings include:

maxStepSize

The default maximum step size used for simulation, in seconds. See “Simulation control properties” in the
ArtiSynth Modeling Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 51

stabilization

The default stabilization method used to correct collision interpenetrations and drift from position constraints. See
“Simulation control properties” in the ArtiSynth Modeling Guide.

collider Type

The default collider type used for collision detection. See “Collision methods and collider types” in the
ArtiSynth Modeling Guide.

abortOnInvertedElements

This is an attribute of 3D FEM models that instructs the simulation to abort whenever inverted elements are
encountered by FEM materials that don’t support element inversion (such as most hyperelastic materials). The
default value for this attribute is true. Setting it to false may be useful for diagnostic purposes.

hybridSolvesEnabled

Enables hybrid solves in the sparse matrix solver used for system simulation. The default value is true. Hybrid
solves combine iterative and direct methods in a way that can often improve simulation speeds several fold.
However, hybrid solves do not generally produce results with exact numerical repeatability. It may therefore be
preferable in some diagnostic and testing situations to disable hybrid solves.

numSolverThreads

Number of threads used by the sparse matrix solver used for system simulation. The default value is the number
of threads available on the machine. Simulations will usually run faster with more threads (although the speed
increase is generally sublinear). However, using more than one thread will usually produce results that do not have
exact numerical repeatability. It may therefore be preferable in some diagnostic and testing situations to set the
number of solver threads to 1.

11.2 Preferences

Preferences are settings saved in the user’s configuration data so that they are restored when ArtiSynth is restarted. They
are stored in the file settings/preferences within the configuration folder (Section 1.1).

> Viewer backgroundcColor -

Interaction

Layout selectionColor |:|
Simulation axisDrawStyle LINE ﬂ

Mouse i i)
Movies axisLengthRadiusRatio 50
Maintenance |rotationMode FIXED_VERTICAL | v |
defaultAxialView =

surfaceResolution 32

ellipticCursorSize [1010]

graphics * ﬂ

* restart required

| Set from current || Apply to current || Reset defaults |

| Reset all defaults | | Cancel || Save |

Figure 42: Preferences editor, with viewer preferences shown.

Preferences can be edited by selecting “Preferences ..” from the Settings menu, which opens a preferences editor dialog
(Figure 42). A panel on the left contains a tree-based representation of the different preferences, which can be used to
select a specific set of preferences which can then be adjusted using a preferences panel panel displayed on the right.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 52

Values shown in the preferences editor describe stored values that are set when ArtiSynth is restarted, and setting

them will not change the current settings in the ArtiSynth application. However, most preferences panels contain the
button “Apply to current” which will apply the values to the current application settings. Other buttons include “Set from
current”, which loads the values from the current application settings, and “Reset defaults”, which resets the panel values
to their defaults.

To save preferences in the user’s configuration data, one should click the Save button at the bottom right of the prefer-
ences editor. The “Reset all defaults” button located at the bottom left resets all preference values to their defaults; the
Save button must subsequently be used to save these reset values.

Preferences that can be set include settings for the viewer and mouse (Sections 3.9 and 3.10), model interaction and
simulation (Section 11.1), and making movies (Section 14.5). Preferences can also be set for the application layout, as
described in the next section.

11.3 Layout preferences

Layout preferences control the size and visibility of different application windows, as well as the look and feel of the
user interface.

viewer Width

Width of the main ArtiSynth viewer (in pixels). Note that this and the viewerHeight property describe the size of
the viewer itself, and not the overall application window containing the viewer. The viewer width can also be set
from the command line with the option

-width <pixels>

viewerHeight
Height of the main ArtiSynth viewer window (in pixels). This can also be set from the command line with the
option

~height <pixels>

timelineVisible

Whether or not the timeline (Section 7) is visible when ArtiSynth starts up. The default value is true. Initial
timeline visibility can also be controlled with the command line options

-timelineVisible
-timelineHidden

timelineWidth

Initial width of the timeline (in pixels). This can also be set from the command line with the option
-timelineWidth <pixels>

timelineHeight

Initial height of the timeline (in pixels). This can also be set from the command line with the option
-timelineHeight <pixels>

timelineRange

Default timeline range that is used to initialize the visible part of the timeline when a model is loaded. A value

< 0 implies that the range will be set automatically. If set to a value > 0, the actual amount of time visible may
be slightly larger because of the way the timeline is scaled. The timeline range can also be set from the command
line with the option

-timelineRange <value>

ArtiSynth User Interface Guide 53

timelineLocation

Initial location of the timeline with respect to the main ArtiSynth application window. This can also be set from
the command line option with the option

-timelineLocation <loc>

where loc is one of CENTER, LEFT, RIGHT, ABOVE or BELOW.

jythonFrameVisible

Whether or not a Jython console frame (Section 12) should be displayed when ArtiSynth starts up. The default
value is false. A Jython console can also be requested at startup with the command line option

-showJythonConsole

jythonLocation

Initial location of the Jython frame with respect to the main ArtiSynth application window. This can also be set
from the command line with the option

-jythonLocation <loc>

where loc is one of CENTER, LEFT, RIGHT, ABOVE or BELOW.

lookAndFeel

Controls the look and feel of the user interface (UI). The ArtiSynth Ul is built using Java Swing, which supports
pluggable look and feel. At the time of this writing, the look and feel options are:

DEFAULT
The default provided by the Java environment. On Windows and Linux systems, this is METAL, while
MacOS provides its own proprietary look and feel.

METAL
The standard Swing cross-platform look and feel. On MacOS, it is necessary to specify this explicity to
avoid its native look and feel.

SYSTEM
The native system look and feel.

A restart is required when changing the look and feel. It is also possible to specify the look and feel from the
command line using the option

-lookAndFeel <laf>

where laf is one of the options described above.

The SYSTEM look and feel may cause problems on some systems. For example, at the time of this writing,
the Windows Ul is not fully compatible with certain dialogs used to save files.

12 Jython Interaction and Scripting

ArtiSynth supports a Jython console that provides a command line interface to all the internal structures associated

with ArtiSynth and its models. Jython (www.jython.org) is a Java implementation of Python that combines Python
commands and syntax with the ability to access and call all publicly accessible attributes and methods of Java objects. It
can be used to interactively load, query and run models, or to run simulation scripts, either interactively (Section 12.3) or
in batch mode (Section 12.6).

Use of the Jython interface currently requires that ArtiSynth is run under Java 8§, which is why we recommend
using this Java version. If you experience trouble running the Jython console, verify that you do in fact have Java
8 installed, and, if you are using an integrated development environment (IDE), that the IDE is also using Java 8.
Details on installing Java 8 can be found in the installation guides for Windows, MacOS, and Linux.

https://www.jython.org
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/windowsInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/macosInstallation.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/linuxInstallation.pdf

ArtiSynth User Interface Guide 54

The syntax, language semantics, and common packages for Jython are the same as for Python 2.7, so Python 2.7
language references can be used to learn how to to program in Jython.

The Jython console can be started by either

1. Choosing View > Show Jython Console in the GUI, or

2. Specifying the option -showJythonConsole on the command line.

The Jython console currently appears in a separate Window frame (Figure 43).

bile Models Scripts Edit Settings Wiew Help

@hciiﬁ step: |0.01000 D.o0ooD 4| [b “ Ik =

[}

TedkB®OXOC >

LoadHodel {'™asseterMlsdszdohn)
= mesh = sel[a)

f==>= mzsh

rartisynth, care. Temmodet s FareshCorpdahE] Ace s
== mash, aumverticesi)
140

e

Figure 43: ArtiSynth application showing the Jython console.

12.1 Querying ArtiSynth structures and models

Once the Jython console is open, it can be used to query ArtiSynth structures and model components. Every publicly
accessible method of every Java object can be called via the interface. To easily access particular components of a
model, the predefined list variable sel provides access to the current ArtiSynth selection list. That means you can select
items in the ArtiSynth GUI (using either the viewer or navigation panel) and then access these in Jython. By itself, sel
supplies the entire selection list. Specific selected components can be accessed by indexing into this list, so that sel[1]

returns the i-th entry (where the index 1 is O-based).

For example, if two particles are currently selected in ArtiSynth, then sel can be used as follows:

>>> sel # get the entire selection 1list

[artisynth.core.mechmodels.Particle@709dal88, artisynth.core.mechmodels. ¢
Particle@750eba3f]

>>>

>>> sel [0] # get the first item on the list
artisynth.core.mechmodels.Particle@709dal88

Once a component has been selected, then one has access to all its public methods. This can be quite useful for setting
or querying items are that are not normally available via the ArtiSynth GUI. For example, if we want to find the number

of nodes in a FemMode13d, then we can select the FEM and then in the console do

ArtiSynth User Interface Guide 55

>>> fem = sel[0]
>>>

>>> fem.numNodes ()
16

12.2 Object creation and importing classes

Java objects can also be created by calling their constructors directly, without the need for the keyword new. For
example,

>> vec = Vector3d (1, 2, 3)

creates a new instance of Vector3d and initializes it to (1, 2, 3).
As with Java code, Java class definitions need to be imported into Jython in order for them to be visible. For example,

>> import maspack.matrix

will import all classes defined in the package maspack.matrix. However, unlike in Java, classes imported into Jython
this way will still need to be accessed using their fully qualified class names (e.g., maspack.matrix.Vector3d,
maspack.matrix.Matrix3d, etc.). In order to make classes visible using only their basic names, one may use the from
statement, as in

>> from java.io import File
>> from maspack.matrix import Vector3d

To import all classes within a package by basic name, one may employ the wildcard *:

>> from maspack.matrix import *

although this may occasionally miss certain classes.

For convenience, the ArtiSynth Jython console already fully imports, by basic name, the classes from the following
packages:

maspack.util
maspack.matrix
maspack.geometry
maspack.collision
maspack.render
maspack.solvers
artisynth.core.mechmodels
artisynth.core. femmodels
artisynth.core.materials
artisynth.core.modelbase
artisynth.core.driver
artisynth.core.workspace
artisynth.core.inverse
java.lang

java.io

12.3 Running simulations and scripting

Jython can also be used to run simulations, using various built-in functions that allow models to be loaded and run. A
full summary of these is given in Section 12.7. In particular, it is possible to load a model and then run or single step a
simulation.

To load a model, one may use the function

loadModel (name, args...)

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/matrix/Vector3d.html

ArtiSynth User Interface Guide 56

where name is the classname of the model’s RootModel, and args. .. is an optional variable-length list of string
arguments that are used to form the args argument of the model’s build () method (see the section “Implementing the
build() method” in the ArtiSynth Modeling Guide). In general, the name argument should be the fully qualified name of
the root model class, as in

>> ah.loadModel (’artisynth.demos.mech.RigidBodyDemo’)

However, if the model has been previously loaded by ArtiSynth, the class’s simple name should work as well:

>> ah.loadModel (’RigidBodyDemo’)

Once loaded, simulation may be controlled using functions such as play (), pause (), step (), or reset (). The
play () function may take a time argument indicating the length of time the simulation should be run for; if this
argument is omitted, the simulation will run indefinitely or until a breakpoint is encountered. Play requests are issued
asynchronously; to make the Jython console wait for simulation to halt, one may use the waitForStop () function:

>> loadModel (’'RigidBodyDemo’)
>> play (2.5)
>> waitForStop ()

When controlling simulations, it is often easiest to create a script of Jython commands in a Python-style . py file and
then "source" them into the Jython console. In Python, one can use exec () or execfile () to do this. However, in
ArtiSynth it is recommended to use the ArtiSynth supplied script () function, as in

>>> script (’contactTest.py’)

This is particularly true for longer scripts, since script () interacts better with the GUI and allows the script commands
to be displayed in the console as they are being executed.

Scripts are particularly useful for running multiple simulations with varying inputs and outputs. Arguments supplied to a
model’s build () method provide a convenient way to adjust input and output parameters between simulations.

As will be seen below, it is also possible to pass command-line style arguments to the script itself. Within the script,
such arguments can the retrieved from sys.argv, as illustrated by the following code fragment:

import sys
print (' Number of arguments:’ + str(len(sys.argv)))
print (/' Argument List:’ + str(sys.argv))

Jython commands, including scripts, can be aborted by clicking the stop-all button to the right of the play controls
(Section 7.2.1).

12.4 Using the script menu

For convenience, ArtiSynth provides a Scripts menu in the main application menu bar that is similar in function to the
Models menu and can be used to run script files from predefined menu entries (Figure 44). By default, the upper part of
this menu contains a single submenu:

Demo scripts - expands to all scripts within src/artisynth/demos/scripts under the ArtiSynth install folder.

Selecting a submenu entry will cause the Jython console to be opened (if necessary) and the associated script to
be executed. At the time of this writing, “Demo scripts” contains a single entry for a demonstration script named
demoScript.py.

The lower part of the script menu, beneath the separator, contains entries for reloading recent scripts ("Run recent ...”),
running a script from an explicitly specified file (“Run script .., Section 12.5), and adding custom entries to the upper
part of the script menu (“Edit menu ...”, Section 13).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide

57

ArtiSynth Null model [/home/lloyd]

| |
File Models | Scripts | Edit Settings View Help

emo scﬁb_t_s_;i simple script step: [0.01000]
b 1 Bndeb eyt esloslon |

BEE

Run recent
Run script ...
Edit menu ...

-

oW &®O X0~

Figure 44: The ArtiSynth script selection menu.

12.5 Selecting a script file

To explicitly specify a script file, choose “Run script ...” from the lower part of the script menu, which will bring up a
script selection dialog as shown in Figure 45.

Users should specify the folder containing the script in the “Script folder” field at the top. This folder will then be
searched for files ending in .py and . jy, with the results listed in the “Script file” panel, from which the user can then
select the desired script by clicking on it. If the script requires command-line style arguments (Section 12.3), these
can be entered in the “Args” field near the dialog bottom. Arguments should be separated by white space, with those

e

containing white space placed between with double quotes ‘"’.

When all desired settings have been made, the user runs the script using the Run button.

12.6 Specifying scripts on the command line

It is possible to specify Jython scripts directly on the ArtiSynth command line using the -script option. For example,

artisynth -script experiment.py

will start ArtiSynth and then immediately invoke the script experiment.py. Scripts can also be run in "batch" mode,

without starting the GUI or explicitly opening the Jython console. This can be useful when running ArtiSynth remotely,

or in parallel on a cluster of machines. To run a script in batch mode, simply add the -noGui command line option:

artisynth -noGui -script experiment.py

Since there is no GUI, Jython will then be initiated using a terminal console instead of the usual GUI-based text window.

When the script finishes, the console will remain available for interactive operation.
One may also simply start with a Jython console, with no initial script:

artisynth -noGui -showJythonConsole

Finally, arguments may be passed to scripts invoked using -script, by placing them immediately after the script
specification, enclosed within square brackets []. For example,

artisynth -script myscript.py [-xxx 123 -off]

will pass the strings "-xxx", "123" and "-off" to the script myscript.py. Within the script, these arguments can the

retrieved from sys.argv, as described in Section 12.3.

ArtiSynth User Interface Guide

58

Script folder:)ot,.'ar‘tisynth_corefsrcfar‘tisynthfcore,.’mechmodels|| Browse

Script file:

[l contactTest.py
[IfrankTest.py
jointtest.py

[| mechmodelTest.py (MechmodelTest)
[I mechtest.py

[IsavelLoadTest.py

[IsaveloadTestX.py

[| scripttest.py (script test)
[] skintest.py

[| stateTest.py
[]stateTestX.py
[]threadtest.py
[]wraptest.py

Args: |

| Run || Cancel

Figure 45: Dialog for selecting a script file.

12.7 Built-in functions
The following is a summary of the built-in Jython console functions:

getMain ()
Returns the ArtiSynth Main object.

loadModel (name, args...)

Loads the named model along with optional arguments. name is the classname of the model’s RootModel
and args. .. is an optional variable-length list of string arguments that are used to form the args argu-
ment of the model’s build () method. Nominally, name should be a fully-qualified classname (for example,
artisynth.demos.mech.RigidBodyDemo), but if the model has been loaded before, the simple class name
should work as well (e.g., RigidBodyDemo).

loadModelFile (filename)
Loads a model from an ArtiSynth file. f£ilename is a string giving the file’s path.

saveModelFile (filename)

Save a model to an ArtiSynth file.

saveModelFile (filename, saveWayPointData, coreCompsOnly)

Save a model to an ArtiSynth file. The options saveWayPointData and coreCompsOnly specify whether to (a)

save waypoint data, and (b) save only components from artisynth_core.

play()

Starts the simulation running.

play(t)

Starts and runs the simulation for t seconds.

pause ()

Pauses the simulation.

step ()

Single steps the simulation.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide

reset ()

Resets the simulation to time 0.

forward ()

Forwards the simulation to the next waypoint.

rewind()

Rewinds the simulation to the last waypoint.

delay (t)

Delays execution for t seconds.

waitForStop ()

Blocks until the simulation has completed.
isPlaying ()

Returns true if simulation is still running.

getTime ()

Returns current ArtiSynth simulation time in seconds.

reload()

Reloads the current model.

addWayPoint (t)

Adds a simulation waypoint at time t, where t is a floating point value giving the time in seconds.

addBreakPoint (t)
Adds a breakpoint at time t.

removeWayPoint (t)

Removes any waypoint or breakpoint at time t.

clearWayPoints ()

Removes all waypoints and breakpoints.

saveWayPoints (filename)

Save waypoints and their data to a specified file

loadWayPoints (fileName)

Load waypoints and their data from a specified file

root ()

Returns the current RootModel.

find (path)
Finds a component defined by path with respect to the current RootModel.

getsel()

Returns the current ArtiSynth selection list (which is the same as the built-in variable sel).

getsel (1)

Returns the i-th selection list item (where i is 0-based).

quit ()
Quits ArtiSynth.

ArtiSynth User Interface Guide 60

13 Customizing the Model and Script Menus

The model and script menus are useful interfaces for loading ArtiSynth models and running Jython scripts. The upper
sections of these contain menu arrangements which allow models to be loaded or scripts to be run by simply clicking on
a menu item. These menu arrangements may be customized by the user.

The upper model menu comes initialized with predefined entries that locate all models defined in the packages
artisynth.demos and artisynth.models. Customization may be desirable in order to:

* Access models declared in packages outside artisynth.demos and artisynth.models;

* Reduce the scope of the menu to a smaller set of models or model packages.

Meanwhile, the upper script menu comes initialized to find only scripts located in src/artisynth/demos/scripts
relative to the ArtiSynth installation folder, so customization will be necessary to access scripts outside of this.

Either menu may be customized by selecting “Edit menu ...” at the menu’s bottom, which will open one of the menu
editors described below.

13.1 Model menu editor

= Models
=l Demos [demoModels.txt]
8 All demos [artisynth.demos]
£/ Models [mainModels.txt] Add package
£ All models [artisynth.models]

Add models

Add submenu

Add demo file

Add label

Add separator

Edit

Save to ...

Load from ...

Save

Reload

Reset default

Figure 46: Model menu editor, showing the default menu configuration.

The upper part of the model menu may be customized using the model menu editor (Figure 46), which may be opened
by selecting “Edit menu ...” at the bottom of the model menu. The editor comprises a large menu panel on the left side,
containing a tree representation of the menu, and an edit panel on the right side which supports various editing actions.

A model menu is composed of a hierarchical arrangement of six types of menu entries, summarized in Table 1 and
described in more detail in Section 13.3. Every entry has a title attribute denoting the text used in the actual menu. The
set of menu entries is displayed hierarchically in the editor’s menu panel, with each entry indicated by an icon (see Table
1) followed by its title. Entries can be selected by clicking on them using the left mouse button, using the CTRL and
SHIFT modifier keys to enable multiple and contiguous selection. Figure 47 shows an example menu panel display on
the left with the corresponding model menu on the right.

ArtiSynth User Interface Guide

61

Icon Type Description
'Ea Package Submenu containing all models within a specific Java package and
subpackages.
3 Model Menu entry for an individual model.
= Submenu General submenu containing other menu entries.
= Demo file Submenu consisting of all models listed in a text file.
O Label Menu entry consisting of a descriptive label.
— Separator Menu entry consisting of a separating line.

Table 1: The six different types of menu entries used to form a model menu.

Models

demoModels.txt [demoModels. txt]
All demos [artisynth.demos]

Other demos

|

e | [| [

SISICln

H# mech [artisynth.demos.mech]

rapping

ShoulderWrapping

TalusWrapTest
TorusWrapTest

FEM
ArticulatedFem
BigBeam3d
Fem3dBlock

Models Scripts Edit Settings View He

demoModels.txt

All demos k

Other demos ¥ mech ¥

Reload mode Wrapping

Load recent ¥ ShoulderWrapping

Load from class ... | TalusWrapTest

Edit menu ... TorusWrapTest

: FEM
ArticulatedFem
BigBeam3d
Fem3dBlock

Figure 47: Model menu editing example, showing the display in the menu panel (left) and the corresponding model
menu (right).

Editing actions that may be initiated include:

Adding menu entries

The Add buttons in the edit panel allow the different menu entries to be added to the the menu. Add operations
for all entry types except separators invoke a dialog for configuring the new entry; details on these are given in
Section 13.3. If no entries are selected when the add operation is initiated, the new entry will be placed at the end
of the top-level menu. Otherwise, if a submenu entry is selected, the new entry will be placed at the end of that
submenu. Finally, if a non-submenu entry is selected, the new entry will be inserted in the location of the selected

entry.

Editing menu entries

All menu entries except separators have attributes that can be edited by selecting the entry and clicking the Edit
button in the editing panel. Details on these attributes are given in Section 13.3.

Rearranging and deleting menu entries

Menu entries can be rearranged or deleted using the up/down arrow and X buttons:

T 4| X

Rearrangement can be done within a submenu by selecting a contiguous set of entries within that submenu and
using the up/down arrows to move them up or down with respect to other submenu entries. Entries can be deleted
by selecting any number of them, within any submenu, and clicking the X button.

ArtiSynth User Interface Guide 62

Saving and loading from files

The Save and Reload buttons at the bottom of the edit panel can be used to save/reload the current menu to/from
the initialization file settings/modelMenu. xml, located in the user configuration folder (Section 1.1). The
buttons "Save to ...” and “Load from ..” can be used to save/load the menu from alternative files. The “Reset to
default” button in the lower left corner of the dialog resets the menu and its configuration files to their original
settings.

Changes that are made in the menu editor appear immediately in the model menu itself. Changes which involve adding,
deleting or rearranging entries can be undone using the Undo option in ArtiSynth’s main Edit menu (Section 16.1.3).

Submenus which are empty are displayed in the menu editor but not in the menu itself. Submenus may be empty if
no entries have been added to them, or if the model entries specified within them are not actually found. The latter
most commonly occurs when the packages containing said models are not visible to ArtiSynth.

13.2 Script menu editor

i= Scripts

7 Demo scripts [scripts] Add script

Add script folder

Add submenu

Add label

Add separator

Edit

Save to ...

Load from ...

Save

Reload

Reset default

Figure 48: Script menu editor, showing the default menu configuration.

The upper part of the script menu may be customized using the script menu editor (Figure 48), which may be opened by
selecting “Edit menu ...” at the bottom of the script menu. Its structure and function is essentially identical to the model
menu editor (Section 13.1), except that the Package, Model, and Demo file entries are replaced by the Script folder and
Script entries, as shown in in Table 2 and described in more detail in Section 13.3. The initialization file accessed by the
Save and Reload buttons is settings/scriptMenu.xml, located in the user configuration folder (Section 1.1).

13.3 Menu entry types
13.3.1 Model

For model menus, a model entry is used to select a specific model; clicking on this entry type in the model menu causes
the class defining the model to be loaded. Model classes must be public subclasses of RootModel.

To add a model entry to the menu, click Add model in the edit panel. This opens an add model dialog,

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide 63

Icon Type Description

& Script folder Submenu containing all scripts within a specific folder.
@ Script Menu entry for an individual script.

= Submenu General submenu containing other menu entries.

[Label Menu entry consisting of a descriptive label.

— Separator Menu entry consisting of a separating line.

Table 2: The five different types of menu entries used to form a script menu.

Model package: |artisynth.demos.fem |

Model class:

[v] ArticulatedFem

[] AttachDemo
[]AttachedBeamDemo

[] AttachedMuscleBeam
[1BSpline3dElementTest

[n]»

Menu title: |articulatedFem

Iy

Build args: |

| Add H Cancel

which allows the user to specify the model class and (optional) build () method arguments using the “Model package”,
“Model class” and “Build args” fields in the same manner discussed in Section 2.2. Multiple models may be selected

in the “Model class” panel; if this is done, a separate model entry will be created for each. The menu title can be set
explicitly using the “Menu title” field; otherwise, the title will default to the model class’s simple name.

Once created, a model entry can be edited by selecting it in the editor’s menu panel and clicking the Edit button, which
opens an editing dialog that also allows the user to adjust the title font properties.

13.3.2 Package

For model menus, a package entry is a submenu containing a// the model classes found within a specified Java package
and its subpackages. The submenu contents may be arranged either as a flat list, or hierarchically based on the subpack-
ages (the default). Again, each model class must be an public subclasses of RootModel. Individual model classes can be

excluded from package menu entries by defining the public boolean member variable omitFromMenu and setting it to
true:

public class MyModel extends RootModel ({

public static boolean omitFromMenu = true;

To add a package entry to the menu, click “Add package” in the edit panel. This opens an add package dialog,

Package: [artisynth.demos mech |

Menu title: [DemosMech |
Flat view: []

| Add H Cancel

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide 64

which allows the user to specify the package, menu title, and whether to use a flat or hierarchical view. Auto-completion
is supported by the Package field, with the <TAB> character invoking auto-completion based on currently known
packages and repeated use of either <TAB> or the up/down arrows will scroll through known packages. Package entry is
completed using the <ENTER> key.

If the title is omitted (via an empty “Menu title” field), then the menu entries are not presented as a submenu, but instead
are unrolled directly into the submenu containing the package entry.

Once created, a package entry can be edited by selecting it in the editor’s menu panel and clicking the Edit button. This
opens an editing dialog that allows the user to adjust additional attributes, such as the title font properties, the maximum
number of rows, and whether to employ scrolling, as described in more detail in Section 13.3.6.

13.3.3 Demo file

For model menus, a “demo file” entry is a submenu containing all the models listed in a plain text file, using the format
described in Section 13.5. Plain text files have the advantage of being more human-readable, and are easier to edit and
comment out line.

To add a demo file entry to the menu, click “Add demo file” in the edit panel. This opens an add demo file dialog,

File name: ‘omeflloydertiSynthConfigfsettingsf‘testModels.t}{t|| Browse |

Menu title: [TestModels |

| Add H Cancel

which allows the user to specify the file name and the menu title. If the title is omitted (via an empty “Menu title” field),
then the menu entries are not presented as a submenu, but instead are unrolled directly into the submenu containing the
entry.

Once created, a demo file entry can be edited by selecting it in the editor’s menu panel and clicking the Edit button. This
opens an editing dialog that allows the user to adjust additional attributes, such as the title font properties, the maximum
number of rows, and whether to employ scrolling, as described in more detail in Section 13.3.6.

13.3.4 Script

For script menus, a script entry is used to select a specific script file; clicking on this entry type in the script menu causes
this script file to be run.

To add one or more script entries to the menu, click “Add scripts” in the edit panel. This opens an add script dialog,

Script folder: Jotfar‘tisynth_corefsrcfar‘tisynthfcorefmechmodels|| Browse

Script file:

[»

[] contactTest.py

[]frankTest.py

jointtest.py

[mechmodelTest.py (MechmodelTest)

[] mechtest.py

[]1savelLoadTest.py

[l savelLoadTestX.py

[] scripttest.py (script test)
[]skintest.py]
[l stateTest.py
[l stateTest¥.nv

Script title: [jointtest

|y

Args: |

| Add || Cancel

ArtiSynth User Interface Guide 65

» o«

which allows the user to specify the script and (optional) arguments using the “Script folder”, “Script file”, and “Args”
fields in the same manner discussed in Section 12.5. Multiple scripts may be selected in the “Script file” panel; if this is
done, a separate entry will be created for each. The menu title can be set explicitly using the “Menu title” field; otherwise,
the title will default to the script’s file name.

Once created, a script entry can be edited by selecting it in the editor’s menu panel and clicking the Edit button, which
opens an editing dialog that also allows the user to adjust the title font properties.

13.3.5 Script folder

For script menus, a script folder entry is a submenu containing all the scripts found within a specified folder. The scripts
are found by searching the folder for all files that end in .py and . jy, and which also contain the special first line

ArtisynthScript: "scriptTitle"

where scriptTitle is the desired menu title for the script.

To add a script folder entry to the menu, click “Add script folder” in the edit panel. This opens an add script folder dialog,

Script folder: |)0tfar‘tisynth_corefsrcfar‘tisynthfcorefmechmodels|| Browse |

Menu title: [mechmodels |

| Add || Cancel |

which allows the user to specify the script folder and menu title via the “Script folder” and “Menu title” fields. If not
explicitly specified, the title defaults to the name of the folder. If the title is omitted, by explicitly setting it to an
empty string, then the menu entries are not presented as a submenu, but instead are unrolled directly into the submenu
containing the script folder entry.

Once created, a script folder entry can be edited by selecting it in the editor’s menu panel and clicking the Edit button.
This opens an editing dialog that allows the user to adjust additional attributes, such as the title font properties, the
maximum number of rows, and whether to employ scrolling, as described in more detail in Section 13.3.6.

13.3.6 Submenu

A submenu entry is a generalized submenu that can contain an arbitrary list of other menu entries, and is used to create
hierarchical menus.

To add a submenu entry to the menu, click “Add submenu” in the edit panel. This opens an add submenu dialog,

Menu title: [0therModels |

| Add || Cancel

which allows the user to specify the submenu’s title. Once the submenu is created, new menu entries can be added to it
by selecting the submenu in the editor’s menu panel and then clicking the appropriate Add buttons; the new entries will
be placed at the end of the submenu. Alternatively, if the user selects a non-submenu entry within the submenu, and then
clicks one of the Add buttons, the new entry will be placed in the location indicated by the selection.

Once created, a submenu entry can be edited by selecting it and clicking the Edit button, which opens an editing dialog
that allows the user to adjust additional attributes, including whether to support scrolling, the maximum numbers of rows
in the menu, and the title font properties:

Menu title: |OtherModels |

Scrolling: [
Max rows: 20

Font name: |Dialog

Font style: |BOLD [~
Font size: 1z

‘ Done || Cancel |

ArtiSynth User Interface Guide 66

Scrolling can be useful for submenus with many entries: when the number of rows exceeds the specified maximum, then
the menu is presented within a scrolling pane. Otherwise, if scrolling is not enabled, extra entries are accommodated by

adding additional columns to the menu (Figure 49).

i
Spring Mesh
RigidBody Spring
Spring Net
MechModel Demo
Multi-Point Muscle
Hex FEM Cube
FEM Locking
Hex FEM Blocks
Robust FEM Cube
Incompressible FEM
Point FEM Attachment
Embedded Surface
Embedded Surface Collide
Simple Collide
Puppet Demo
Contact Pressure Render
Lumbar FEM Disk
Lumbar FrameSpring
Material Bundle

Hex Frame
hd

Spring Mesh

RigidBody Spring

Spring Net

MechModel Demo
Multi-Point Muscle

Hex FEM Cube

FEM Locking

Hex FEM Blocks

Robust FEM Cube
Incompressible FEM
Point FEM Attachment
Embedded Surface
Embedded Surface Collide
Simple Collide

Puppet Demo

Contact Pressure Render
Lumbar FEM Disk
Lumbar FrameSpring
Material Bundle

Hex Frame

Spring/FEM Attachment

Articulated FEM
Leaf Demo
Combined Shell-FEM
Shell Block
RigidBodyCollision
FEM Plane Collide
FEM Collision

FEM Muscle Arm
Simple FEM Muscle
FEM Self Collision
RigidBody Skinning
FEM Skinning
Phalanx Wrapping
Talus Wrapping
Torus Wrapping
Inverse Point2d
Inverse Hydrostat

Figure 49: When the number of menu entries exceeds the maximum number of rows, either a scrolling menu is used if
scrolling is enabled (left), or additional columns are added to the menu (right).

Both the package, demo file and script folder entries (Sections 13.3.2, 13.3.3 and 13.3.5) are also themselves submenus,
and so the scrolling and maximum rows attributes can be set for these as well.

13.3.7 Label

A label entry is an inactive text element that cannot be selected in the menu. It can be used to label a group of entries. To
help distinguish a label from an active menu item, the default font style is set to “italic”.

To add a label entry to the menu, click “Add label” in the edit panel. This opens an add label dialog,

Label title: | |

| Add || Cancel

in which the user enters the label title. After it has been created, the label can be edited by selecting it in the editor’s
menu panel and clicking Edit, which opens an editing dialog that allows the user to also adjust the title font properties.

13.3.8 Separator
A separator entry is a horizontal line that visually separates menu entries. It can help distinguish groups of related menu
items.

To add a separator entry to the menu, click “Add separator” in the edit panel. This will simply add a separator at the
location indicated by the current selection; no dialog is needed.

13.4 Command line options

It is also possible to explicitly set the model menu using ArtiSynth command line arguments:

-modelMenu <xmlFileName>

Specifies the model menu using an XML file, the format for which is described in Section 13.6. When this is
done, the Save and Reload operations described in Section 13.1 are redirected to the specified file instead of the
default configuration file.

ArtiSynth User Interface Guide 67

-demokFile <fileName>

Specifies a basic menu from a simple list of models provided by <fileName>, using the format described in
Section 13.5. When this option is used, the model menu editor is not available and the resulting menu cannot be
edited.

13.5 Demo file text format

A plain text file format is used to supply a list of model menu items, for either demo file menu entries (Section 13.3.3),
or use with the —~demoFile command line option (Section 13.4). In this format, entries are listed as title-class pairs,
separated by whitespace. Lines beginning with a hash (#) are ignored. Titles containing spaces must be surrounded by
quotation marks. The following is an example:

Inverse Demos
HydrostatInvDemo artisynth.models.inversedemos.HydrostatInvDemo
"Tongue tracking" artisynth.models.inversedemos.TongueTip

13.6 XML Menu Format

Model and script menus are stored using a custom XML file format, which is documented here in case users which to
create their own files from scratch. The default files specifying the model and script menus are mode1Menu.xml and
scriptMenu.xnl, located in the settings subfolder of the configuration folder (Section 1.1).

XML schemas are provided that describe and enforce the required document structure. The schemas for the model and
script menus are located, respectively, in

src/artisynth/core/modelmenu/modelmenu.xsd
src/artisynth/core/modelmenu/scriptmenu.xsd

relative to the ArtiSynth installation folder. The following XML elements are defined:

For model menu files:

ModelMenu: the root element of the document

model : specifies a specific model

package: finds and lists all models in a specific Java package
demoFile: specifies a submenu of models listed in a text file
For script menu files:

ScriptMenu: the root element of the document

script: specifies a specific script file

scriptFolder: finds and lists all scripts in a specific folder

For either file:

menu: creates a submenu

label: inserts an inactive text entry

separator: inserts a horizontal line that separates entries
hidden: convenience element for hiding menu entries (i.e. commenting them out)

Detailed descriptions of these element types and their supported attributes are provided in the following sections.
Attributes of the model, package, demoFile, script, scriptMenu, submenu, demoFile, label, and separator types
correspond to attributes of the menu entry types described in Section 13.3. Attributes marked by an asterisk are required
in the element definition.

13.6.1 The root elements

The root elements Mode1Menu and ScriptMenu encapsulate the entire description for either a model or script menu.
They must make reference to the schema for validation purposes. The following code snippet can be used as a template
for creating a model menu file,

ArtiSynth User Interface Guide

<?xml version="1.0" encoding="UTF-8"?>
<ModelMenu xmlns="http://www.artisynth.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.artisynth.org src/artisynth/core/modelmenu/modelmenu.xsd">
contents of menu ...
</ModelMenu>

while the next snippet can be used for script menus:

<?xml version="1.0" encoding="UTF-8"?>
<ScriptMenu xmlns="http://www.artisynth.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.artisynth.org src/artisynth/core/modelmenu/scriptmenu.xsd">
contents of menu ...
</ScriptMenu>

13.6.2 Model element

Describes a model menu entry (Section 13.3.1), with the class attribute specifying the model class, which must be a
public subclass of RootModel.

Attributes:
class*: class to load when the entry is selected
buildArgs: command-line style arguments to be passed to the model’s build () method
title: title text for menu entry (default: the class name)
fontname: font family for the title text
fontstyle: font style, from {*”, “bold”, “italic”, “bold italic”}
fontsize: font size

The following snippet creates a menu entry titled "Muscle Arm", which will launch the model FemMuscleArm.

<model class="artisynth.models.femdemos.FemMuscleArm" title="Muscle Arm" />

13.6.3 Package element

Describes a package entry (Section 13.3.2), with the name attribute specifying the Java package containing the model
classes.

Attributes:
name*: Name of the Java package in which to search for models
title: title text for menu entry; if omitted, entries are unrolled into parent menu
view: display format {“flat”, “hierarchicial”} (default: “hierarchical”)
scrolling: enables a scrolling menu (default: false)
maxRows : maximum number of rows in the submenu (default: 20)
compact : level of compactness {0, 1, 2} (default: 0)
0: A new submenu is created for each subpackage (hierarchical), displayed text refers to full
package.class name relative to source (flat)
1: subpackages containing a single entity are merged into the parent menu (hierarchical),
displayed text refers to unique part of the package.class name only (flat)
2: subpackages containing a single entity are merged into the parent menu (hierarchical) and
displayed text refers to the class name only (hierarchical/flat)
fontname: font family for the title text
fontstyle: font style, from {*”, “bold”, “italic”, “bold italic”}
fontsize:: fontsize

If the title attribute is omitted, then the submenu contents are unrolled directly into the parent menu.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/workspace/RootModel.html

ArtiSynth User Interface Guide 69

If font information is provided, it is applied to all entries. The following snippet creates a submenu containing every
instance of RootModel found in the package artisynth.demos.mech, with a small font specified for all entries to get
the menu to fit easily on the screen:

<package title="mech" name="artisynth.demos.mech" fontsize="5"/>

13.6.4 DemofFile element

Describes a demo file entry (Section 13.3.3), with the file attribute specifying the path to the file listing the models. If
this path is relative and not absolute, the parser tries to locate the file with respect to (in order) (a) the folder containing
the XML file being read, (b) the user’s home folder and (c) the ArtiSynth installation folder.

Attributes:
filex: file listing the model entries
title: title text for menu entry; if omitted, entries are unrolled into parent menu
scrolling: enables a scrolling menu (default: false)
maxRows : maximum number of rows in the submenu (default: 20)
fontname: font family for the title text
fontstyle: fontstyle, from {*”, “bold”, “italic”, “bold italic”}
fontsize: font size

If the title attribute is omitted, then the submenu contents are unrolled directly into the parent menu. If font informa-
tion is provided, it is applied to all model entries that are created.

The following snippet loads all models from the original default ArtiSynth Models menu.

<demoFile title="Demo models" file="demoModels.txt" />

13.6.5 Script element

Describes a script menu entry (Section 13.3.4), with the file attribute specifying the path to the script file. If this path is
relative and not absolute, the parser tries to locate the file with respect to (in order) (a) the user’s home folder and (b) the
ArtiSynth installation folder.

Attributes:
file*: file path for the script
args: command-line style arguments to be passed to the script
title: title text for menu entry (default: the base file name)
fontname: font family for the title text
fontstyle: font style, from {*”, “bold”, “italic”, “bold italic”}
fontsize: font size

The following snippet creates a script entry titled "run models", which will run the script /home/1loyd/modelrunner.py:

<script file="/home/lloyd/modelrunner.py" title="run models" />

13.6.6 ScriptFolder element

Describes a submenu entry containing all scripts located automatically within a specific folder, as detailed in Section
13.3.5, with the file attribute specifying the path to the folder. If this path is relative and not absolute, the parser tries to
locate the folder with respect to (in order) (a) the user’s home folder and (b) the ArtiSynth installation folder.

Attributes:
file*: path name of the folder containing the scripts
title: title text for menu entry; if omitted, entries are unrolled into parent menu
scrolling: enables a scrolling menu (default: false)
maxRows : maximum number of rows in the submenu (default: 20)
fontname: font family for the title text

fontstyle: font style, from {*”, “bold”, “italic”, “bold italic”}
fontsize:: fontsize

ArtiSynth User Interface Guide 70

If the title attribute is omitted, then the submenu contents are unrolled directly into the parent menu. If font informa-
tion is provided, it is applied to all entries.

The following snippet creates a script folder entry titled "Demo scripts", based on all the script files in the folder
src/artisynth/demos/scripts:

<scriptFolder file="src/artisynth/demos/scripts" title="Demo scripts" />

13.6.7 Submenu element

Describes a submenu menu entry (Section 13.3.6).

Attributes:
title*: title text for menu entry
scrolling: enables a scrolling menu (default: false)
maxRows : maximum number of rows in the submenu (default: 20)
fontname: font family for the title text
fontstyle: font style, from {*”, “bold”, “italic”, “bold italic”}
fontsize: font size

The following code snippet creates a submenu "FEM Models", which in turn lists three specific FEM models:

<menu title="FEM Models">
<model class="artisynth.demos.fem.ArticulatedFem" title="ArticulatedFem"/>
<model class="artisynth.demos.fem.AttachDemo" title="AttachDemo"/>
<model class="artisynth.demos.fem.BigBeam3d" title="BigBeam3d"/>

</menu>

13.6.8 Label element

Describes a label entry (Section 13.3.7).

Attributes:
title*: title text for the label
fontname: font family for the title text
fontstyle: fontstyle, from {*”, “bold”, “italic”, “bold italic”}
fontsize: font size

In the following code snippet, a label is added before the tongue tracking models.

<label title="Tongue Tracking Models" fontstyle="italic" />
<model class="artisynth.models.tracker.JawDynamicTongue" />
<model class="artisynth.models.tracker.JawKinematicTongue" />

13.6.9 Separator element

Describes a separator entry (Section 13.3.8). The separator element has no attributes.

The following snippet adds a separator line between models found in the artisynth.models. femdemos package and
those in artisynth.models.inversedemos.

<package title="femdemos" name="artisynth.models.femdemos" />
<separator/>
<package title="inversedemos" name="artisynth.models.inversedemos" />

ArtiSynth User Interface Guide 71

13.6.10 Hiding elements

It is often convenient to have the ability to “comment-out” lines in any kind of coding system: the data remains in
the file, but has no effect when processed. The typical method for commenting in XML is to use the <!~ -> tags.
Unfortunately, this can be messy, and comments cannot contain other comments. For this reason, a special hidden
element was created. Any entries within a hidden element are ignored by the parser.

<!-— temporarily hide FEM demos -->
<hidden>

<!-- All FEM demos -->

<package title="FEM demos" name="artisynth.models.femdemos" view="flat"/>
<hidden/>

14 Making Movies

ArtiSynth includes the ability to make movies from simulations. This process is controlled through a movie panel
(Figure 50) that can be opened from the main application menu by navigating through View > Show movie panel.

“Recorder | Encoder | Advanced | Messages |
Region To Capture

Viewer Window F Custom

width [720
Height | 540
Left 72
Top 126

[Clshow capture frame
Record Options

|¥| Begin playing on start
|#l End playing on stop

|¥| Automatic frame capture
|l Remove temporary files
|v] save first frame image

[¥l Window always on top

Movie name iLQgTrac!-qng
Stop time |

Screenshot .! start || Frame || stop: || Close

Figure 50: Movie panel, showing the Recorder tab and the default settings.

A simple movie creation workflow, using the default settings, is the following:

1. Open the movie panel.

2. Start the movie capture by clicking the Start button at the bottom of the movie panel. By default, this will also
start the simulation, whose progress can be examined in the main ArtiSynth viewer. Because of the movie capture
overhead, the simulation will usually run more slowly than usual.

3. When the desired simulation time is reached, stop the movie capture and create the movie by clicking the the Stop
button.

By default, this will create a JPEG movie with a frame rate of 50 Hz, packaged in a QuickTime .mov file with a title
derived from the model name, and place it in the movie folder, the default location for which is the movies subfolder of
the configuration folder (Section 1.1).

More detailed control of the movie making process, including the frame rate and method used to create the movie, can
be obtained by setting options in the movie panel’s Recorder, Encoder, and Advanced tabs, as described below.

ArtiSynth User Interface Guide 72

When capturing a movie, individual images for each frame are first saved in the movie folder and then used to create the
movie itself. Each image file is named frameXXXXX. zzz, where XXXXX is the sequential frame number, each X is a digit,
and .zzz is the image format extension (usually .png or . jpg). If “Remove temporary files” is selected in the Recorder
tab of the movie panel, the image files will be removed once the movie is made. If the files are not removed, they will be
overwritten by any subsequent movie creation.

Text messages describing the movie making process will be displayed in the Messages tab (Figure 51), and a popup
message will indicate its completion. If an error occurs (which may happen if a non-default movie making method is
selected that is not supported on the ArtiSynth host computer), information about it will be displayed in the Messages
tab.

Recorder |-E|'1wder | Advanced | Messages |

grab at t-1.86

grab at t=1.88

grab at t=1.9

grab at t=1.92

94

96

.98

0

02

.04

grab at t=2.06

grab at t-2.08

grab at t-2.1

grab at t=2.12

grab at 1=2.14

Stopping movie. ..

output file = LegTracking.mov

out Hedialocator=Ffile: wbc/ece/hone/hct /guestsAloyd/ . Artisynth/movies /LegTracki
= creagte processer for the image datasource ...

Setting the track format to: JPEG =
start processing...
...done processing.
Removing inage files =

| »

Howie successfully created

[4

1] | i

Figure 51: Messages tab of the movie panel.

14.1 Recorder tab

The Recorder tab (Figure 50) controls which image region to capture along with various recording and other options.
Options within the tab are organized into three groups:

14.1.1 Region to capture

These options define the movie capture region, as specified by three buttons: Viewer, Window, and Custom. Viewer,
which is the default, sets the capture area to be the main ArtiSynth viewer window, excluding the surrounding menus
and toolbars. This is useful for recording model demonstrations. The Window option set the capture area to be the main
application window, including the main viewer and the menus and toolbars surrounding it. The Custom option allows
the user to manually set the capture area to be any region on the desktop, and is useful for making movies that include
the timeline, control panels, or other windows that are separate from the main application window.

When Viewer mode is selected, additional options become enabled in the Output Size section of the Encoder tabs
(Section 14.2) that allow you to specify an image resolution independent of the viewer’s size. The # samples specifies
the size of the multi-sample buffer, which is used for anti-aliasing. This is the only mode that continues to work
correctly when a screen-saver is activated.

When Custom mode is selected, a separate capture window appears that can be sized and located anywhere on the
desktop, with the a red outline indicating the region that will appear in the movie. The visibility of this window can
be controlled by the “Show capture frame” toggle button. The capture window emulates transparency by displaying an
image of the desktop beneath it; however, this image is fixed and is only refreshed when the capture window is made
visible, or when one executes a double click with the left mouse button inside it.

Four fields, labeled Width, Height, and Left and Top, display the current dimensions and location of the capture region.
For Viewer and Window modes, the Width and Height fields are editable and can be used to explicitly set the dimension

ArtiSynth User Interface Guide 73

of the viewer or main application window. For Custom mode, all four fields are editable and can be used to explicitly set
the dimension and location of the capture region.

14.1.2 Record options

These determine how the movie recorder works with ArtiSynth, and how it deals with the frame files.

Begin playing on start

When the start button is clicked, the simulation will begin to run.
End playing on stop

When the stop button is clicked, the simulation stops running.

Automatic frame capture

Frames are automatically captured according to the movie’s frame-rate while the model is run. If this is disabled,
it is up to the user to click on the Frame button to capture the next frame.

Remove temporary files

When selected, the temporary frame images are deleted after the movie is made.

Save first image

This saves the first frame taken, which can be useful for representing the movie in websites.

14.1.3 Other options

Two other options fields are provided near the bottom of the Recorder tab:

Movie name

Specifies the base name of the movie output file; is set to the model name by default.

Stop time

When set to a positive value, indicates an explicit simulation time at which the movie should be stopped. The
default value of this field is blank, indicating no specified stop time.

14.2 Encoder tab

The Encoder tab (Figure 52) controls encoder options and the output size.

14.2.1 Encoder options

These describe the frame rate, relative speed, and the encoding method used to make the movie.

Frame rate
This is the number of frames recorded per second of movie. It is recommended to set this to be compatible with
the ArtiSynth simulation step size, such that if r is the frame rate and 4 is the step size, 1/r = nh where n is a
positive integer. The default value of 50 is compatible with typical step sizes such as 7 = 0.01 and 0.001.
Speed
This is the ratio of the movie’s speed to reality’s speed. While the movie is recording, the calculations may slow
down the simulation, but the movie will not be affected.
Frame file

This is the format the frame images will be stored in. If the internal method (see below) is used, then the frames
must be stored as JPEG files.

ArtiSynth User Interface Guide

74

Recorder | Encoder | Advanced | Messages |
Encoding Options -

Frame rate | 50|
Spead].I
Frame file | |

Method INTERMNAL -

ustomize Method

Output Size
¥l Same as original

[¥] Constrain proportions

Width 720
Height 540
samples a8

Figure 52: Encoder tab of the movie panel.

Method

This describes the software used to create the movie from the captured frame images. Many of these methods
require supporting software to be installed on the ArtiSynth host computer and runnable from a command line

context.

INTERNAL
Use Java’s built in support to compress the pictures into an animated JPEG.
FFMPEG

Use the ffmpeg command-line utility to generate the movie. Requires ffmpeg to be installed and runnable

from the command line.

MENCODER

Use the mencoder command-line utility to generate the movie. Requires mencoder to be installed and
runnable from the command line.

ANIMATED_GIF

Uses an algorithm built into ArtiSynth to generate an animated gif. By hitting the Customize Method button,

you can set the number of times to loop (-1 for infinity) and the frame rate (defaults to capture frame rate).

AVCONV

Uses the avconv utility that has replaced FFMPEG on some linux systems to generate the movie. Requires

avconv to be installed and runnable from the command line.
CUSTOM

Uses a custom command line utility to generate the movie. Note: the default command line specification
for this option is blank, and so before using it, it must be initialized using the Customize Method button as

described below.

14.2.2 Customizing the encoder command

The FFMPEG, MENCODER, AVCONV and CUSTOM methods described above all work by calling their respective

encoders as a separate process, described using a command line specification, with the process’s working directory set to
the movie folder. Default command line specifications are supplied for FFMPEG, MENCODER, AVCONV, while the one

for CUSTOM is blank and must be supplied by the user.

Clicking the “Customize Method” button immediately below the Method field opens a text dialog that allows the

command line specification to be edited. Users may alter the command in any way desired, including modifying options
or changing the name of the command itself. Several special variables beginning with $ are used to supply information

from the movie panel; before the command is executed, these are expanded to their current values:

ArtiSynth User Interface Guide 75

$FMT

Format of the frame image files. Expands to the value in the Frame file field of the Encoder tab.

$OUT

Name of the output file. Expands to the value of the Movie name field in the Recorder tab.

$FPS

Frame rate. Expands to the value in the Frame rate field of the Encoder tab.

The default movie making method, along with any method customizations, can be saved permanently in the user’s
preferences. See Section 14.5 for details.

14.3 Output size options

These options are only used when the capture area is set to Viewer and control the size of the output video, allowing the
contents of the viewer to be magnified.

Same as original

The output video is created at the original size.

Constrain proportions
The output video is created with constrained proportions, such that the ratio between height and width are
maintained.

Width
Defines the width of the output video.

Height
Defines the height of the output video.

samples

Sets the number of samples to use for the multi-sample buffer. This only applies in Viewer mode, and is used to
perform anti-aliasing.

Note: If your movie comes out black or only shows a section of the viewer correctly in Viewer mode, then it
is likely your graphics card does not support multi-sample buffers. On machines with multiple graphics cards
(e.g. laptops with both discrete and integrated graphics), make sure the Java process is set to use the discrete
card. Otherwise, set # samples = 1 to disable the multi-sample buffer.

14.4 Advanced tab

The Advanced tab (Figure 53) presently provides two options:

1. A “Movie folder” field which allows the movie folder to be customized. This folder can also be saved permanently
in the user’s preferences, as described in Section 14.5.

2. A “Movie from waypoints” button which creates a movie from the model’s waypoint data. To work correctly, the
model must have valid waypoints defined at regular intervals corresponding to the frame rate specified in the
Encoder tab. The viewer image of the model at each of these waypoints is used to generate the frame image files
from which the movie is then created. This enables a movie to be created from waypoint data without having to
run a simulation.

ArtiSynth User Interface Guide 76

Recorder | Encoder i’hd\ranced | Messages |
Advanced

Movie folder /ome/lloyd/ArtiSynthConfig/movies Browse

Commands

Movie from WayPoints

Figure 53: Advanced tab of the movie panel.

14.5 Saving movie preferences

Some of the movie settings described above can be saved permanently in the user’s preferences (Section 11.2). To do
this, choose Preferences from the application Settings menu and open the Movies panel.

Preferences that can be currently saved include:

e Frame rate
¢ Movie method
e Movie method customization

e Movie folder

To specify a method customization, select the desired method and then click the “Customize Method” button.

15 Control Panels

Control panels are essentially custom-built property panels that are attached to the root model and let the user interac-
tively set or adjust various properties while the simulation is in progress. Most of the panels that appear with the various
ArtiSynth demos are in fact control panels specially created for the demo in question.

The properties controlled by a control panel do not need to come from the same object; instead, they can come from a
variety of objects. However, unlike with property panels, it is not possible (at the time of this writing) for a control panel
widget to control a property across multiple objects.

The problem of controlling the same property in multiple objects may be addressed in future by the introduction of
component groups.

15.1 Creating control panels

To create a control panel, select Edit > Add control panel from the ArtiSynth main menu. This will cause a blank control
panel to appear.

ArtiSynth User Interface Guide 77

component/property E'|m0de|sfmsmodfparticlesf4 | |position |v|
slider 1
range min: | 0| max: | 1
labelText |position |
labelFontColor ‘ null || Clear H Set ‘
backgroundColor | null || Clear || Set |
| oK H Cancel |

Figure 54: Widget creation dialog.

To add a widget to this panel, right-click inside the the panel and select Add widget. This will cause a widget creation
dialog to appear, as shown in Figure 54.

The top-most widget in this dialog is a component/property selector. The component section is a selection display
identical in function to that described in Section 4.4: the path of the most recently selected component is displayed,

and its parent may be selected by clicking on the “up” button at the left. If no component is selected, you will need to
select one using the navigation panel or the viewer. Once a component is selected, the combination box on the right will
provide a selection of properties that may be selected for the widget. Once a property is selected, other options in the
dialog may be used to tune the appearance of the widget:

slider

Enabled for properties with a scalar numeric value. Setting it to true will create a widget with a slider.
range

Specifies the range for the slider, if one is selected.

labelText
The name of the widget in the panel. By default, this is the name of the property.

labelFontColor

Font color for the widget name. If null, then the default color is used.

backgroundColor
Background color for the widget. If null, then the default background is used.
15.1.1 Composite property widgets

A CompositeProperty is a Property which contains sub-properties (see the “Composite Properties” section of the
Maspack Reference Manual).

baseMaterial
renderPropsA

springMaterial |LinearAxiaIMateriaI |v|

[T stiffness 200,00 [}
[T damping ’m =)
2]

less ...

Figure 55: Composite property widgets.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/properties/CompositeProperty.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf

ArtiSynth User Interface Guide 78

If a composite property is selected, the control panel will create a composite property widget, the exact form of which
depends on the composite property. Figure 55 shows a control panel containing four composite property widgets for the
properties baseMaterial, renderPropsA, renderPropsB, and springMaterial.

The default composite property widget appears as a single set button, labeled as "set ...”, and is illustrated by the widget
for baseMaterial in Figure 55. Clicking the set button opens another property panel that allows the subproperties of the
composite property to be set.

If the composite property is allowed to have a null value, then this is controlled by an additional null button that
precedes the set button. If the current property value is null, then the null button will display null (as illustrated by the
widget for renderPropsA in Figure 55), and clicking the set button will create a new composite property instance that
will replace the null value. Otherwise, if the current property value is non-null, then the null button will display clear
(as illustrated by the widget for renderPropsB in Figure 55), and hitting it will set the current property value to null.

Finally, if the composite property has subclasses, and the types of these are exported by the static method

public static Class<?>[] getSubClasses () ;

in the property’s class definition, then the composite property widget takes the form of a composite property panel,
which instead of using a set button, expands all the subproperties inline within a subpanel of the control panel, together
with a combination box that allows different subclass instances to be set. This is illustrated for the property spring-
Material in Figure 55, where the composite property is an AxialMaterial, which has a number of subclasses, including
LinearAxialMaterial which is currently selected in the figure. Different subclass instances may have different subprop-
erties, and the subpanel is updated to reflect these when the subclass is changed. In order to help the control panel save
space, the subpanel can also be expanded or collapsed using a more/less button at its bottom.

15.1.2 Widgets for sub-properties

It is possible to attach widgets to the sub-properties of a composite property, provided that the composite property has a
non-null value.

In particular, when a non-null composite property is selected from the component/property widget, the user has the
option of either

* clicking the Done button and selecting the composite property, which will create a composite property widget as
described in the previous section, or

* selecting one of the composite property’s sub-properties.

When a non-null composite property is selected, the property’s name will move over into the component field of the

component/property selector, and the combination box will be cleared and reset to allow the selection of the sub-
properties.

For example, in Figure 56, we first select renderProps, which is a composite property of models/msmod/particle/2,
and then (in the lower panel) select the sub-property visible. When renderProps is selected, its name is moved to the
component panel, where it appears as

models/msmod/particle/2:renderProps

Note:
The “:’ character is used to separate components from properties in component/property paths

15.2 Editing control panels

An existing control panel can also be edited. Specifically,

* Individual widgets can be moved, deleted, or have their properties set.

 Separators can be added between widgets.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/materials/AxialMaterial.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/materials/LinearAxialMaterial.html

ArtiSynth User Interface Guide 79

component/property Bimodels;‘msmodﬁpaﬂicies!d -
slider | name B
range min: 0| max: | i navpanelVisibility |—
labelText renderProps
= position =)
labelFantCalor | null | Clear |[Set velocity
- ‘targetPosition
backgroundColor null ﬁl_3r|| Set targetVelocity -
0K Cancel
component/property |:!im-:udelsjrnsrnodﬁparticzesM;ren-:IerF'rops -
= e
slider O ivisible
range min: 0| max: | i zOrder =
labelText renderProps alpha
; shading =
labelFontColor | null | Clear |[Set shininess
4 specular
backgroundColor null || Clear || Set colorMap -
OK || cancel

Figure 56: Selecting property renderProps (top), then one of it’s subproperties (bottom).

* Global aspects of the control panel itself can be set.

To edit an individual widget, you first select it by left-clicking on it. This will cause it to become highlighted. You can
then:

* Move the widget by dragging it to a different vertical location within the panel;

* Delete the widget by right-clicking and choosing delete;

» Set properties of the widget by right-clicking and choosing properties;

To add a separator, select a widget above where you want the separator, right-click and choose add separator.

To set global aspects of the control panel itself, right-click inside the lower-most option pane (the small panel at the
bottom and that may, in some cases, contain option buttons such as Close or Done), and choose from the provided menu.

15.3 Live updating

By default, a control panel is set up to update the values of its widgets every time the viewers are rerendered. This
allows one to observe property values as they evolve in time.

If you do not want live updating of property values, then you can disable this by clicking on the live update icon C
which is located in the lower left of the option panel.

16 Component Editing

Component editing in ArtiSynth is driven by the current selection context: depending on what items are currently
selected, different editing options will appear in the context menu. These options may allow you to add, edit, or delete
components.

ArtiSynth User Interface Guide 80

16.1 Generic edit operations
16.1.1 Deletion

A set of selected components can be deleted provided that

* their parent components are editable

¢ none of their ancestors are selected

If the currently selected components are deletable, then a delete option will appear in the context menu (obtained by
right-clicking in the viewer or navigation panel). Selecting this will delete the components.

If the selected components are referred to by other components, then those components will be deleted also. In this case,
a dialog will be presented to the user advising of this fact and requesting confirmation.

16.1.2 Duplication

A set of selected components may be duplicated provided that

* their parent components are editable
* none of their ancestors are selected

* they implement CopyableComponent

If the currently selected components are duplicatable, then a duplicate option will appear in the context menu. Selecting
this will enable duplication of the components: the viewer cursor will change to cross-hairs, and the user may indicate
the location for the duplicated components by left-clicking in the viewer (see Section 3.8). Duplication may be canceled
by right-clicking.

Sometimes, when the components to be duplicated refer to other components, those referred components will be du-
plicated also. This is done when the referred components are required. For example, when duplicating an AxialSpring,
the two points it is attached to will also be duplicated, because AxialSprings are not permitted to exist without attached
points. Such cases are indicated to the user, after the duplicate option has been selected, by expanding the current
selection to include all such additional components.

16.1.3 Undo

Many of the operations described here are undoable, by choosing the Undo option from the Edit menu. The menu option
will indicate the name of the operation to be undone. Hitting the ‘z” key from within the viewer (Section 3.11) will also
perform undo operations.

16.2 Editing panels

Many editing operations involve the creation of editing panels (such as Figure 59, etc.) which persist beyond the
invocation of a context menu. Often, these panels are created exclusively, so that only one can be in existence at once.
This is done by having the panel acquire a lock in the ArtiSynth editing manager. The panels are not modal, so the user
can still interact with the viewer and other GUI components, but other exclusive editing panels can not be created until
the current one is closed. This avoids problems associated with having two “edits” active on a the model at once.

If an exclusive editing panel is open, then other exclusive editing options will still be shown in the context menu but will
be disabled.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/CopyableComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/AxialSpring.html

ArtiSynth User Interface Guide 81

Location
position | 123
orientiation | 0 1080

Figure 57: Panel for specifying the location of a coordinate frame.

16.3 Specifying position, orientation, and scaling

Sometimes, an editing panel will allow you to specify the translation and rotation associated with a RigidTransform3d.
Typically, this will happen when there is a need to specify the location of a spatial coordinate frame, as in the example of
Figure 57.

Here, the translation and rotation correspond to the fields position and orientation. The position field is straightforward:
it is just three numbers giving the position of the coordinate frame origin with respect to the base (usually world)
coordinates. In Figure 57, this is the vector (1, 2, 3).

The orientation field is more complex. It corresponds to the rotation of the coordinate frame with respect to base
coordinates, and is represented using an axis-angle format of four numbers giving the axis of the rotation, followed by
the angle of rotation about this axis, in degrees. (This relies on the fact that any 3D rotation can be specified as a single
rotation about a single axis.) Hence the numbers

010 60
in Figure 57 correspond to a rotation of 60 degrees about the y axis. Alternatively, the numbers
110 45

would correspond to a rotation of 45 degrees about the axis (1, 1, 0). (Note that the axis does not need to be a unit
vector.) Finally, no rotation, or more precisely, the identity rotation, is usually represented as

1000

i.e., zero rotation about the x-axis. In more general situations, one may specify not only translation and rotation but also
scaling, corresponding to a more general AffineTransform3d. This often occurs when reading a mesh from a file: one
may wish to apply an affine transform to scale, rotate, and translate the mesh that is been read in. In such cases one will
also be presented with a scale field, which accepts either a single number (to denote uniform scaling), or three numbers
(to denote non-uniform scaling about the X, y, and z axes).

16.4 Editing MechModels

A MechModel is the central ArtiSynth component for mechanical simulation. It contains sets of mechanical compo-
nents, including particles, rigid bodies, axial springs, rigid body connectors, as well as sub-models including other
MechModels and finite element (FEM) models. Most of these components can be added to a MechModel graphically, as
described below.

To add a component to a MechModel, select the MechModel and choose the appropriate edit action shown in the context
menu. A MechModel cannot be selected in the viewer, but can be selected using the navigation panel (Figure 16), or by
first selecting one of its visible components in the viewer and navigating up the hierarchy to it using the up arrow of the
selection display (Section 4.4).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/matrix/RigidTransform3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/matrix/AffineTransform3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html

ArtiSynth User Interface Guide 82

Figure 58: Wireframe preview of the FEM in the viewer.

16.4.1 Adding finite element models

To add a FemModel to a MechModel, select the MechModel and choose “Add FemModel ..." in the context menu.
This will open the editing panel shown in Figure 59, which allows the user to provide information about the model’s
properties and geometry.

Default values are provided for almost all of this information; the only information that must be specified by the user

is the model’s position (corresponding to the origin of it’s volumetric mesh). This can be done either by left-clicking

in the viewer (Section 3.8), or by entering coordinates in the position field of the Location subpanel. Once a position is
specified, a wireframe preview of the FEM appears in the viewer (Figure 58), showing its geometry and allowing it to
be moved or rotated using an attached transformer. The user is then free to continue editing the properties and geometry
information, until the model is in the desired form, at which point it can be added to the MechModel by clicking the Add
button.

From top to bottom, the FemModel panel contains:

* An instruction box containing directions for the user.

* A General Properties subpanel, which allows the user to set properties for the FemModel. For brevity, some of these
properties are hidden and can be expanded by clicking the more... button.

* A Location subpanel, allowing the position and orientation to be set manually. The position corresponds to the mesh
origin, while the orientation is a rotation applied to the mesh, specified in axis-angle format (see Section 16.3).

* A Geometry panel, allowing specification of the mesh geometry type and various properties specific to this type. Mesh
types currently supported include Grid, Tube, Torus, Sphere, Extrusion, AnsysMesh, TetgenMesh and UCDMesh.
For many of these, the associated element type can also be specified: Tet (tetrahedron), Hex (hexahedron), QuadTet
(quadratic tetrahedron), QuadHex (quadratic hexadredron), and Wedge.

* An option panel, containing the Add button, a Clear button which resets the displayed fields to default values, and a
Cancel button which closes the panel without adding a FemModel.

16.4.2 Adding rigid bodies
To add a RigidBody to a MechModel, select the MechModel and choose “Add RigidBody ...” in the context menu to open
an editing panel for rigid bodies, as shown in Figure 60.

As with adding FEM models, default values are provided for most information; the user must only specify the body’s
position, either by left-clicking in the viewer (similar to Section 3.8), or by entering coordinates in the position field of

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html

ArtiSynth User Interface Guide 83

Instructions:
|S|1e|:ify position via the text field or clicking in the viewer |
General Properties
name [|
A density [100000 =l }—————
more ... i
Location
position [|
orientiation [1000
Geometry
mesh type =
widths | 50.000 50.000 50.000
divisions [3] 3| 3]
element type Tet =
| Add || Clear || Cancel |

Figure 59: Panel for adding finite element models.

the Location subpanel. Once a position is specified, a wireframe preview of the rigid body appears in the viewer (Figure
58), showing its geometry and allowing it to be moved or rotated using an attached transformer. The user is then free to
continue editing the properties, geometry and inertia information, until the model is in the desired form, at which point it
can be added to the MechModel by clicking the Add button.

From top to bottom, the Add RigidBody panel contains:

* An instruction box containing directions for the user.

* A General Properties subpanel, which allows the user to set properties for the body. For brevity, some of these
properties are hidden; the panel can be expanded by clicking the more... button.

* A Location subpanel, allowing the position and orientation of the body’s coordinate system to be set manually.
Position is specified as a three-vector, while the orientation is given as a rotation in axis-angle format (see Section
16.3).

* A Geometry And Inertia subpanel, which allows the user to specify the body’s surface mesh geometry and spatial
inertia, using the same type of panel as described in Section 16.5.1.

* An option panel, containing the Add button, a Clear button which resets the displayed fields to default values, and a
Cancel button which closes the panel without adding a rigid body.

16.4.3 Adding frame markers

A FrameMarker is a massless Point attached to a RigidBody. It can be used for tracing motions of that body, or as an
anchor point for attaching axial springs or other components.

To add one or more frame markers to the rigid bodies in a MechModel, you can select either the MechModel, or one
of its rigid bodies, and then choose “Add FrameMarkers ...” in the context menu. This will open a FrameMarker editing
panel, as shown in Figure 61. While this panel is open, frame markers can be added by using the viewer and left-
clicking the mouse over the surface mesh of the rigid body at the location where you want the marker to be placed (see
Section 3.8). The rigid body in question must belong to the MechModel that was originally selected; no marker will be
added to bodies that belong to another MechModel or a MechModel which is a submodel of the current one.

From top to bottom, the FrameMarker editing panel contains

* An Existing frame markers list, showing all the MechModel’s frame markers (expressed by their path names with
respect to the MechModel). This list is connected to the selection manager and can be used to select one or more
markers.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/FrameMarker.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Point.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html

ArtiSynth User Interface Guide

84

Instructions:

Specify position via the text field or clicking in the viewer

General Properties

name [|
dynamic
more ... =]
Location
position [|
orientiation [1000
Geometry And Inertia
geometry type
widths [50 50 50|
set inertia by =
density 1
mass [125000]
rotational inertia | 416.67 504.17 854.17 0 0 0
center of mass | 000
age || cear || cance

Figure 60: Panel for adding RigidBodies.

Existing frame markers:

frameMarkers/0
frameMarkers/1
frameMarkers/2
frameMarkers/3
frameMarkers/4
frameMarkers/5

name |

Default marker properties:

renderProps @ set ...

Instructions:

[Pick location on a rigid body

Figure 61: Panel for adding frame markers.

ArtiSynth User Interface Guide

85

Existing particles:

particles/0
particles/1
particles/2
particles/3
particles/4
particles/5
particles/6
particles/7

name |

Default particle properties:

more ... =

Instructions:

renderProps
mass 20.000 = F—r——ry

[Pick 1ocation in viewer

[] constrain to plane

Figure 62: Panel for adding particles to a MechModel.

* A name field that allows a name to be specified for the marker.

* A Default marker properties panel, which allows the user to set properties for subsequent FrameMarkers that are

added; at present, this is limited to render properties.

* An instruction box containing directions for the user.

* An option panel, which in this case contains a Done button which the user should click when finished.

16.4.4 Adding particles

A Particle is a dynamic component, with mass, derived from Point. It is usually connected to other components in a
model with either axial springs (Section 16.4.5) or point-to-point attachments (Section 16.4.7).

To add one or more particles to a MechModel, select the MechModel in question and choose “Add Particles ...” in the
context menu. This will open a Particle editing panel, as shown in Figure 62. While this panel is open, a particle can
be added by left-clicking the mouse in the viewer at the location where you want the particle to be placed, using the

constrain to plane option if necessary (see Section 3.8).

From top to bottom, the Particle editing panel contains

* An Existing particles list, showing all the MechModel’s particles (expressed by their path names with respect to the
MechModel). This list is connected to the selection manager and can be used to select one or more particles.

* A name field that allows a name to be specified for the particle.

* A Default particle properties panel, which allows the user to set properties for subsequent particles that are added. For

brevity, some of these properties are hidden; the panel can be expanded by clicking the more... button.

* An instruction box containing directions for the user.

* A constrain to plane option.

* An option panel, which in this case contains a Done button which the user should click when finished.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Particle.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Point.html

ArtiSynth User Interface Guide 86

Existing axial springs:

frameMarkers/0 - frameMarkers/2
frameMarkers/1 - particles/red
particles/red - frameMarkers/3

name |

spring type [aalsprina] -

Default AxialSpring propeties:

rendeerps‘ clear || set ... |

material ‘LinearAxiaIMaterial |v|
more ... ¥
Instructions:

[select first point |

[] add continuously

‘ Stop || Done |

Figure 63: Panel for adding axial springs and muscles.

16.4.5 Adding axial springs and muscles

An AxialSpring is a point-to-point force effector that connects two Points and effects a force between them based on
their separating distance. AxialSprings and its subclasses can be used to implement linear or nonlinear springs, as well
as the subclass Muscle used to implement two-point muscles.

To add one or more axial springs to a MechModel, select the MechModel in question and choose “Add AxialSprings

... in the context menu. This will open an AxialSpring editing panel, as shown in Figure 63. While this panel is open,
axial springs can be added by selecting (using the viewer or any other selection mechanism) the two points to which the
spring is attached. Points may include frame markers, particles, or FEM nodes. However, the points must be contained
within the MechModel or one of its submodels.

By default, two points must be selected, in succession, for each axial spring added. Alternatively, by selecting add
continuously at the bottom of the panel, a continuous sequence of springs will be created whereby the second point
selected for a given spring becomes the first point for the spring following it.

From top to bottom, the AxialSpring editing panel contains

* An Existing axial springs list, showing all the MechModel’s springs (expressed by the path names, with respect to the
MechModel, of their points). This list is connected to the selection manager and can be used to select one or more
springs.

* A name field that allows a name to be specified for the spring.
* A Spring type field that allows a specific subclass of AxialSpring to be selected.

* A Default properties panel, which allows the user to set properties for subsequent springs that are added. The
properties in question vary depending on the type selected in the Spring type field, but will include render properties
and the spring material. For brevity, some properties may be hidden, in which case the panel can be expanded by
clicking the more... button.

* A progress field displaying the path names of the points as they are selected.

* An instruction box containing directions for the user.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/AxialSpring.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Point.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Muscle.html

ArtiSynth User Interface Guide 87

Existing rigid body connectors:
rigidBodies/link2 - rigidBodies/linkl
rigidBodies/link2 - fixed
rigidBodies/link2 - fixed

name |

Connecturwpe
Default Revolutefoint properties.
renderProps

axisLength 4.0000| [)

more ... ¥

| |
Instructions:
Kelect first rigidBody |

| Stop || Fixed || Done |

Figure 64: Panel for adding rigid body connectors.

* An add continuously option as described above.

* An option panel, containing an Add/Stop button which is used to initiate or stop the addition of springs, and a Done
button which the user should click when finished.

16.4.6 Adding rigid body connectors

A BodyConnector is a component that implements constraint-based joints between either two rigid bodies, or between
one rigid body and ground. The GUI currently allows two types of joints to be added: spherical and revolute.

To add one or more rigid body connectors to a MechModel, select the MechModel in question and choose “Add
RigidBodyConnectors ...” in the context menu. This will open a RigidBodyConnector editing panel, as shown in Figure
64. While this panel is open, a connector can be added by selecting in succession (using the viewer or any other
selection mechanism) the rigid bodies associated with it. For the case of a single rigid body connected to ground, the
user clicks the Fixed button instead of selecting a second body.

After the bodies have been selected, the connector location must then be specified by left-clicking in the viewer (Section
3.8). By default, the orientation of the connector is aligned with the world axes. This can be adjusted later using the
dragger fixtures (Section 5.1).

From top to bottom, the RigidBodyConnector editing panel contains

* An Existing rigid body connectors list, showing all the MechModel’s connectors (expressed by the path names, with
respect to the MechModel, of their rigid bodies). This list is connected to the selection manager and can be used to
select one or more connectors.

* A name field that allows a name to be specified for the connector.
* A Connector type field that allows a specific connector type to be selected.

* A Default properties panel, which allows the user to set properties for subsequent connectors that are added. The
properties in question vary depending on the type selected in the Connector type field. For brevity, some properties
may be hidden, in which case the panel can be expanded by clicking the more... button.

* A progress field displaying the path names of the rigid bodies as they are selected.
* An instruction box containing directions for the user.

* An option panel, containing an Add/Stop button which can be used to initiate or stop the addition of connectors, a
Fixed button used to indicate when a rigid body is to be connected to ground, and a Done button which the user should
click when finished.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/BodyConnector.html

ArtiSynth User Interface Guide 88

Existing attachments:
particles/3 - particles/4

Instructions:
[Select particle to be attached |

‘ Stop H Done |

Figure 65: Panel for attaching particles together.

16.4.7 Attaching particles to particles

Within a MechModel, two particles or FEM nodes can be attached together, resulting in what is essentially a single
particle that combines the dynamics of both original particles. In particular, these particle attachments are a convenient
way to connect FEM models to other FEM models or to particles within a MechModel.

To attach particles contained within a MechModel, select the MechModel in question and choose “Attach particles ...”
in the context menu. This will open a ParticleAttachment panel, as shown in Figure 65. While this panel is open, pairs
of particles can be attached by selecting in succession (using the viewer or any other selection mechanism) the two
particles to be connected.

From top to bottom, the ParticleAttachment panel contains

* An Existing attachments list, showing all the MechModel’s attachments (expressed by the path names, with respect
to the MechModel, of their particles). This list is connected to the selection manager and can be used to select one or
more attachments.

* A progress field displaying the path names of the particles as they are selected.
* An instruction box containing directions for the user.

* An option panel, containing an Attach/Stop button which can be used to initiate or stop the attachment process, and a
Done button which the user should click when finished.

16.4.8 Attaching particles to rigid bodies

Within a MechModel, particles and FEM nodes can also be attached to rigid bodies. In particular, this provides a way to
connect FEM models to rigid bodies within a MechModel.

To attach particles to a rigid body, select the rigid body in question and choose “Attach particles ...” in the context menu.
This will open a ParticleRigidBodyAttachment panel, as shown in Figure 66. While this panel is open, particles can be
attached to the body by selecting them in succession. By default, the attached particles remain where they are, so that
the attachment point is determined by the current particle location relative to the rigid body’s coordinates. However,
this will typically not coincide with the body’s surface mesh. By selecting project points onto body at the bottom of the
panel, attached points will be relocated to the nearest location on the surface mesh as they are selected.

From top to bottom, the ParticleRigidBodyAttachment panel contains

* An Existing attachments list, showing all the MechModel’s particle to rigid body attachments (expressed by the path
names, with respect to the MechModel, of the particles and the bodies). This list is connected to the selection manager
and can be used to select one or more attachments.

ArtiSynth User Interface Guide

89

Existing artachments:

models/feml/nodes/23 - rigidBodies/block
models/feml/nodes/10 - rigidBodies/block
models/feml/nodes/24 - rigidBodies/block

Instructions:

belecl particle to be attached

[| project points onto body

‘ Stop H Done ‘

Figure 66: Panel for attaching particles to a rigid body.

* A progress field displaying the path names of the particles as they are selected.

* A project points onto body field, described above.

* An instruction box containing directions for the user.

* An option panel, containing an Attach/Stop button which can be used to initiate or stop the attachment process, and a
Done button which the user should click when finished.

16.4.9 Collision handling

Figure 67: Dialog for setting default collision behavior in a MechModel.

Figure 68: Dialog for setting collision behavior between bodies.

In ArtiSynth, collision detection and handling can be enabled between rigid bodies (such as RigidBody), deformable

enable friction
rigid- rigid oz
rigid- deformable ’701
deformable-deformable (] | 0
deformable- self] ’70

| Set H Cancel |

enabled [#]
friction 0.1
‘ Set || Cancel |

bodies (such as FemModel3d), and more generally any body that implements the interface Collidable. Self intersection

is not directly supported, but is indirectly supported for compound deformable bodies that contain sub-collidable
components. For example, an FEM model is a compound collidable that may contain multiple surface meshes, some
of which can be made to collide with each other. For more details on collision handling, see the “Collision Handling”

section of the ArtiSynth Modeling Guide.

The collision response between any two pairs of bodies is determined by a CollisionBehavior component, which
contains various properties controlling collision interactions. Two of these can be directly modified from the GUI:

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemModel3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Collidable.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionBehavior.html

ArtiSynth User Interface Guide

90

enabled

whether or not collisions are enabled;

friction

the friction coefficient if collisions are enabled.

Collisions handling is managed by a CollisionManager component within each MechModel. Each MechModel provides
four default behaviors that determine the default collision response for (a) rigid body pairs, (b) rigid-deformable body
pairs, (c) deformable body pairs, and (d) deformable self-intersection. In addition to these, override collision behaviors
can be specified for any pairs of bodies. In situations where a MechModel contains sub-MechModels, then the collision
behavior for any pair of collidables is controlled by the lowest MechModel in the hierarchy that contains both.

name ;coliisionManager |

A friction 0.0000] }

L bilateralVertexContact ¥

4 reduceConstraints [

4 bodyFaceContact [l

[T rigidRegionTol _0_06_02:10 'ZC'

I7 rigidPointTol [0.60240] =Lk
contactNormallen [6.0z240 =Lk
contactForcelenScale 5.0000] -,

4 acceleration 0.0000/

A compliance [0.0000]CE

4 damping [0.0000|

L drawintersectionFaces =

4 drawlintersectionContours []

A drawintersectionPoints [

4 drawContactNormals m]

& drawContactForces &

A drawColorMap :NONE I x|

4 colorMapCollidable [0 .
colorMapRange:

2 updating |auTO_FIT - |

A interval min: | 0| max: |

& colorMapinterpolation EHS‘U F
colorMap iHueCoEorMap | - |
more ... Jil

2 method |DEFAULT |~

A colliderType [TRIINTERSECTION |+

|§ | 0K Cancel

Figure 69: Property panel for the collision manager.

There are several ways to edit collision behavior using the GUL

¢ For default behaviors, the enabled and friction properties can be edited by selecting the MechModel and then choosing
“Set default collisions ...” from the context menu. This will open the dialog shown in Figure 67, allowing the enabled
and friction properties to be adjusted. For the example shown, collisions are enabled between all rigid bodies, with a
friction coefficient of 0.2, and between all rigid and deformable bodies, with a coefficient of 0.1. Other collisions are

disabled.

* If a user selects a particular set of rigid and/or deformable bodies, a specific collision behavior may be established
among those bodies by choosing “Set collisions ...” from the context menu. That will open the dialog shown in Figure

68, allowing the enabled and friction properties for this behavior to be set.

 If a user selects a single deformable body, a specific self-intersection behavior for that body may be established by

selecting “Set self collision ...".

* More detailed collision control can be realized by selecting the MechModel’s collision manager in the naviga-
tion panel (Section 4.2). Choosing “Edit properties ...” or “Edit render props ...” from the right context menu then
allows other properties to be set to control either the collision behavior or the rendering of collisions. A sample
property panel is shown in Figure 69, and these properties are described in the “Collision Handling” section of the

ArtiSynth Modeling Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionManager.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth User Interface Guide 91

* For more fine-grained control, one may also use the navigation panel to select one or more of the behavior compo-
nents located under the collision manager (see Figure 70). The first four of these control the default behaviors. Other
behaviors, if any, are overrides that have been added either by application code, or through the GUI. Once selected,
one can choose “Edit properties ...” or “Edit render props ...” from the right context menu to edit their properties. In the
case of override behaviors, the context menu can also be used to remove them.

* Finally, all override behaviors in a specific MechModel may be removed by selecting “Remove collision overrides”.
This will cause the collision behavior for all bodies to revert to default values.

RigidBodyCollision
¥ models
¥ 0 {MechModel}
B rigidBodies
¥ collisionManager
¥ behaviors
Rigid-Rigid
Deformable-Rigid
Deformable-Deformakble
Deformable-self
rigidBodies#box3rigidBodies#boxd
B controlPanels

Figure 70: Expanded navigation panel showing the collision manager and individual behavior components for a
MechModel.

16.5 Editing rigid bodies

The GUI provides some ability to edit rigid bodies, (type RigidBody), the most important of which allows the user to
edit its mesh geometry and inertia (see Section 16.5.1). If a rigid body is selected, the context menu will provide the
following options:

Add FrameMarkers ...
Allows FrameMarkers to be added to the rigid body (see Section 16.4.3).

Select markers

Causes all markers attached to the rigid body to be selected.

Save mesh as ...

Allows the surface mesh to be saved as an Alias Wavefront . ob7 file.

Edit geometry and inertia ...

Change the mesh geometry and/or inertia (see Section 16.5.1, below).

Attach particles ...
Allows particles to be attached to the rigid body (see Section 16.4.8).

16.5.1 Geometry and inertia

Choosing “Edit geometry and inertia ...” in the context menu for a rigid body opens a geometry and inertia panel, as
shown in Figure 71.

The upper part of the panel allows the user to set the mesh geometry, according to a type specified by the geometry type
field. Changing the geometry type changes the panel to include fields for setting parameters appropriate to the type.
Currently supported types include:

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html

ArtiSynth User Interface Guide 92

geometry type

file name | || Browse |
scale [1]
offset | oool| com |
rotation [1000
set inertia by =

density 0.0008
mass | 10|
rotational inenia| 504.17 2166.7 2604.2 0 0 0
center of mass | 000

Figure 71: Panel for editing geometry and inertia.

Box
An axis-aligned box, centered with respect to body coordinates, with the X, y, and z widths set by three numbers in
a widths field.

Sphere
A sphere, centered with respect to body coordinates, with the radius and the number of vertical mesh slices given
by fields radius and slices.

Mesh A mesh read in from an Alias Wavefront . obj file, whose name is specified by a file name field. The read mesh
can also be scaled, offset, and rotated using information provided by scale, offset, and rotation fields (see Section
16.3). The COM button causes the mesh to be offset so that its center of mass (assuming uniform density) is
coincident with the origin of the body’s coordinate system (also causing the location of the center of mass to
become zero).

Note:

At present, there appears to be a bug in the code that compute inertia from geometry, producing small errors in the
center of mass calculation. That means that hitting the COM button will not cause the center of mass to become
zero, but instead a small number that will converge to zero if COM is hit repeatedly.

The lower part of the panel sets the body’s spatial inertia. Spatial inertia for a rigid body can be set in three ways,
corresponding to the value of the body’s inertiaMethod property:

Density

The spatial inertia is calculated from the density and the surface mesh geometry, with the assumption that the
density is uniform.

Mass
The spatial inertia is calculated from the mass and the surface mesh geometry, with the assumption that the
density is uniform. The density is computed by dividing the mass by the mesh volume.

Explicit

The spatial inertia is explicitly specified by entering values in the mass, inertia, and center of mass fields. The
density is set to the average value obtained by dividing the mass by the mesh volume.

The inertia method can be set using the set inertia by field. Four other fields describe properties associated with the
spatial inertia itself:

density

The mass divided by the volume

ArtiSynth User Interface Guide 93

mass
The scale mass of the body
rotational inertia

The xx, yy, zz, Xy, Xz, and yz components of the rotational inertia tensor about the center of mass in body
coordinates

center of mass

the position of the center of mass with respect to body coordinates.

Depending on the inertia method, the contents of these fields are either set by the user or updated automatically.

16.6 Editing FEM models

The GUI also provides some ability to edit FEM models (type FemModel3d). If an FEM model is selected, the context
menu will provide the following options:

Add FemMarkers ...
Allows the user to add marker points to the FEM, as described in Section 16.6.1.

Rebuild surface mesh Rebuilds the surface mesh for the FEM. The surface mesh is computed automatically from the
faces of all the elements, with inside faces being removed. Also, any elements which are fully or partly obscured
by an active clipping plane are removed from the calculation, making it possible to create "partial" surface meshes
that provide a cutaway view of the model.

Save surface mesh ...

Allows the current surface mesh to be saved to an Alias Wavefront . ob7 file.

Save mesh as ANSYS file ...
Allows the FEM volumetric mesh to be saved using the ANSYS file format.

16.6.1 Adding FEM markers

A FemMarker is a massless Point attached to a specific FemElement3d. It can be used for tracing motions within that
element, or as an anchor point for attaching axial springs or other components. It is analogous to a FrameMarker for
FEM elements.

To add one or more markers to an FEM model, you can select the FEM model in question and then choose “Add
FemMarkers ...” in the context menu. This will open a FemMarker editing panel, as shown in Figure 72. While this
panel is open, FEM markers can be added by left-clicking the mouse in the viewer over the location where you want the
marker placed, using the constrain to plane option if necessary (see Section 3.8). An FEM marker is then created and
attached to the nearest element in the FEM. If the marker position is outside the FEM, it is projected onto the closest
point on the FEM surface.

In addition, the button Add Amira Landmarks allows a user to add a set of markers based on locations in an Amira
landmark file.

From top to bottom, the FemMarker editing panel contains

* An Existing markers list, showing all the FEM’s frame markers (expressed by their path names with respect to the
FEM). This list is connected to the selection manager and can be used to select one or more markers.

* A name field that allows a name to be specified for the marker.

* A Default marker properties panel, which allows the user to set properties for subsequent markers that are added; at
present, this is limited to render properties.

* An instruction box containing directions for the user.
* A constrain to plane option.

* An option panel, containing an Add Amira Landmarks button, described above, and a Done button which the user
should click when finished.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemModel3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemMarker.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Point.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemElement3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/FrameMarker.html

ArtiSynth User Interface Guide 94

Existing markers:
markers/0
markers/1
markers/2

name |
Default marker properties:

renderProps | clear

Instructions:
[Pick location in viewer |

[] constrain to plane

| Add_Amira_Landmarks || Done |

Figure 72: Panel for adding markers to an FEM model.

16.6.2 Adding muscle bundles

FemMuscleModel is a subclass of FemModel3d that supports muscle activation. A FemMuscleModel may contain
muscle bundles (type MuscleBundle), each of which is composed of fibres and elements. The fibres are two-point
muscles connecting nodes or markers within the FEM model, with activation provided by forces acting directly on the
fibre end points. The elements are a set of references to existing elements within the FEM model, each combined with
an activation direction. Each element reference within the bundle provides muscle activation behavior by superimposing
a transversely isotropic material behavior on top of the underlying element’s material behavior.

Activation of a MuscleBundle can be effected by either the fibres or the elements, with the latter generally providing a
superior simulation result. By default, the fibres are inactive, and are used simply to provide a good visual indication
of the activation directions within the model, and a way to automatically compute the referenced elements and their
directions (as described below). To make the fibres active, set the bundle’s fibresActive property to true. Conversely, to
make the elements inactive, set the bundle’s muscleMaterial property to InactiveMuscle.

To add a MuscleBundle to a FemMuscleModel, select the model and then choose “Add MuscleBundle ...” from the
context menu. This will immediately add a MuscleBundle to the model, and then open a MuscleFibre editing panel (see
Section 16.7.1) to allow the user to add fibres to the model. The panel also contains two extra fields at the top: bundle
name, allowing a name to be specified for the bundle, and bundle renderProps, allowing its render properties to be
adjusted. At present, the panel does not contain a Cancel option. To remove the MuscleBundle, either select and delete
it, or choose "Undo add MuscleBundle" from the Edit menu.

16.7 Editing muscle bundles

Existing muscle bundles can be editing to add or remove fibres or element references.

16.7.1 Adding fibres

Fibres can be added to a MuscleBundle by selecting the bundle and then choosing “Edit fibres ...” from the context menu.
This will open a MuscleFibre editing panel as shown in Figure 73.

The operation of this panel is essentially identical to the AxialSpring editing panel described in Section 16.4.5: fibres
are added by successively selecting the points (which in this case must be FEM nodes or markers) which serve as the
endpoints for the fibres in question.

The only difference from the AxialSpring panel is that the spring type is assumed to be a Muscle and there is no option
to change this.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemMuscleModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemModel3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MuscleBundle.html

ArtiSynth User Interface Guide 95

Component list:

nodes/131 - nodes/132
nodes/132 - nodes/133
nodes/133 - nodes/134
nodes/134 - nodes/135
nodes/135 - nodes/136
nodes/136 - nodes/137 W
nodes/137 - nodes/138
nodes/141 - nodes/142
nndes/142 . nndesi/143

[»

4]

name [

Default fibre properties
renderProps
material |CnnstantAxiaIMuscle |v|
more ... =]
enabled

4 excitationColor | null || Clear H Set |

4 maxColoredExcitation ’m L L)
less ... [a]

!rnstructf'ons: l

[select first point |

add continuously

Figure 73: Panel for adding fibres to a muscle bundle.

Elements associated with bundle:
elements/0

elements,3

elements/ 6

elements,/9

elements;/12

elements/15

elements/18

elements/ 21

alamants/ 24

£ modelElementSize 0.000000 CJ i
£ bundleElementSize 0.50000] =L}]

Instructions:
Select elements to add to the bundle

[»

4

Figure 74: Panel for adding elements to a muscle bundle.

16.7.2 Adding element references

Elements can be added to a MuscleBundle by selecting the bundle and then choosing “Edit elements ...” from the context
menu. This will open a MuscleElement editing panel as shown in Figure 74.

The operation of this panel is quite simple: one selects the elements that one wishes to add, and then clicks on the Add
button to add them to the bundle. Elements which are already contained in the bundle will be excluded. Viewer-based
element selection is described in more detail below.

From top to bottom, the MuscleElement editing panel contains

* A list of element references already associated with the bundle (expressed by the elements’ path names with respect
to the FEM muscle model). To remove element references from the bundle, one may select them in this list and then
choose "Delete" from the context menu. It should be noted that this deletes the references for the elements within the
bundle, and not the elements themselves from the FEM model.

* Fields modelElementSize and bundleElementSize which control the size of the element widgets which are rendered
for both the FEM muscle model and the bundle, as described below.

* An instruction box containing directions for the user.

ArtiSynth User Interface Guide 96

Figure 75: Element widgets rendered for both an FEM model (pink) and a muscle bundle (cyan).

* An option panel, containing an Add button which adds selected elements to the bundle, and a Done button which the
user should click when finished.

Element selection is often done by clicking on an element widget in the viewer. An element widget is a simplified solid
rendering of an element’s shape, with a size that varies from O to 1, with O being invisible and 1 being the full size of the
element. Element widgets can be rendered for all the elements in an FEM model, with a size controlled by the model’s
elementWidgetSize property. In addition, separate widgets can be rendered for the all the elements referenced by a
muscle bundle, with a size controlled by the bundle’s elementWidgetSize property. In order to be able to see and select
both the referenced elements in a bundle, and the other elements in the FEM model, one should set elementWidgetSize
for the bundle and the model to values greater than zero, with the former larger than the latter. Figure 75 shows a simple
example where referenced elements in a bundle are rendered using a widget size of 0.6, while the model elements
themselves are rendered using a widget size of 0.5.

To facilitate element selection and visualization, the MuscleElement panel temporarily sets elementWidgetSize to 0.6 for
the bundle and 0.5 for the FEM model. These values can then be adjusted as needed.

16.7.3 Automatically setting elements and directions

Since manually selecting elements and specifying their directions for a muscle bundle can be quite tedious, a number
of methods exist to help do this automatically, using the easier-to-visualize information supplied by the muscle fibres.
From the MuscleBundle context menu, one may select:

Compute element directions
Automatically computes directions for all referenced elements, using a Delaunay-based interpolation of the
directions of the fibres which are closest to them.

Add elements neat fibres ...
Automatically adds to the set of referenced elements all elements whose centers are within a prescribed distance
of one or more of the fibres.

Delete elements
Deletes all the element references for the bundle.

16.7.4 Removing fibres and element references

To remove specific fibres or element references, simply select them (using any of the selection mechanisms), and the
choose "Delete" from the context menu.

ArtiSynth User Interface Guide 97

Existing targets and gains:

bundles/GGA_L | 1
bundles/GGA_R 1

Instructions.
Select excitation targets to add

‘ Stop H Done |

Figure 76: Panel for editing the targets of a muscle exciter.

16.8 Editing muscle exciters

A MuscleExciter is a component that allows muscle excitation signals to be distributed to a set of target ExcitationComponents.
Excitation components include anything that can receive a muscle excitation, including point-to-point muscles, muscle
bundles, and other muscle exciters. The purpose of a muscle exciter is to facilitate grouping so that one excitation signal

can drive a number of underlying components. They can be optionally added to both MechModels and FemMuscleMod-

els, where they are stored in a component list called exciters.

The GUI provides the ability to edit the targets associated with a given exciter. To do this, select the exciter in question,
and then choose “Edit targets ...” in the context menu. This will open an ExcitationTarget panel, as shown in Figure 76.

To add a new excitation target, select the desired excitation component (using any of the selection mechanisms), and it
will be added to the list of existing targets. Each target is also associated with a gain, by which the excitation signal is
multiplied as it is passed on to the target. Gains can be edited using the numeric field in the list of targets. Finally, to
remove a target, simply select it in the list of targets, and choose "remove targets" from the context menu.

From top to bottom, the ExcitationTarget panel contains

* An Existing targets list, showing all the current targets, allowing them to be selected for removal or their gains to be
edited.

* An instruction box containing directions for the user.

* An option panel, containing an Add/Stop button which can be used to initiate or stop the adding of targets, and a Done
button which the user should click when finished.

16.9 Editing root models

Model properties

name !

maxstepSize 0.01000] ==_}

integrator |ConstrainedBackwardEuler | v|

more ... [

Figure 77: Panel for adding a MechModel to a RootModel.

Some very limited graphical editing is available for RootModels. It is possible to add a MechModel to the RootModel,
by selecting the RootModel and then choosing “Add MechModel ..." in the context menu. This brings up a MechModel
editing panel as shown in Figure 77.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MuscleExciter.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/ExcitationComponent.html

ArtiSynth User Interface Guide

98

The panel is quite simple: you edit the MechModel properties to the appropriate settings, click the Add button, and
a new MechModel is added. However, this is of limited use, since normally only one MechModel is placed directly
under the RootModel, as multiple MechModels cannot be advanced using the same integrator and must therefore be
completely decoupled.

	Introduction
	User configuration folder

	Loading, Simulating and Saving Models
	Loading from the model menu
	Loading directly by class
	Loading from a file
	Loading recent models
	Setting a startup model
	Specifying models from the command line

	Simulating a model
	Other toolbar controls
	Saving a model
	Setting the external classpath
	The ArtiSynth working folder

	The Viewer
	Viewer Toolbar
	Viewpoint control
	Adding additional viewers
	World coordinate axes
	Orthographic vs. perspective projection
	Viewer grid
	Grid units
	Axis labeling
	Grid properties

	Clipping planes
	Adding and removing
	Moving
	Offsets
	Enabling/disabling
	Slicing mode
	Other features

	Indicating 3D positions with the mouse
	Viewer properties
	Viewer-specific properties

	Mouse Bindings
	Keyboard shortcuts

	Component Navigation and Selection
	The component hierarchy
	Component names and numbers
	Component path names

	Navigation panel selection
	Large numbers of nameless components

	Viewer selection
	Click and box selection
	Elliptic selection
	Selection filtering

	Selection display
	Selecting parent and ancestor components
	Highlighting selected components

	Model Manipulation
	Dragger fixtures
	Transformer tools
	Constrained transformation
	Transformer repositioning
	Changing the transformer base frame

	Pull manipulation
	Marker tool

	Editing Properties
	Property panels
	Inheritable properties

	Render properties
	Render property settings

	The Timeline
	Probes and waypoints
	Basic timeline structure
	Play controls
	Tracks

	Viewing and setting waypoints
	Waypoints
	Breakpoints
	Saving and loading

	Tracks and probes
	Creating, moving, and deleting tracks
	Muting tracks
	Expanding tracks
	Grouping tracks

	Numeric probe displays
	Setting the range and display properties
	Visibility control
	Editing and scaling data
	Interpolation control
	Large displays
	Cloning displays and exporting plots

	Saving and Loading Probes
	Saving and loading probe data
	Exporting numeric probe data
	Saving and loading all probes

	Adding and Editing Numeric Probes
	Adding output probes
	Creating a simple probe
	General output probes
	Using the probe editor

	Adding input probes
	Creating a simple probe
	General input probes
	Using the probe editor

	Setting probe properties

	Point Tracing
	Settings and Preferences
	Settings
	Interaction
	Simulation

	Preferences
	Layout preferences

	Jython Interaction and Scripting
	Querying ArtiSynth structures and models
	Object creation and importing classes
	Running simulations and scripting
	Using the script menu
	Selecting a script file
	Specifying scripts on the command line
	Built-in functions

	Customizing the Model and Script Menus
	Model menu editor
	Script menu editor
	Menu entry types
	Model
	Package
	Demo file
	Script
	Script folder
	Submenu
	Label
	Separator

	Command line options
	Demo file text format
	XML Menu Format
	The root elements
	Model element
	Package element
	DemoFile element
	Script element
	ScriptFolder element
	Submenu element
	Label element
	Separator element
	Hiding elements

	Making Movies
	Recorder tab
	Region to capture
	Record options
	Other options

	Encoder tab
	Encoder options
	Customizing the encoder command

	Output size options
	Advanced tab
	Saving movie preferences

	Control Panels
	Creating control panels
	Composite property widgets
	Widgets for sub-properties

	Editing control panels
	Live updating

	Component Editing
	Generic edit operations
	Deletion
	Duplication
	Undo

	Editing panels
	Specifying position, orientation, and scaling
	Editing MechModels
	Adding finite element models
	Adding rigid bodies
	Adding frame markers
	Adding particles
	Adding axial springs and muscles
	Adding rigid body connectors
	Attaching particles to particles
	Attaching particles to rigid bodies
	Collision handling

	Editing rigid bodies
	Geometry and inertia

	Editing FEM models
	Adding FEM markers
	Adding muscle bundles

	Editing muscle bundles
	Adding fibres
	Adding element references
	Automatically setting elements and directions
	Removing fibres and element references

	Editing muscle exciters
	Editing root models

