ArtiSynth Update Log

April 13, 2022

ArtiSynth Update Log 2

Sep 16, 2021

Some follow on updates from the Sep 12 update:

Ability to set the Ul look and feel

A property called lookAndFeel has been added to the layout preferences, which allows one to set the UI look and feel,
which is based on Java Swing. See the “Layout preferences” section of the User Interface Guide.

More command line option changes

Command line options related to the layout have been modified. The options -noTimeline and timelineRight have
been removed, and the following have been added:

Option Description

-timelineVisible show the timeline at startup

-timelineHidden hide the timeline at startup

-timelineLocation <loc> set the timeline location relative to the main frame
-jythonLocation <loc> set the Jython console location relative to the main frame
-lookAndFeel <laf> set the Ul look and feel

Viewer property change

The viewer property axisLengthRadiusRatio, used when rendering coordinate axes as solid arrows, has been replaced
with axisRadiusRatio, with the value of the latter the inverse of the former.

Sep 12, 2021

A number of updates have been made, mainly with respect to the user interface, allowing model and script menus to
be customized, and other settings and configuration information, including startup models, the external classpath, and
movie maker settings, to be stored in a user-specific configuration folder. Other changes include a new stop-all button
that will halt both simulation and Jython scripts, and new API support for removing model components in code.

New user configuration folder
In order to separate user-specific settings from the ArtiSynth installation, ArtiSynth now creates the configuration folder

ArtiSynthConfig in the user’s home folder, and uses this to store various items such as preferences, model and script
menus, the startup model, model and script history, and the external classpath.

Revised model menu with editing

The model menu, located under Models in the main menu bar, has been revised to include a number of new entries at the
end:

Models | Scripts Edit

Demos 4
All demos »
Models »
| All models]
Reload model
| Load recent]

Load from class ...

1| Edit menu

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

ArtiSynth Update Log 3

The “Reload model” and “Load from class ...” entries have been relocated from the File menu, “Load recent” has replaced
“Recent”, and the entry “Edit menu ...” opens a model menu editor that allows interactive editing of the upper portion of
the menu.

For details on menu editing, see “Customizing the Model and Script Menus” in the User Interface Guide.

The XML files describing the model menu have also changed. The XML format has been simplified, and the default
menu file has been moved from demoMenu.xml in the ArtiSynth installation folder to settings/modelMenu.xml in the
user configuration folder.

Revised script menu with editing

The script menu, located under Scripts in the main menu bar and used to run Jython scripts, has been revised to include
new entries and make it feel-compatible with the model menu:

lels | Scripts | Edit Settir

EF Demo scripts ¢

Run recent P
Run script ...
Edit menu ...

“Run script ...” replaces “Load script” and opens a dialog that allows the user to select a script, while “Run recent” reruns
recently run scripts.

The upper part of the script menu can be customized with an arrangement of entries invoking specific scripts. This
menu can be customized in the same manner as the model menu by selecting “Edit menu ...” at the bottom. Script menu
information is contained in the file settings/scriptMenu.xml in the user configuration folder. The default menu
supplies an entry “Demo scripts” that expands to all scripts located in

src/artisynth/demos/scripts

relative to the ArtiSynth installation folder.

Revised settings menu

The Settings menu has been revised to allow additional control over application properties related to the viewer,

simulation control and GUI interaction. These are collected into the menu items “Viewers ...”, “Simulation ..., “Interaction
..., and “Mouse ...".

With respect to the previous entries, “Background color” and “Selection color” are now controlled under “Viewers ...”;
“Mouse preferences ...” is now “Mouse ..."; and “Enabled articulated transforms”, “Visual display rate”, “Real-time scaling”,
and “Init draggers in world coords” are controlled by the properties articulatedTransforms, frameRate, realTimeScaling,

and initDraggersIinWorld located under “Interaction ...".

See the “Settings” section in the User Interface Guide.

New preferences settings

Many application properties, including those related to the viewer, simulation control, GUI interaction, window
layout, and movie making can now be set permanently via the preferences editor, which can be opened via Settings >
Preferences

See the “Preferences” section in the User Interface Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

ArtiSynth Update Log

New stop-all button

The play controls have been extended to include a new stop-all button:

step: |0.01000 0.00000 EDE

Located at the right with a square icon, this buttons stops simulation (in the same manner as the pause button), but also
aborts any currently running Jython command or script.

New support for deleting components in code

A new static method has been added to ComponentUtils:

ComponentUtils.deleteComponentsAndDependenices (comps);

where comps is a list of model components. This can be used to “prune” components and their dependencies from
existing models, with a behavior that should be identical to selecting the components in the GUI and then choosing
Delete from the context menu.

Simplified navigation panel visuals

The navigation panel visuals have been simplified so that composite component entries are now indicated with arrow
icons (below, left), instead of folders and lines (below, right):

RigidBody Spring 1 Rigid Bochy Spring
¥ models % O models
¥ msmod % 3 msmod
¥ particles o [models
red [particles
0 {Particle} [red
¥ rigidBodies [0 {Particle}
» O {RigidBody} ¢ [rigidBodies
B 1 {RigidBody} [0 {RigidE o
b frameMarkers [} 1 {RigidBock:
b attachments o=] frameMarkers
b axialSprings o= 9 rigidBody_onnectars
» collisionManager o=] attachments

Startup model now settable within ArtiSynth

A startup model can now be set from within ArtiSynth to specify a model (with optional build () method arguments)
to be loaded when the application first starts. To do this, select Settings > Startup model This capability replaces the
need to specify such models using the command line option -model <modelName> (although this command line option
is still supported).

See “Setting a startup model” in the User Interface Guide.

External classpath now settable within ArtiSynth

The external classpath, which contains class folders and JAR files for models and packages located outside of
artisynth_core, can now be set from within ArtiSynth. To do this, select Settings > External classpath ..., which
opens an external classpath editor. This capability replaces the need to edit the EXTCLASSPATH file by hand. The
EXTCLASSPATH file has also been moved to the user configuration folder.

See “Setting the external classpath” in the User Interface Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ComponentUtils.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

ArtiSynth Update Log 5

Libraries now updatable within ArtiSynth
It is now possible to update the JAR files and native libraries from within ArtiSynth, instead of calling
bin/updateArtisynthLibs

in the ArtiSynth installation folder. Choose Update libraries from the File menu.

Movie maker updates

e The default folder for movie files is now ArtiSynthConfig/movies under the user’s home folder. This can also be
customized via Settings > Preferences > Movies > movie folder.

* A new Messages tab has been added to the movie panel, which displays the progress of move making commands
along with any error messages.

» Customized command settings for the encoder options FFMPEG, MENCODER, and AVCONV can now be stored perma-
nently via Settings > Preferences > Movies and selecting Customize Method for the selected method. In addition,
there is a new CUSTOM method which can be set to any command-line based movie making command available on the
ArtiSynth host computer.

* An explicit stop time can be set indicating when movie recording should stop.

See the updated section “Making Movies” in the User Interface Guide.

Revised command line arguments

The following command line options have been modified or removed:

Option Change

-largeTimeline replaced with ~timelineWidth <width> and -timelineHeight <height>
-timelineZoom <level> replaced with ~timelineRange <time>

-historyFile <file> removed

-updateLibs removed; choose File > Update libraries from the main application menu instead
—demosMenu <file> renamed; use -modelMenu <file> instead

-demosFile <file> renamed; use -demoFile <file> instead

Enhanced help menu

On systems where Java-browser integration is supported, the Help menu has been expanded to open browser windows to
the modeling guide, user interface guide, MATLAB interface manual, and Java APL

Jython documentation moved to the User Interface Guide

Documentation for the Jython interface has been moved from the “Interfacing ArtiSynth to MATLAB and Jython” to the
new section “Jython Interaction and Scripting” in the User Interface Guide, and the original manual has been renamed to
“Interfacing ArtiSynth to MATLAB”.

Mar 4, 2021

Pardiso updated to MKL 2021

The Pardiso solver has been updated to MKL 2021.1. Users updating from github should also run the command
updateArtisynthLibs.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

ArtiSynth Update Log 6

New joint components

A number of new joints have been added to ArtiSynth, including:

¢ SliderJoint: 1 DOF joint allowing translation along the z axis.

CylindricalJoint: 2 DOF joint allowing translation and rotation along the z axis.

» SkewedUniversalJoint: 2 DOF roll-pitch joint in which the roll-pitch axes may be at a skewed angle relative to each
other.

* PlanarJoint: 3 DOF joint allowing translation and rotation in the x-y plane.

 PlanarTranslationJoint: 2 DOF joint allowing translation in the x-y plane.
In addition, the following joints have been added to replace RevoluteJoint, Rol1PitchJoint and SphericalRpyJoint:

* HingeJoint: Identical to RevoluteJoint, except that its coordinate 0 is oriented counter-clockwise about the z axis
instead of clockwise.

 UniversalJoint: Identical to Rol11PitchJoint, except that its roll-pitch coordinates 6, ¢ are computed with respect to
the rotation R¢p from frame C to D, instead of the rotation Rp¢c from frame D to C.

» SkewedUniversalJoint: Identical to SphericalRpyJoint, except that its roll-pitch-yaw coordinates 0, ¢, y are
computed with respect to the rotation R¢p from frame C to D, instead of the rotation Rp¢ from frame D to C.

Rendering of the new joints is also controlled differently, with the properties shaftLength, shaftRadius, and jointRadius
used to control the size of the shaft and ball structures that are drawn for visualization.

The old joints RevoluteJoint, Rol1PitchJoint and SphericalRpyJoint are still supported for legacy purposes.

Full details on the new joints, along with examples, are given in the “Joint components” section of the Modeling Guide.

Expanded joint documentation and custom joints

The documentation in the Modeling Guide describing how joints and connectors are created, used and implemented has
been enhanced, with new sections describing constraints, coordinates, constraint forces, and rendering. In addition, the
joint implementation has been refactored to make it easier to create custom joints, with full details given in the section
“Custom Joints” in the chapter “Mechanical Models I1”.

API changes for joints and connectors

Some small changes have been made to the methods for joints and connectors:

* In joints and connectors which are subclasses of BodyConnector, numUnilateralConstraints (), which returned
the number of engaged unilateral constraints, has been renamed to numEnagedUnilateralConstraints (). Simi-
larly, in subclasses of RigidBodyCoupling, numUnilaterals () has been renamed to numEnagagedUnilaterals ().

¢ In joints and connectors which are subclasses of BodyConnector, numUnilateralConstraints () now returns
the total number of unilateral constraints, engaged or otherwise. Similarly, in subclasses of RigidBodyCoupling,
maxUnilaterals () has been renamed to numUnilaterals ().

* In subclasses of BodyConnector, the spatial forces returned by the methods getBilateralForceInA () are now
given in world coordinates. This was done to be consistent with Frame and RigidBody, whose forces (returned by
getForce ()) are also given in world coordinates.

* In SphericalJoint, rendering of the joint as a ball is now controlled by setting its jointRadius property, together with the
faceColor rendering property, instead of the previous method of using point rendering properties.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/SliderJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CylindricalJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/SkewedUniversalJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/PlanarJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/PlanarTranslationJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/HingeJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/UniversalJoint.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/SkewedUniversalJoint.html
http://www.artisynth.org/doc/pdf/modelguide.pdf
http://www.artisynth.org/doc/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/BodyConnector.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/spatialmotion/RigidBodyCoupling.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/BodyConnector.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/spatialmotion/RigidBodyCoupling.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/BodyConnector.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/SphericalJoint.html

ArtiSynth Update Log 7

In addition to these changes, the penetration tolerance for unilateral constraints which are rofary in nature is now
controlled by the rotaryLimitTol property, exported by both MechModel and the joint classes.

New methods are also provided for determining the constraint forces acting on a joint in different coordinate frames:

// returns constraint forces on joint frame C (in frame C coordinates):
getBilteralForceInC ()
getUnilteralForceInC ()

// 1f bodyB is a frame, returns constraint forces on body B
getBilteralForceInB ()
getUnilteralForceInB ()

Reimplementation of skinning

The class SkinMeshBody, which implements skinning, has been rewritten to allow skinned meshes which are connected
to FEM models to behave properly under FEM rotation.

The SkinMeshBody API has also been refactored to allow greater flexibility in determining the connection weights
between the mesh vertices and the underlying rigid bodies and FEM models. Markers and points can now be attached
to a SkinMeshBody, even in the absence of a mesh, and this can be used as an simpler, more approximate way to
implement muscle wrapping behavior.

Full details on the updated skinning mechanism and how to use it are given in the new chapter “Skinning” in the
Modeling Guide.

Improvements to large probe displays
Large probe displays have been rewritten to provide higher quality plotting, better interactive control, and the ability to
export plots to svg, postscript, and image files.

Full details on these changes are given in the “Large displays” section of the User Interface Guide. To give a sense of the
difference, the old display looked like this,

i Auto range ¥ range min: | 13| max: | 23| Xrange min: |:

10 20 20 4.0 5.0 .0 F.0 20 3.0

while the new display looks like this:

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/SkinMeshBody.html
http://www.artisynth.org/doc/info/modelguide/modelguide.html
http://www.artisynth.org/doc/html/uiguide/uiguide.html

ArtiSynth Update Log 8

IR EEER

Solid arrow rendering of coordinate frames

Frames and rigid bodies now have a new property called axisDrawStyle, that specifies how coordinate axes should be
drawn. Its type is the enumerated type Frame.AxisDrawStyle, with the possible values OFF, LINE, and ARROW. Setting
it to ARROW will cause coordinate axes to be rendered as solid arrow, as in this example:

MAPStress and MAPStrain added to FEM surface rendering
The enumerated type FemModel.SurfaceRender, which controls the rendering of FEM surface meshes through an FEM

model’s surfaceRendering property, has been extended to include MAPStress and MAPStrain, which render the surface
as a color map using the maximum absolute values of the principal stress and strain components, respectively.

Apr 16, 2020

Refactoring of the TrackingController

The TrackingController, which provides ArtiSynth’s inverse modeling capabilities, has been refactored. This includes
both internal code reorganization and harmonization of the API.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemModel.SurfaceRender.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html

ArtiSynth Update Log 9

Organization of cost and constraint terms

The basic usage model for the tracking controller remains the same: an application creates an instance of TrackingController,
adds it to the root model’s controllers using addController (), and then populates it with various cost and constraint

terms for the quadratic program that is used to solve for excitations. However, the class organization for these terms has

been redesigned.

All terms now implement the interface QPTerm, with a base implementation provided by QPTermBase. A QPTerm
also uses getType() to specify its type, which is defined by the enumerated type QPTerm.Type and is either COST (cost
term), INEQUALITY (inequality constraint), or EQUALITY (equality constraint). These are implemented by subinter-
faces of QPTerm: cost terms by QPCostTerm (with base implementation QPCostTermBase) and constraint terms by
QPConstraintTerm (with base implementation QPConstraintTermBase). The interface LeastSquaresTerm (with base
implementation LeastSquaresTermBase) implements both cost and constraint terms.

All cost and constraint terms are added to the controller as subcomponents. Before performing each inverse computa-
tion, the controller checks its subcomponents to find which terms to use.

Internal vs. external terms

Cost and constraint terms are now either internal or external to the controller. Internal terms include:

MotionTargetTerm // cost/constraint term for point and frame tracking
ForceTargetTerm // cost/constraint term for joint force tracking
ForceEffectorTerm // cost/constraint term for force effector force tracking
BoundsTerm // inequality constraint term for excitation bounds
L2RegularizationTerm // cost term for regularization excitation values
DampingTerm // cost term that inhibits how quickly excitations change

The MotionTargetTerm and BoundsTerm are always present in the controller and can be accessed using getMotionTargetTerm()
and getBoundsTerm(). Other internal terms can be added, removed or queried using add, get and remove meth-

ods. For example, for the ForceTargetTerm, these methods are addForceTargetTerm(), getForceTargetTerm(), and
removeForceTargetTerm().

External terms include

NonuniformBoundsTerm // set explicit nonuniform excitation bounds
ProportionalTerm // cost term proportional to the sum of the excitations

as well as any custom terms implemented by an application. External terms can be added added, removed and queried
using

addCostTerm (term)
removeCostTerm (term)
getCostTerms ()

addConstraintTerm (term)
removeConstraintTerm (term)
getEqualityConstraints ()
getInequalityConstraints ()

The previous methods addInequalityTerm and addEqualityTerm have been replaced by addConstraintTerm.

The add and remove methods for external terms should not be used for the internal terms. While it is possi-
ble to create an instance of an internal term, such as MotionTargetTerm, and add it to the controller using
addCostTerm (term), this will simply add an additional motion term to the controller that is separate from the
internal one.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPTerm.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPTermBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPTerm.html#getType--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPTerm.Type.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPCostTerm.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPCostTermBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPConstraintTerm.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/QPConstraintTermBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/LeastSquaresTerm.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/LeastSquaresTermBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html#getMotionTargetTerm--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html#getBoundsTerm--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html#addForceTargetTerm--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html#getForceTargetTerm--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/TrackingController.html#removeForceTargetTerm--

ArtiSynth Update Log 10

Excitation components now stored using ExciterComp

The excitation components used by the controller were previously stored in a subcomponent list called "exciters".
This was actually incorrect since ArtiSynth components can not belong to more than one list at a time. In the revised
implementation, "exciters" is now a list of ExcitationComp objects, each of which contains a reference to an
excitation component along with an associated weight. This means that excitation weights can now be set interactively
by changing the weight property in each ExcitationComp.

Some term properties moved to the controller

The following properties, which were previously present in some individual cost and constraint terms, have now been
moved to the controller itself and should be set and queried there:

useTimestepScaling
useTrapezoidalSolver
normalizeH
useKKTFactorAndSolve

Target and source components now stored within their cost terms

The previous version of the tracking controller contained the following subcomponents, listing various target and source
components for the MotionTargetTerm and ForceTargetTerm:

exciters // excitation components

targetPoints // target (reference) points for the MotionTargetTerm
sourcePoints // source (tracking) points for the MotionTargetTerm
targetFrames // target (reference) frames for the MotionTargetTerm
sourceFrames // source (tracking) frames for the MotionTargetTerm
targetForces // target (reference) forces for the ForceTargetTerm

In the refactored controller, the force and motion target terms have been reimplemented as composite components, each
maintaining lists of their target and source components. Since (as indicated above) all cost and constraint terms are now
stored as controller subcomponents, the resulting component hierarchy now looks like this:

exciters

motionTerm
targetPoints // target (reference) points
sourcePoints // source (tracking) points
targetFrames // source (tracking) frames
sourceFrames // target (reference) frames

boundsTerm

L2RegularizationTerm

forceTerm
targetForces // target (reference) forces

ForceMinimizationTerm renamed to ForceEffectorTerm

The ForceMinimizationTerm class has been renamed to ForceEffectorTerm, since it now permits the forces produced
by certain force effectors (those which implement ForceTargetComponent) to be set to a particular target force. Setting
that target force to zero (which is the default value) will minimize the force. Likewise, the ForceMinimizationTarget
class, which was used to describe each force effector controlled by the ForceEffectorTerm, has been renamed to
ForceEffectorTarget.

“Enabled” property replaced with “active”

The property enabled, which was used to enable or disable the controller, and was controlled using setEnabled (enable)
and getEnabled (), has been replaced by the property active, which is controlled using setActive (enable) and
getActive () (and already existed in the controller’s base class).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/ForceEffectorTerm.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/ForceTargetComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/ForceEffectorTarget.html

ArtiSynth Update Log 11

Different names for probes created by InverseManager

The names and file names of the probes created by the InverseManager have been changed to be more consistent. This
affects any of the probes created by the following methods:

// InverseManager methods (static):
InverseManager .addProbes (rootModel, controller, duration, interval)
InverseManager .resetProbes (rootModel, controller duration, interval)

// TrackingController methods:

createProbes (rootModel)

createProbes (rootModel, duration, interval)
createProbesAndPanel (rootModel)
createProbesAndPanel (rootModel, duration, interval)

Probes created by the InverseManager are now identified by an enumerated type, InverseManager.ProbelD, as
described in the next section. The old and new names associated with these probes are:

Probe old name new name
TARGET_POSITIONS "target positions" unchanged
TARGET_FORCES "target forces" unchanged
INPUT_EXCITATIONS "input excitations" unchanged
TRACKED_POSITIONS "target positions" "tracked positions"
SOURCE_POSITIONS "model positions" "source positions"
COMPUTED_EXCITATIONS "input excitations" unchanged

while the old and new file names are:

Probe old name new name

TARGET_POSITIONS "ref_targetPos_input.txt" "target_positions.txt
TARGET_FORCES "ref_targetForce_input.txt" "target_forces.txt"
INPUT_EXCITATIONS "excitations_input.txt" "input_excitations.txt"
TRACKED_POSITIONS "ref target_positions.txt" "tracked_positions.txt"
SOURCE_POSITIONS "model_target_positions.txt" "source_positions.txt"
COMPUTED_EXCITATIONS "excitations.txt" "computed_excitations.txt"

To revert to the previous naming conventions, applications can set the static attribute
InverseManager.uselLegacyNames to true.

Different default probe update interval

The TrackingController property probelnterval, which controls the update interval for the output probes created by

createProbes (rootModel);
createProbesAndPanel (rootModel);

now has a default value of -1, which causes the output probes to be updated at the current simulation rate. The previous
default value was 0.01. To revert to this value, one can set the static attribute TrackingController.DEFAULT_PROBE_INTERVAL
to 0.01.

Refactoring of the InverseManager

The InverseManager, which is a utility class for creating probes and a control panel for use with the tracking controller,
has been refactored so that all its methods are now static and take a root model as one of their arguments. The primary
methods are:

// create probes and add them to the root model:
addProbes (root, controller, duration, interval)

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/InverseManager.ProbeID.html

ArtiSynth Update Log 12

// clear all probes, and then call addProbes () :
resetProbes (root, controller, duration, interval)

// create a control panel for the tracking controller
addInversePanel (root, controller)

As before, the addProbes () method creates three input probes and three output probes. Each probes starts at time 0 and
has a stop time indicated by duration, while the output probes have an update interval given by interval. The probes
themselves are now identified by the enumerated type InverseManager.ProbelID. The input probes are:

TARGET_POSITIONS // desired trajectory for all motion targets
TARGET_FORCES // desired trajectory for all constraint force targets
INPUT_EXCITATIONS // input excitations to used for forward simulation

Once created, these can be located and managed within the root model using the InverseManager methods

findInputProbe (root, probeld)
setInputProbeData (root, probeld, data, timeStep)

The output probes are:

TARGET_POSITIONS // updated observed trajectory for all motion targets
SOURCE_POSITIONS // actual trajectory for all motion targets
COMPUTED_EXCITATIONS // excitations computed by the inverse solver

and can be located within the root model using the method

findOutputProbe (root, probeld)

Also as before, the createPanel () method creates a control panel for viewing and adjusting controller properties, and
adds it to the root model. After, the panel can be located within the root model using the method findInversePanel (root).

Similar to before, the TrackingController supplies the convenience methods

createProbes (rootModel)

createProbes (rootModel, duration, interval)
createProbesAndPanel (rootModel)
createProbesAndPanel (rootModel, duration, interval)

which create probes and panels, with createProbes (rootModel) and createProbesAndPanel (rootModel) using
the controller’s probeDuration and probelnterval properties to supply the duration and interval information.

More details on the InverseManager can be found in its API documentation.

Jan 22, 2020

Export for numeric probes

It is now possible to export numeric probe data as either a . csv or . txt files. To do this, select the probe (in either the
navigation panel or the timeline), and choose Export or Export as ... from the context menu.

Resetting the initial state

The RootModel now contains the method resetInitialState (), which causes the initial state (i.e., the state at time 0)
to be reset to the current state.

This can also be called interactively using the new reset state button located at the top left.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/InverseManager.ProbeID.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/inverse/InverseManager.html

ArtiSynth Update Log 13

Disabling realtime simulation

By default, when running with graphics enabled, the simulation tries to run in real time, with the simulation slowed
down (if necessary) so it does not proceed faster then real time. This can now be disabled, using the Main method
setRealTimeAdvancement (enable), so that the simulation runs as fast as possible. Note that real-time advancement is
disabled by default when running in batch mode, which is why batch simulations sometimes run faster.

Real-time advancement can also be controlled with the new real-time enable button @ located at the top left.

Full play controls added to the main viewer

The play controls in the main viewer have been extended to include the skip-back and skip-forward buttons that advance
the model across waypoints.

Embedded FEM support

A new set of utility methods has been added for creating embedded FEM models, and in particular voxelized em-
bedding FEMs. The utilities were originally created by Antonio Sdnchez and have now been added to the package
core. femmodels, with the main class being EmbeddedFem. Two of its principal methods are:

static FemModel3d createBoundingFem (
FemModel3d fem, PolygonalMesh mesh, RigidTransform3d trans,
int minRes, double maxElemWidth, double margin)

static FemModel3d createVoxelizedFem (
FemModel3d fem, PolygonalMesh mesh, RigidTransform3d trans,
int minRes, double maxElemWidth, double margin)

Sep 19, 2019

Enhancements to saving models

When saving a model to a file using the Save model as ... menu item, users can now choose the following options:

Save waypoint data:

Causes the state data for any valid waypoints to be saved in addition to the waypoint locations. This is optional
because a large number of waypoints may significantly increase the file size for models with large state sizes.

Core components only:

Save only those components which are present in the main artisynth_core package. Any non-core components,
and any other components which have a hard dependency on them, will not be written, and the user will be
advised of this via a message dialog. The root model is saved as a pure instance of RootModel, instead of the
application-specific class that was used to build it. This means that any properties or class overrides specific to the
application root model class will not be present in the saved model. The advantage to storing a model using only
core components is that it can be loaded by any other user running that same ArtiSynth version, without needing
access to any application-specific classes.

Enhancements to waypoint data

Waypoint data files (such as those written using the menu items Save waypoints as ... and Save waypoints) now contain
annotations so that when they are later loaded into a model, checks are performed to help ensure that the state is
consistent with that model.

ArtiSynth Update Log 14

Easier reading and writing of meshes

It is now possible to construct, read, or write any of the mesh components (PolygonalMesh, PolylineMesh, PointMesh)
by simply specifying a file and then have the file format inferred directly from the file suffix. The currently supported
file formats, and their applicability to the different mesh types, are given in the table below:

Suffix Format PolygonalMesh PolylineMesh PointMesh
.obj Alias Wavefront X X X

.ply Polygon file format X X

stl STereoLithography X

.gts GNU triangulated surface X

.off Object file format X

vtk VTK ascii format X

.vtp VTK XML format X X

The new constructors are

PolygonalMesh (String fileName) throws IOException
PolygonalMesh (File file) throws IOException

PolylineMesh (String fileName) throws IOException
PolylineMesh (File file) throws IOException

PointMesh (String fileName) throws IOException
PointMesh (File file) throws IOException

and the new read/write methods are:

read (File file) throws IOException
write (File file) throws IOException

read (File file, boolean zeroIndexed) throws IOException
write (File file, String fmtStr, boolean zeroIndexed) throws IOException

For the latter methods, the argument zeroIndexed specifies zero-based vertex indexing (in the case of Alias Wavefront
.ob7 files), while fmt Str is a C-style format string specifying the precision and style with which the vertex coordinates
should be written. (In the former methods, zero-based indexing is false and vertices are written using full precision.)

Note: the method
read (File file, String fmtStr)

which was specific to PolygonalMesh, has been removed. In its place, one can use
read (File file, String fmtStr, boolean zeroIndexed)

with zeroIndexed set to false.

New scripting commands

New commands have been added to the Matlab and Jython scripting interfaces for saving and loading models and
waypoints,
saveModelFile (filename)

saveModelFile (filename, saveWayPoints, coreCompsOnly)

saveWayPoints (filename)
loadWayPoints (filename)

where saveWayPoints specifies whether to save waypoint data and coreCompsOnly specifies whether to save only core
components, as described above.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PolygonalMesh.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PolylineMesh.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PointMesh.html

ArtiSynth Update Log 15

ClassAliases moved to maspack.util

The ClassAliases package, which maps class names onto (shorter) aliases, and now also provides support for checking to
see if a class is contained in artisynth_core, has been moved to maspack.util.

Jul 21, 2019

Field components added

Field components have been added to allow the interpolation of both scalar and vector quantities over regular and FEM-
based grids. Once created, a field can be “bound” to properties of various FEM materials, allowing the values of these
properties to vary over the FEM domain. For example, the stiffness parameters of an FEM material may vary at different
points within the volumetric mesh.

Full documentation on creating fields and binding them to materials is given in the new section “Fields”, in the “Finite
Element Models” chapter of the the Modeling Guide.

MaterialBundles added to FemModel3d

FemModel3d now supports the ability to add “material bundles”, which allow supplemental materials to be added to the
elements of an FEM model. A material bundle can be specified for either all elements or selected elements within the
model.

Material bundles are implemented using the class MaterialBundle, and are analogous to MuscleBundle, except that
they can be used for any type of FEM material and don’t specify excitation or excitation directions. It is possible to use
aMaterialBundle to implement a muscle behavior, by specifying a MuscleMaterial whose excitation and restDir
properties are set directly by the application (with the latter possibly attached to a Vector3d field).

Full documentation is given in the new section “Varying and augmenting materials”, in the “Finite Element Models”
chapter of the the Modeling Guide.

Refactoring of FEM materials
FEM materials have been refactored in several ways:

* The computeStress () and computeTangent () methods are now consolidated into a single method
computeStressAndTangent () (in which the argument to return the tangent matrix is optional). The main reason
for this is efficiency: tangent calculations often require some of the same calculations required for stress, and so
computing these quantities in the same method avoids repeated computation.

* The property viscoBehavior has been removed from FemMaterial. Instead, viscoelasticity is now effected by creating
an instance of ViscoelasticMaterial, which takes both a base material and a viscoelastic behavior.

¢ FEM materials can now maintain their own custom state. This is done via the interface HasMaterialState, which
supplies the methods

// material currently has state
boolean hasState () ;

// creates an object for storing the state
MaterialStateObject createStateObject ();

// advances the state from time t0 to tl
advanceState (MaterialStateObject state, double t0, double tl);

For materials which have state, the system creates state instances which are stored at each element integration point
and supplied as an additional argument to the computeStressAndTangent () method.

* A new FEM material, ScaledFemMaterial, has been added which takes a base material and a scaling factor. The latter
can then be attached to a scalar field to “scale” the effect of the material over an entire FEM. The old way of doing
this, which involved a scaling factor in the integration data (class IntegrationData3d), has been removed.

http://www.artisynth.org/doc/info/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MaterialBundle.html
http://www.artisynth.org/doc/info/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/materials/ViscoelasticMaterial.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/materials/HasMaterialState.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/materials/ScaledFemMaterial.html

ArtiSynth Update Log 16

MuscleBundle can now accept shell elements

MuscleBundle and MuscleElementDesc have been extended to allow shell as well as volumetric elements. This means
that elements for these objects are now referenced by FemElement3dBase instead of FemElement 3d.

AuxiliaryMaterials now deprecated

With the addition of MaterialBundles, the existing means for added “extra” materials to an FEM, using
AuxiliaryMaterial, is now deprecated. AuxiliaryMaterials are still used “under the hood” to implement
MuscleBundles, but it is expected that they will eventually be removed.

An undocumented feature known as AuxMaterialBundle currently exists within ArtiSynth, which allows
AuxiliaryMaterials to be added to an FEM model in a manner analogous to MaterialBundle. To accommodate
MaterialBundle, the methods for adding, removing and accessing AuxMaterialBundles have been renamed as
follows:

Old method New method

getMaterialBundles () getAuxMaterialBundles ()
addMaterialBundle (bundle) addAuxMaterialBundle (bundle)
removeMaterialBundle (bundle) removeAuxMaterialBundle (bundle)
clearMaterialBundles () clearAuxMaterialBundles ()

MuscleElementDesc not longer extends ExcitationComponent

To quickly review: A MuscleBundle is the basic grouping of elements within an FemMuscleModel that share a single
excitation value. Each element within a MuscleBundle is described by a single MuscleElementDesc. Removing

the ExcitationComponent interface from MuscleElementDesc means that it is no longer be possible to control the
excitation for one or more MuscleElementDescs separately from the excitation of the MuscleBundle. In other words,
a MuscleBundle now represents the smallest possible grouping of FEM elements for which you can provide a single
excitation.

Note that as before, one is still able to combine the excitations of several MuscleBundles using MuscleExciter compo-
nents.

Other changes

* Excitation component has been simplified by removing the methods

void addExcitationSource (ExcitationComponent ex)
double getDefaultActivationWeight ()
* Inthe maspack.properties package, added setAllowedTypes () to PropertyDesc, to specify which subclasses of
getValueClass () may be used for creating instances of a property within a CompositePropertyPanel.

* Inmaspack.widgets, modified CompositePropertyPanel to use reflection to look for the method
initializePropertyValues () in the declaration of a CompositeProperty, and use this to help initialize the
sub-properties of a CompositeProperty based on the value of a previous object with the same base class.

¢ Added the methods getMaxAbsPrincipalStress () and getMaxAbsPrincipalStrain() to FemNode3d.

May 6, 2019

Enhanced rigid body inertia computation

The method by which inertia is automatically computed for a rigid body based on the geometry of its mesh components
(when its inertiaMethod is MASS or DENSITY) has been improved. Mesh components now have a property massDistribu-
tion which determines how the mesh’s inertia contribution is determined for a given mass. VOLUME, AREA, LENGTH, and

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MuscleBundle.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MuscleElementDesc.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MuscleBundle.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemMuscleModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/MuscleElementDesc.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/ExcitationComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemNode3d.html

ArtiSynth Update Log 17

POINT indicate, respectively, that the mass is distributed evenly over the mesh’s volume, area (faces), length (edges),
or points. The default value is determined by the mesh type: VOLUME for a closed PolygonalMesh, AREA for an open
PolygonalMesh, LENGTH for a PolylineMesh, and POINT for a PointMesh. Applications can specify an alternate
value providing the mesh has the features to support it. Specifying DEFAULT will restore the default value.should be
determined.

Full details are given in the section “Multiple meshes”, located under “Rigid bodies”, in the Modeling Guide.

Saving models in mid-simulation

It is now possible to save a model to a file in mid-simulation. Previously, it was assumed that the simulation “time” was
0. Now, however, you can simulate to some time ¢, and then save the model (using File > Save model as ...). Loading the
resulting file (using File > Load model ...) will restore the model to the simulation time z.

If the model contains valid waypoints, the state of these waypoints is now also saved and restored. One caution is that if
there are many waypoints and the model state is large, the resulting save file may also be quite large.

Forces and nodal stress/strains now saved as state

Forces and nodal stress/strain values are now saved as state within waypoints. This ensures that when a model is reset
to a given waypoint at time ¢, forces and stress/strains will be reset to the same values they had when the simulation
originally reached .

Improvement and simplification of the state mechanism

The interface HasAuxState, used to indicate components which store state, has been renamed to HasNumericState
and moved to artisynth.core.modelbase. It has also been simplified, with the methods skipAuxState ()

and getInitialState () removed and getAuxState (), setAuxState (), and advanceAuxState () renamed to
getState (), setState() and advanceState ().

Numerous internal changes have been made to the mechanism by which model state is saved and restored, both from
waypoints and from model files, largely with the goal of ensuring exact repeatability of results when simulation resumes
from a previously stored state.

Menu command for saving and loading waypoints

A new set of menu commands have been added for saving and loading waypoints. These are accessed from the File
menu and include:

Load wayPoints ...
Loads a set of waypoints from a specified file. As before, loading waypoints are superimposed on top of any
existing waypoints.

Save wayPoints as ...

Saves the current set of waypoints to a specified file.

Save wayPoints

Saves the current set of waypoints to a previously specified file.

Previously, saving and loading waypoints had to be performed from the timeline. The save file now also includes
information for all waypoints, with or without state, along with information identifying breakpoints.

As before, the waypoint data file is binary, since this typically requires half the file size and improves file I/O times by as
much as tenfold.

http://www.artisynth.org/doc/info/modelguide/modelguide.html

ArtiSynth Update Log 18

Changes to nodal stress/strain computation and contact rendering

Stress or strain computation can now be explicitly enabled for individual FEM nodes via the computeStress and
computeStrain properties of FemNode3d. Otherwise, when needed for Stress or Strain rendering of an FEM mesh,
nodal computation of stress/strain is now optimized to require computation of stress/strain values only for those nodes
associated with the mesh.

A new property colorMaplnterpolation has been added to CollisionManager and CollisionBehavior to control color
interpolation when a penetration depth or contact pressure map is requested via the drawColorMap property. The default
interpolation is HSV.

Constraint impulses now stored as forces

Bilateral and unilateral constraint impulses are now converted to forces when they are stored in the model. This means
that it is no longer necessary to convert impulses to forces by dividing by the simulation time step. In particular:

e The methods setBilateralImpulses (lam,h,idx) and setUnilaterallImpulses (the,h,idx) (in MechSystem
and Constrainer) have been changed to setBilateralForces(lam, s, idx) and setUnilateralForces (the, s, idx).
Within each of these, the forces should be computed from s*1am and s*the.

e The methods getBilateralImpulses (lam, idx) and getUnilateralImpulses (the, idx) have been changed to
getBilateralForces (lam, idx) and getUnilateralForces (the, idx).

* Related *Impulse’ methods have been renamed to 'Force’.
* CollisionResponse.getContactImpulses () has been changed to getContactForces ().

* The last argument for ContactForceBehavior.computeResponse () has been changed from region (giving the
contact’s penetration region) to contactArea (which gives the estimated average area associated with the contact).

Feb 11, 2019

Muscle wrapping added

Muscle wrapping has now been officially added to ArtiSynth, with documentation supplied by a new chapter called
“Muscle Wrapping” in the Modeling Guide. This documentation refers to a number of examples that have been added to
artisynth.demos.tutorials.

RigidBody and RigidCompositeBody Merged

It is now possible to add multiple meshes to a RigidBody, subsuming the functionality previously offered by
RigidCompositeBody, which is now deprecated.

Each rigid body mesh is stored in a mesh component, RigidMeshComp, which is in turn contained in a subcomponent
list named meshes. Meshes can be of any type, including PolygonalMesh, PolylineMesh and PointMesh. The method
getSurfaceMesh() returns the first PolygonalMesh in the list, and getSurfaceMeshComp() returns its associated
RigidMeshComp.

Meshes can be added to a RigidBody by creating a RigidMeshComp for them and then using methods such as

void addMeshComp (RigidMeshComp mcomp)
boolean removeMeshComp (RigidMeshComp mcomp)
int numMeshComps ()

void clearMeshComps ()

They can also be added directly, using the methods

RigidMeshComp addMesh (MeshBase base)
RigidMeshComp addMesh (MeshBase base, boolean hasMass, boolean isCollidable)

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemNode3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionManager.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionBehavior.html
http://www.artisynth.org/doc/info/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidMeshComp.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PolygonalMesh.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PolylineMesh.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PointMesh.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html#getSurfaceMesh--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html#getSurfaceMeshComp--

ArtiSynth Update Log 19

which allocate and return a RigidMeshComp. The latter method also specifies hasMass, which indicates if the mesh
should contribute to the body’s inertia, and isCollidable, which indicates if it should contribute to the body’s collision
mesh.

RigidMeshComp also contains new properties, mass and density, that can directly control how the mesh contributes to
the rigid body’s inertia when its inertiaMethod is MASS or DENSITY.

Full details are given in the new section “Multiple meshes”, located under “Rigid bodies”, in the Modeling Guide.

Distance grids stored in DistanceGridComp

A new component, DistanceGridComp, has been added for containing, controlling, and visualizing the distances grids
represented by DistanceGrid. Full documentation is given in the new section “Distance Grids and Components” in the
Modeling Guide.

In particular, the distance grid for a rigid body has been moved into its own DistanceGridComp, which is a subcompo-
nent of the body named "distanceGrid". One can obtain a reference to the grid component via the method

DistanceGridComp getDistanceGridComp () ;

API changes involving RigidBody
The wrapping code and the removal of RigidCompositeBody have engendered some API changes involving
RigidBody.

1) The following methods concerning surface meshes have been renamed. The old methods have been retained but
deprecated:

Old method New method

getMesh () getSurfaceMesh ()

setMesh (mesh) setSurfaceMesh (mesh)

setMesh (mesh, fileName) setSurfaceMesh (mesh, fileName)
((

setMesh (mesh, fileName, X) setSurfaceMesh (mesh, fileName, X)

2) The field names for the enumerated type RigidBody.InertiaMethod have been capitalized, so that Density, Mass,
and Explicit are now DENSITY, MASS, and EXPLICIT.

3) The rigid body’s distance grid has been moved into its own component, which is a DistanceGridComp that can be
obtained via getDistanceGridComp (). The old RigidBody properties for controlling the distance grid have therefore
been replaced by their equivalent properties in the grid component:

Old RigidBody property New DistanceGridComp property

distanceGridRes resolution
distanceGridMaxRes maxResolution
distanceGridOBB fitWithOBB
distanceSurfacelso surfaceDistance
renderDistanceGrid renderGrid

distanceGridRenderRanges renderRanges

In addition, the old RigidBody property renderDistanceSurface has been replaced by the combination of the
DistanceGridComp properties renderSurface and surfaceType, along with the new RigidBody property gridSur-
faceRendering. The latter, if set t rue, will cause the grid’s isosurface to be rendered instead of the rigid body mesh
components.

4) The component RigidMesh, which allowed wrapping around a rigid body with a general polygonal mesh, has been
removed. Instead, wrapping is now supported for all rigid bodies. Wrapping is still computed using analytic methods for
the special RigidBody subclasses RigidCylinder, RigidSphere, RigidEllipsoid, and RigidTorus.

5) In the class RigidMeshComp, the property physical has been renamed hasMass. The class no longer contains a
distance grid, and so methods and properties relating to this have been removed. Also, the RigidBody method

RigidMeshComp addMesh (MeshBase base, boolean hasMass, boolean isCollidable)

takes the additional argument isCollidable indicating if the mesh should be treated as collidable.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidMeshComp.html
http://www.artisynth.org/doc/info/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/DistanceGridComp.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/DistanceGrid.html
http://www.artisynth.org/doc/info/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidMeshComp.html

ArtiSynth Update Log 20

addFrameMarkerWorld() added to MechModel

A new method, addFrameMarkerWorld(frame,pos), has been added to MechModel. This creates a FrameMarker,
attaches it to frame at the position pos in world coordinates, adds it to the MechModel, and returns it. It differs from the
existing method addFrameMarker(frame,loc) in that the latter places the marker at the location 1oc in frame coordinates.

Shell elements added to FemModel

Shell elements have been added to FEM models. Full documentation on this will be provided soon; in the meantime,
please note the following:

Shell elements are described by instances of ShellElement3d, and currently include ShellTriElement and ShellQuadElement.
They may be added and removed from a FemMode13d using the following methods:

void addShellElement (elem) // add a shell element

void addShellElements (elems) // add several shell elements

boolean removeShellElement (elem) // remove a shell element

void clearShellElements () // remove all shell elements

int numShellElements () // returns the number of shell elements

Both shell elements and the usual volumetric elements use the same nodes (FemNode3d), and can share nodes between
elements.

Regular volumetric elements are still identified simply as “elements”, and are added and removed using the original
methods addElement (e), removeElement (e), etc. In particular, numElements () still returns the number of volumetric
elements. In order to query the total number of volumetric and shell elements, one should use the method

int numAllElements () // number of shell and volumetric elements

When used in connection with a shell element, an FEM node must supply an extra three degrees of freedom which
specify a direction vector (known as a director) that is used for the shell computations. By default, this director vector is
allocated and initialized automatically. It may be queried using the methods:

boolean hasDirector () // returns true is a director is allocated
Vector3d getDirector () // gets director value

Vector3d getDirectorvVel () // gets director velocity

void setDirector (dir) // explicitly sets director value

void setDirectorVel (dvel) // explicitly sets director velocity
Vector3d getRestDirector () // gets director rest value

void setRestDirector (dir) // explicitly sets director rest value

API changes related to shell elements

FemElement3d replaced by FemElement3dBase in some cases

Both shell and volumetric elements now subclass from FemElement3dBase. Consequently, some methods which are
general to all elements now use FemElement 3dBase instead of FemElement3d. This includes the following query
methods in FemModel3d:

FemElement3dBase findNearestElement (loc, pnt)
FemElement3dBase findSurfaceElement (loc, pos)
FemElement3dBase findContainingElement (pos)
FemElement3dBase getSurfaceElement (face)

New and reimplemented element and node queries

The following element and nodal query methods have also been added to FemMode13d:

FemElement3d findNearestVolumetricElement (loc, pnt)
ShellElement3d findNearestShellElement (loc, pnt)
FemElement3dBase findNearestElement (loc, pnt, filter)

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html#addFrameMarkerWorld-artisynth.core.mechmodels.Frame-maspack.matrix.Point3d-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/FrameMarker.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/MechModel.html#addFrameMarker-artisynth.core.mechmodels.FrameMarker-artisynth.core.mechmodels.Frame-maspack.matrix.Point3d-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/ShellElement3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/ShellTriElement.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/ShellQuadElement.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemNode3d.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemElement3dBase.html

ArtiSynth Update Log 21

FemElement3d.hasFace() replaced by containsFace()

The FemElement 3d methods

hasFace (n0,nl,n2)
hasFace (n0,nl,n2,n3)

used to determine if an element contains a specific triangular or quadrilateral face, have been lifted to FemElement 3dBase
and renamed to

containsFace (n0,nl,n2)
containsFace (n0,nl,n2,n3)

FemElement.computeRestVolumes() returns minimum Jacobian determinant

The method FemElement.computeRestVolumes() no longer returns the computed rest volume. Instead, it stores the rest
volume in the element and returns the minimum Jacobian determinant that was used in the volume computation. This
makes computeRestVolumes () behave the same as computeVolumes (). To obtain the rest volume, one should use
getRestVolume ():

elem.computeRestVolumes () ;
dpuble vol = elem.getRestVolume () ;

FemNode3d.getElementDependenices() is deprecated

The method FemNode3d.getElementDependencies() is now deprecated. Instead, one should use the following:

getAdjacentElements () // returns all adjacent elements
getAdjacentVolumetricElements () // returns adjacent volumetric elements
getAdjacentShellElements () // returns adjacent shell elements

FemModel3d.getElementNeighbors() is deprecated

The method FemModel3d.getElementNeighbors (node) is now deprecated. Instead, one should use one of the
FemNode3d methods:

getAdjacentElements ()
getAdjacentVolumetricElements ()
getAdjacentShellElements ()

FemModel.ElementFilter is now an interface

The class FemModel .ElementFilter has been changed to an interface.

FemElement3dBase.computePosition() renamed to computelLocalPosition()

The method FemElement3dBase.computePosition (pos, ncoords), which computes a point position within an
element based on natural coordinate values, has been renamed to computeLocalPosition (pos, ncoords).

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemElement.html#computeRestVolumes--
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/femmodels/FemNode3d.html#getElementDependencies--

ArtiSynth Update Log 22

Mar 14, 2018

ArtiSynth has moved to Github

Both the artisynth_core and artisynth_models repositories have been moved to Github, where they can be
accessed via the URLs

https://github.com/artisynth/artisynth_core.git
https://github.com/artisynth/artisynth_models.git

Users who were working from Subversion checkouts of these projects should replace them with fresh checkouts
(’clones’) from Github. Eclipse users should remove their existing artisynth_core and artisynth_models projects
from Eclipse, and all users should archive the existing project directories.

The new versions can then be cloned from Github, and libraries should be downloaded for artisynth_core. Eclipse
users will also need to unpack the Eclipse project files from eclipseSettings.zip. A Unix-like command line
sequence to perform these operations is as follows:

git clone https://github.com/artisynth/artisynth_core.git
cd artisynth_core

bin/updateArtisynthLibs

unzip eclipseSettings.zip

@dl oo

git clone https://github.com/artisynth/artisynth models.git
cd artisynth_models

unzip eclipseSettings.zip

V V V V V V V V

Eclipse users will also need to reimport these new projects into Eclispe. Full details on installing projects from Github
are given in the updated installation guides: www.artisynth.org/doc/info/installation.

Note that users with Github accounts and SSH keys may wish to use the SSH URLSs instead:

git@github.com:artisynth/artisynth_core.git
git@github.com:artisynth/artisynth_models.git

Write access to the old svn repositories for artisynth_core and artisynth_models has been frozen. Users
posting changes should first clone the new Github repositories, and then push these changes to Github.

ArtiSynth updated to Java 8

ArtiSynth has been updated to Java 8, and the compilation settings for both Makefiles and Eclipse projects (the latter
contained in each project’s eclipseSettings.zip file) have been changed to request Java 8 compatibility.

This should mean that one should also be able to run and compile under Java 9, although we have noted some problems
related to Java OpenGL (JOGL) when compiling on Java 9 and then running on Java 8. We therefore recommend that
users stay with a Java 8 JDK for the moment. Java 8 is also compatible with current versions of MATLAB.

isActive() method added to monitors and controllers
An isActive () method has been added to the Monitor and Controller interfaces, with a default implementation
provided by ModelAgentBase (which also implements a setActive () method and exports active as a property).

This provides the ability to turn monitors and controllers off at run time: those for which isActive () returns false will
not be called.

Existing implementations of Monitor or Controller which do not subclass MonitorBase or ControllerBase will need to
be augmented to provide an isActive () method.

http://www.artisynth.org/doc/info/installation
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Monitor.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Controller.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelAgentBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Monitor.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/Controller.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/MonitorBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ControllerBase.html

ArtiSynth Update Log 23

Jan 15, 2018

Change in ArtiSynth web server

The URL for distributing ArtiSynth libraries and files has changed from artisynth.magic.ubc.ca/artisynth/files
to www.artisynth.org/files. This should affect only applications making use of this URL.

However, it does require updating artisynth_core in order to be able to use the bin/updateArtisynthLibs
command.

Nov 26, 2017

Elliptic selection

A new elliptic selection method has been introduced, thanks to work by Doga Tekin at ETH. To activate it, select the
ellipse icon (second from the top of the selection toolbar). The viewer cursor will then change to include a surrounding
ellipse (which defaults to a circle). Dragging while in elliptic selection mode will cause the cumulative selection of all
objects visible within the ellipse, in a manner very much like a “paint” selection. If the SHIFT modifier key is pressed,
selection is replaced with deselection. The current selection can also be cleared by hitting the ‘c’ key within the viewer.
The dimensions of the selection ellipse can be adjusted by dragging with the CTRL and ALT modifier keys pressed, or
hitting the ‘d’ key to cause the ellipse to be reset to its default (circular) dimensions.

Full details are given in the “Viewer Selection” section of the User Interface Guide.

http://www.artisynth.org/doc/html/uiguide/uiguide.html

Updated mouse bindings

The mechanism by which mouse bindings are set has been updated. Choosing Setting > Mouse Preferences ... from
the main menu will bring up a dialog which allows you to adjust the mouse bindings and wheel zoom scale, and also
displays the buttons and modifier keys required for different actions.

Names of the available bindings include ThreeButton, TwoButton, OneButton, Laptop, and Mac. ThreeButton, Laptop,
and Mac correspond to the previous bindings default, laptop and mac. TwoButton, OneButton are identical to Three-
Button, except that the middle mouse button is emulated with the ALT key and (for the latter) the right mouse button is
emulated using the META key (which is usually WINDOWS or (on Mac) COMMAND).

By default, ArtiSynth now detects the number of buttons on the mouse and sets the bindings to either ThreeButton,
TwoButton or OneButton, as appropriate. It is still possible to override the mouse bindings using the -mousePrefs
<bindings> command line argument.

Details are given in the “Alternate Mouse Control Settings” section of the User Interface Guide.

Numeric control probes

A new type of input probe, NumericControlProbe, has been added, that takes numeric data and passes it to an
application-supplied function which can apply that data in any desired way. This is similar to using a Controller,
except that the driving data can be viewed using the timeline displays or loaded from a file. NumericControlProbes are
complimentary to NumericMonitorProbes, which were added last June.

For details, see the "Numeric control probes" section of the Modeling Guide.

ProbeDataFunction

The interface NumericMonitorProbe.DataFunction, which could be used to define the data generating function
for NumericMonitorProbe, has been lifted to DataFunction and is also used to define the data application function for
NumericControlProbe.

http://www.artisynth.org/doc/html/uiguide/uiguide.html
http://www.artisynth.org/doc/html/uiguide/uiguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericControlProbe.html
http://www.artisynth.org/doc/html/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericMonitorProbe.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/DataFunction.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericControlProbe.html

ArtiSynth Update Log 24

Command line options for the MovieMaker

The following command line options have been added to control the MovieMaker:

-movieFrameRate <rate> # movie frame rate (Hz)
-movieMethod <method> # movie making method

The movie method should be currently be one of internal, mencoder, mencoder_osx, ffmpeg, animated_gif, or
avconv.

SignedDistanceGrid replaced by DistanceGrid

The class SignedDistanceGrid has been replaced by DistanceGrid, which can be either signed or unsigned. A number
of new features have been added to distance grids, including:

* The ability to explicitly specify the center and orientation of the grid with respect to its local coordinate system;

* Writing and scanning the grid to and from a file;

* Grid interpolation based on either linear or quadratic interpolation;

* The ability to either generate the grid from mesh data, or to specify its values explicitly;

* CSG operations based on signed distance grids;

New centering methods for meshes

It is often useful to align the local coordinate system for a mesh with its center, and sometimes also with its oriented
bounding box (OBB).

To this end, we have added a number of methods to MeshBase:

translateToCentroid () // translate mesh to its centroid

transformToOBB () // align mesh with its OBB

transformToOBB (method) // align mesh with its OBB (as produced by method)
getOBB () // get the mesh’s OBB

getOBB (method) // get the mesh’s OBB (as produced by method)

The translate and transform methods reposition the vertex positions so as to achieve the required change in local
coordinates. Note that this is independent of the additional mesh-to-world transform, controlled by getMeshToWorld()
and setMeshToWorld(), that maps from local to world coordinates.

For PolygonalMesh, the following additional method is available:

translateToCenterOfVolume () // translate mesh to its center of volume

July 28, 2017

Update to JOGL 2.3.2

The OpenGL rendering package has been updated to JOGL 2.3.2. Since the GL rendering implementation is hidden
from the user, this should not affect application source code unless you are using GL directly for some reason. In that
case, you will need to replace

javax.media.opengl

with

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/DistanceGrid.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#getMeshToWorld-maspack.matrix.RigidTransform3d-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/MeshBase.html#setMeshToWorld-maspack.matrix.RigidTransform3d-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/PolygonalMesh.html

ArtiSynth Update Log 25

com. jogamp.opengl

However, the underlying JOGL libraries have changed, so after you have updated artisynth_core, you will need to
run bin/updateArtisynthLibs (or run artisynth with the ~updateLibs option) to obtain the new libraries.

Important: if you compile and/or run ArtiSynth from the command line, you will also need to remove from the
folder SARTISYNTH_HOME/lib any existing . jar files beginning with jogl2* or mat labcontrol*. Otherwise,
these may conflict with the new libraries. Eclipse users may also wish to do this to remove clutter.

Eclipse users will need to change the JOGL libraries in their build path. Select the project for artisynth_core, and
then under Properties... go to Java Build Path > Libraries, and replace

jogl2-all. jar

jogl2-gluegen-rt. jar

matlabcontrol-4.1.0. jar
with

jogl-all-2.3.2. jar
gluegen-rt-2.3.2. jar
matconsolectl-4.4.4. jar

Also, make sure that these libraries are exported. Switch to the Order and Export tab and make sure that the export boxes
are checked. The last library is used for implementing the MATLAB interface.

This change should allow ArtiSynth to run on versions of MATLAB from 2016 onward (but will prevent it from
running on earlier versions).

June 6, 2017

Viewer grid labeling

The viewer grid now provides numeric axis labels, which can be enabled by hitting the ’ 1’ key in the viewer. Label
properties such as size and color and which axes are labelled can be controlled by right clicking in the viewer and
choosing Set viewer grid properties.

More details can be found in the "Axis Labeling" section of the User Interface Guide.

Numeric monitor probes

A new type of output probe, NumericMonitorProbe, has been added, which generates data through an application-
supplied function. This is similar to using a Monitor, with the added advantage that the generated numeric data can be
viewed using the timeline displays or saved to a file.

For details, see the "Numeric monitor probes" section of the Modeling Guide

Rendering signed distance grid surfaces

ArtiSynth components that support signed distance grids, such as RigidBody, now support the ability to render the zero
surface associated with the grid. This can controlled through the property renderDistanceSurface. When enabled, this
will cause an approximation of the grid’s zero surface to be displayed instead of primary surface mesh. The purpose of
this is to allow one to visualize how coarsely the distance grid approximates the mesh on which it is based.

http://www.artisynth.org/doc/html/uiguide/uiguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericMonitorProbe.html
http://www.artisynth.org/doc/html/modelguide/modelguide.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/RigidBody.html

ArtiSynth Update Log 26

Apr 10, 2017

Constructive solid geometry added to SurfaceMeshlintersector

The SurfaceMeshIntersector class in maspack.collision has been significantly upgraded for improved robustness
and now supports the ability to perform constructive solid geometry (CSG) operations between two triangular meshes.
The CSG methods include:

PolygonalMesh findIntersection (mesh0O, meshl);
PolygonalMesh findUnion (mesh0O, meshl);

PolygonalMesh findDifference(Ol (mesh0O, meshl);
PolygonalMesh findDifferencell (mesh0O, meshl);

which return the intersection, union, and differences (mesh0-meshl) and (meshl-mesh0) with respect to mesh0 and
meshl. If the resulting CSG volume is null, then the returned mesh will be empty and its isEmpty () method will return
true.

The CSG capabilities rely partly on the following enhanced version of findContoursAndRegions ():

boolean findContoursAndRegions (cinfo, mesh0, regionsO, meshl, regionsl);

Like findContoursAndRegions (cinfo, meshO, meshl), this returns true if mesh0 and meshl intersect and places
the resulting contact information in cinfo. However, the additional arguments regions0 and regionsl, which are
instances of SurfaceMeshlIntersector.RegionType, can be used to specify how the penetration regions for each mesh
should be computed:

INSIDE Compute regions on the mesh that are inside the other mesh
OUTSIDE Compute regions on the mesh that are outside the other mesh
NONE Do not compute penetration regions

Some effort has been put into helping ensure that the CSG methods are robust, work well in the presence of degenerate
contacts (e.g., edge-edge, vertex-edge, and vertex-vertex), and return meshes that are both closed and manifold.
However, it is important to remember that polygonal CSG operations are inherently ill-conditioned and problematic
situations are still possible. For example, degenerate contacts are assumed to be within machine precision - essentially,
vertices and edges that are within this tolerance are “snapped together”. However, near-degenerate situations which are
just outside machine precision may result in ill-conditioned CSG meshes. Also, it is not always possible to ensure that
the meshes are manifold in the case of intersections involving non-closed meshes.

Changes to maspack.collision.Contactinfo

Some changes have been made to the ContactInfo structure which returns contact information. This includes the
following method name changes:

Old method New method

getMeshO () getMesh (0)

getMeshl () getMesh (1)

setRegionTol (tol) setContactPlaneTol (tol)
getRegionTol () getContactPlaneTol ()
getPenetrationRegionsO() getRegions(0)
getPenetrationRegionsl () getRegions (1)
getPenetratingPointsO () getPenetratingPoints (0)
getPenetratingPointsl () getPenetratingPoints (1)

In addition, the new method getRegionsType(meshNum) can be used to query the type of regions associated with a
particular mesh.

Changes to maspack.collision.PenetrationRegion

Because the penetration regions computed for a mesh may now be either inside or outside the opposite mesh, the
following methods in PenetrationRegion have been renamed:

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/collision/SurfaceMeshIntersector.RegionType.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/collision/ContactInfo.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/collision/ContactInfo.html#getRegionsType-int-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/collision/PenetrationRegion.html

ArtiSynth Update Log 27
Old method New method
getInsideVertices () getVertices()
numInsideVertices () numVertices ()

isInsideVertex (vtx)

getInsideFaces()
numInsideFaces ()
isInsideFace (vtx)

containsVertex (vtx)

getFaces ()
numFaces ()
containsFace (vtx)

getInsideEdges () getEdges ()
numInsideEdges () numkdges ()
isInsideEdge (vtx) containsEdge (vtx)

Collision handling support for signed distance grids

The ArtiSynth collision handling mechanism has now been extended to work using signed distance fields, in situations
where at least one of the collidable bodies has a fixed mesh and maintains and exports a signed distance grid (via the
CollidableBody methods hasDistanceGrid() and getDistanceGrid()). Although more approximate than the
methods based on intersecting triangles and contours, signed distance methods can be significantly faster. Signed
distance collisions can be activated by setting the collideType property in either the collision manager or a specific
collision behavior to ColliderType.SIGNED_DISTANCE.

Updated information on signed distance collisions and the configuration and rendering of signed distance grids is given
in the sections “Collision Implementation and Rendering” and “Configuring and rendering signed distance grids” of the
ArtiSynth Modeling Guide.

Improved compatibility between Swing and JOGL

Certain compatiblity issues between Java Swing and Java OpenGL (JOGL) have been fixed by switching the default
JOGL rendering widget from GLCanvas to GLJPanel. This fixes problems including: jumps and widget blanking when
dragging the viewer between screens in a dual-monitor setup, the inability of the viewer to reposition itself correctly in
MacOS Sierra, and widget blanking under some system configurations when using tiling widget managers.

GLJPanel works by doing all graphics rendering to an off-screen buffer and then copying the resulting pixels into the
Swing widget. This introduces a slight overhead but completely isolates Swing from JOGL. In order to fix a known bug,
it was also necessary to create our own implementation of GLJPanel in maspack.render.GL. jogl.

GLJPanel is now the default rendering widget. However, one can explicitly ask for either GLCanvas or GLJPanel by
starting ArtiSynth with the —~useGLJPanel or ~useGLCanvas command line options.

Refactoring of FemFactory

A cleanup has been done in artisynth.core.femmodels.FemFactory. This includes some changes to method
signatures:

createTorus() methods:
Have been modified so that the nr argument now gives the number of element layers along the inner thickness,
instead of the number of node layers (since the latter definition was incompatible with quadratic elements).
createTube() methods:

Have been modified so that the n1 and nr arguments now give, respectively, the number of elements along the
length and the number of element layers along the thickness, instead of the number of node and node layers (since
the latter definition was incompatible with quadratic elements).

createExtrusion() methods:

Have been modified so that all now take an additional argument zOffset which optionally offsets the first element
layer from the surface. createTetExtrusion () and createQuadtetExtrusion () have also been restricted to
triangular meshes, since it is not otherwise possible to ensure that the resulting FEM elements are conforming.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionManager.ColliderType.html#SIGNED_DISTANCE
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth Update Log 28

Return arguments in basic vector methods

Fabien Péan at ETH has provided a patch in which some of the more commonly used Vector methods now return
self-references. This allows chaining of computational statements into more compact forms such as

Vector3d v, r, a, b;

r.add (v.normalize (), r.sub(a,b));

Oct 18, 2016

New collision manager

The ArtiSynth collision manager, which is used by MechModel to manage collisions between collidable bodies, has
been rewritten to provide greater control over collision behavior, collision rendering, and the observation of collision
responses.

The principal change is that CollisionBehavior objects now contains al/l information related to collision control,
including not just the friction and whether collisions are enabled, but also the parameters used to fine tune the behavior,
compliance (if desired), rendering of quantities such as contact normals and points, etc. Collision behavior objects are
now stored as sub-components of the collision manager as proper ArtiSynth components, allowing users to select them
and edit their properties. Most of the properties exported by CollisionBehavior are also exported by the collision
manager, from which they are inherited by behaviors which have not set them explicitly. Since behaviors are now proper
components, they can also be selected and edited using the GUI navigation panel.

Full details are given in the “Collision Handling” section of the ArtiSynth Modeling Guide and, for the GUI aspects, the
ArtiSynth User Interface Guide.

By separating behavior and response from the internal collision handling, the collision manager no longer needs to
maintain O(nz) collision handlers for all possible collision possibilities. Instead, handlers are created on demand when
a collision is actually observed, and the collision manager is also free to employ bounding volume hierarchies to reduce
the number of collision checks (although this has not yet been implemented).

Collision behavior components

Previously, to make detailed changes to collision behavior, one needed to either specify global properties in the collision
manager, or modify properties of the CollisionHandler object that maintains the collision constraints for a specific
pair of collidables.

While global behavior properties can still be set in the collision manager, behavior for specific collidables can now be
managed by setting the CollisionBehavior components appropriate for the collidables in question. For example, to
request the drawing of intersection contours between collidables col0 and coll, one previously would have used a code
fragment like this:

CollisionManager cm = mech.getCollisionManager ();
CollisionHandler ch = cm.getCollisionHandler (col0, coll);
ch.setDrawIntersectionContours (true);

Now, one would instead do something like this:

CollisionBehavior behav = new CollisionBehavior ();
behav.setDrawIntersectionContours (true);
mesh.setCollisionBehavior (col0, coll, behav);

One can also still use the existing setCollisionBehavior methods, which specify whether a collision is enabled, as
well as, optionally, its friction. These methods now create a default collision behavior component internally, and return
it, after which it can be used to set other collision properties:

CollisionBehavior behav = mech.setCollisionBehavior (col0, coll, true);
behav.setDrawIntersectionContours (true);

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionBehavior.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/uiguide.pdf

ArtiSynth Update Log 29

One can also retrieve an existing behavior and set its properties:

CollisionBehavior behav = mech.getCollisionBehavior (col0, coll);
behav.setDrawIntersectionContours (true);

Because behaviors are now proper components, it is not permissible to add them to the collision manager twice.
Specifically, the following will produce an error:

CollisionBehavior behav = new CollisionBehavior();
behav.setDrawIntersectionContours (true);
mesh.setCollisionBehavior (colO, coll, behav);
mesh.setCollisionBehavior (col2, col3, behav); // ERROR

However, a new behavior can be created from an existing one:

CollisionBehavior behav = new CollisionBehavior();
behav.setDrawIntersectionContours (true);
mesh.setCollisionBehavior (colO, coll, behav);

behav = new CollisionBehavior (behav);
mesh.setCollisionBehavior (col2, col3, behav); // OK

Collision behaviors now contain most of the properties that used to be contained exclusively in the collision manager.
Most of these are still retained in the collision manager, from which they will be inherited if not explicitly set in the
behavior. A behavior can also set its own render properties, which will then be used instead of the collision manager
render properties.

Collision response components

Another change is that information about the results of a collision are now collected by CollisionResponse components,
which are created the application as needed and also stored as sub-components of the collision manager. This removes
the need for an application to query internal CollisionHandler objects to determine things like contact impulses, mesh
interpenetration regions, etc.

For example, to obtain the current contact impulses between two FEM models, one would previously use the following
code fragment (perhaps within a monitor apply () method):

FemModel3d femA, femB;

CollisionManager cm = mech.getCollisionManager ();
CollisionHandler ch = cm.getCollisionHandler (femA, femB);
Map<Vertex3d,Vector3d> collMap = ch.getContactImpulses (femA);

This would now be replaced with an earlier call to set up a collision response, perhaps in a build () method,

CollisionResponse resp = mech.setCollisionResponse (femA, femB);

followed by the following runtime code:

// retrieve the response, if it’s not stored in a member variable:
CollisionResponse resp = mech.getCollisionResponse (femA, femB);
// get impulses for first collidable:

Map<Vertex3d,Vector3d> collMap = resp.getContactImpulses (0);

Note also that when setting up a collision response, the second collidable can be a group specification, allowing the
collection of information between a specific collidable and an entire group of collidables. For example,

mech.setCollisionResponse (femA, Collidable.Rigid) ;

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionResponse.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionHandler.html

ArtiSynth Update Log 30

would create a response component to query collision responses between femA and all rigid bodies.
If desired, applications can also instantiate responses themselves and add them to the collision manager:

CollisionResponse resp = new CollisionResponse ();
mech.setCollisionResponse (femA, femB, resp);

However, as with behaviors, the same response cannot be added to an application twice:

CollisionResponse resp = new CollisionResponse ();
mech.setCollisionResponse (femA, femB, resp);
mech.setCollisionResponse (femC, femD, resp); // ERROR

Specifying the collider

The type of collider used for collisions can now be specified directly in the collision manager through the colliderType
property, whose value has the type CollisionManager.ColliderType. TRI_INTERSECTION is the current default, while
AJL_CONTOUR specifies AJL collisions. AJL collisions can still be enabled by default through the ~useAjlCollisions
command line argument.

Rendering penetration depth

Some new properties have been added to allow the rendering of penetration depth when the collider type is set to
AJL_CONTOUR. For details, see the new demo demos.tutorial.PenetrationRender and the associated documentation
in the “Example: Rendering penetration depth” section of the ArtiSynth Modeling Guide.

This example makes use of the new INACTIVE setting for the method property in CollisionBehavior, which disables
the generation of collision constraints and hence turns off the collision response.

Expanded collision groups

Another change is that the special collidable objects Collidable.Deformable, Collidable.Rigid (formerly
Collidable.RigidBodies), and Collidable.Self, used to denote all deformable bodies, all rigid bodies, and
self collision, respectively, have been made instances of a special subclass Collidable.Group and extended to include
Collidable.AllBodies (all rigid and deformable bodies) and Collidable.All (all bodies plus self-collision).

When calling one of the setCollisionBehavior or setCollisionResponse methods, the second argument can be an
instance of Collidable.Group, allowing behaviors (or responses) to be established between a specific collidable and
all members of a group. So for example,

mech.setCollisionBehavior (femA, Collidable.AllBodies, behav);

would set the specified collision behavior between femA and all bodies.

Changes to the collision API

* The collidable group Collidable.RigidBodies has been renamed to Collidable.Rigid.

» Some collision manager properties have had their names changes, as described in the following table. These properties
are also now exported by CollisionBehavior components:

Old name New name
collisionPointTol rigidPointTol
collisionRegionTol rigidRegionTol

collisionCompliance compliance
collisionDamping damping

* The pentrationTol property has been removed from the collision manager but remains in MechModel (where it was
before). To set penetration tolerance, one should now do

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionManager.ColliderType.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/Collidable.Group.html

ArtiSynth Update Log 31

mech.setPenetrationTol (0.001);

instead of
CollisionManager cm = mech.getCollisionManager () ;

cm.setPenetrationTol (0.001);

Specifying a negative tolerance will cause the MechModel to compute a default value instead.

* To draw contact normals, one now needs to set the drawContactNormals property to t rue in either the collision man-
ager or collision behavior(s). The length of the drawn normals will be obtained, as before, from the contactNormalLen
property in the collision manage (which will be set to an estimated default value if not set explicitly).

e The variable doBodyFaceContact, previously located in CollisionHandler, has been replaced with the bodyFace-
Contact property in both the collision manager and CollisionBehavior.

* The collider type used for collisions is now controlled by the collision manager property colliderType, whose value
is an instance of CollisionManager.ColliderType. Current available types are TRI_INTERSECTION (the default), and
AJL_CONTOUR. Either may be enabled with a code fragment like this:

CollisionManager cm = mech.getCollisionManager () ;
cm.setColliderType (ColliderType.AJL_CONTOUR) ;

Setting and enabling selection color

It is now possible to set, or disable/enable, the selection color used in the viewer. See the commands Selection color and
Disable selection highlighting in the Settings menu.

Aug 17, 2016

ArtiSynth 3.3 has been released and is available on the website.

Replacement of SurfaceMeshContourlxer

Aug 15, 2016

Replacement of SurfaceMeshContourlxer

This is a follow-on to the update of Aug 10. The functionality of SurfaceMeshContourIxer to obtain intersection
contours has been merged into SurfaceMeshCollider.

Instead of doing

SurfaceMeshContourIxer ixer = new SurfaceMeshContourlIxer ();
boolean collided = ixer.findContours (mesh0O, meshl);
if (collided) {
for (IntersectionContour c¢ : ixer.getContours ()) {
// do something with c

one now does

SurfaceMeshCollider collider = new SurfaceMeshCollider ();
ArrayList<IntersectionContour > contours = collider.getContours (mesh0O, meshl);
if (contours != null) {

for (IntersectionContour c : contours) ({

// do something with c

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/CollisionManager.ColliderType.html

ArtiSynth Update Log 32

SurfaceMeshContourIxer will remain in the distribution until we are confident this works properly. If for some
reason SurfaceMeshCollider gives an incorrect result, one can simply replace SurfaceMeshCollider with
SurfaceMeshContourIxer, which has been given a getContours (mesh0, meshl) method so the new code struc-
ture does not need to be changed.

Aug 10, 2016

Refactoring of maspack.collision

The package maspack.collision, which is used to compute collisions between polyhedral meshes, is currently being
refactored to improve its efficiency and reliability. Many of these changes will be invisible to most users. However, the
following classes in maspack.collision have been renamed:

Old name New name
MeshIntersectionPoint IntersectionPoint
MeshIntersectionContour IntersectionContour
ContactPenetratingPoint PenetratingPoint
ContactRegion ContactPlane

In addition, the collider SurfaceMeshCollider and the intersection contour generator SurfaceMeshContourIxer now
both use the same IntersectionContour to describe contours. The merge has resulted in the following method name
changes within IntersectionContour:

Old method New method
getAreal() computePlanarArea ()
isOpen () !isClosed()

Note also that SurfaceMeshContourIxer is now deprecated. The plan is to replace its functionality with
SurfaceMeshCollider.

Introduction of contact regions for AJL collision

A major change has been made to the postprocessing done by the AJL collision scheme (which uses SurfaceMeshCollider).
AJL collisions work by determining the intersection contours between two meshes. Previously, these contours were then
processed to determine which interpenetrating vertices, faces, and edges they contained, and which contours were nested
inside which. However, this scheme was flawed: for closed meshes, there are no “inner” or “outer” contours; instead,
there are only connected penetration regions on each mesh, which are bounded by one or more contours. Moreover,
these regions are not necessarily symmetric: the regions on one mesh may be different in both number and contour
composition. To properly describe this, contours (represented by the class IntersectionContour) no longer contain
lists of interior features. Instead, the ContactInfo class (which stores the contact information produced by the collider
method getContacts ()) now contains a list of penetration regions for each mesh. Each region is described by the class
PenetrationRegion, which stores the bounding contours along with the vertices, faces and edges which are completely
or partially inside that region. These attributes may be queried using the following methods:

HashSet <MeshIntersectionContour > getContours () // gets the bounding contours
int numInsideVertices () // number of inside vertices
HashSet <Vertex3d> getInsideVertices () // gets the inside vertices
boolean isVertexInside (vtx) // true 1f vtx is inside

int numInsideFaces () // number of inside faces
HashSet <Face> getInsideFaces () // gets the inside faces
boolean isFaceInside (face) // true if face is inside

int numInsideEdges () // number of inside edges
HashSet <HalfEdge> getInsideEdges () // gets the inside edges
boolean isEdgeInside (edge) // true 1if edge is inside

double getArea () // gets the area of the region

ArtiSynth Update Log 33

Note in particular the method getArea (), which returns the exact area of the the penetration region. This quantity is
computed on demand and then cached.

Note that the above only pertains to collisons preformed with AJL collisions. AJL collisions are not
enabled in ArtiSynth by default (although we are working toward changing this). For the moment,
AJL collisions are enabled using either the command line option ~useAj1lCollisions or by calling
SurfaceMeshCollider.setAjlCollision (enable).

Changes to Contactinfo

Changes have been made to the class ContactInfo, which stores the contact information produced by the collider
method getContacts (). All of the fields have been made private to maspack.collision and the following accessors
should instead be used to obtain its information:

PolygonalMesh getMeshO () // first collision mesh
PolygonalMesh getMeshl () // second collision mesh
List<ContactPlane> getContactPlanes () // all contact planes

List <PenetratingPoint > getPenetratingPoints0 () // mesh0 vertices inside meshl
List <PenetratingPoint > getPenetratingPointsl () // meshl vertices inside meshO0

A ContactPlane, as returned by getContactPlanes (), is a planar approximation to two matching penetration regions
on each mesh, with the convex hull of the contours projected onto the plane. It is typically used to generate contact
constraints between rigid bodies.

When contact is determined using AJL collision detection, the following information is also available:

List <PenetrationRegion> getPenetrationRegionsO0 () // regions for meshO
List <PenetrationRegion> getPenetrationRegionsl () // regions for meshl
List<IntersectionContour > getContours () // mesh intersection contours
List <EdgeEdgeContact > getEdgeEdgeContacts () // edge-edge contacts

Finally, when not using AJL collisions, it is possible to retreive the individual triangle-triangle intersections between the
meshes:

List<TriTrilIntersection> getIntersections () // triangle intersections

Note, however, that this functionality may be removed in the future.

New command line syntax for models and script arguments; -M removed

A new syntax has been added for passing command line arguments to either the build () method for RootModels that
are loaded with the -model option, or to a Jython script that is invoked with the -script option. The syntax involves
placing the desired arguments immediately after the model or script specification, enclosed inside square brackets [].

For example, for a model,
artisynth -model artisynth.models.stuff.MyModel [-foo bar]

will pass the strings "-foo" and "bar" to the build () method of MyModel (via the args argument). This functionality
replaces the previous use of the -M argument (in which all arguments following -M were passed to the build () method).

For a script,
artisynth -script myscript.py [-xxx 123 -off]

will pass the strings "-xxx", "123" and "-off" to the script myscript .py, which can then retrieve them from
SYS.argv:

import sys
print (' Number of arguments:’ + str(len(sys.argv)))
print (' Argument List:’ + str(sys.argv))

(thanks to Antonio for this synopsis).

ArtiSynth Update Log 34

FileGrabber changed to FileManager

The class FileGrabber, in maspack.fileutils, has been renamed to FileManager, and additional functionality has
been added to allow it to also upload files onto a server using a variety of “put” methods:

put (File source, URIx dest, int options)
put (File path, URIx dest)
put (String source, int options)

put (String source, String dest, int options)

(
(
(
put (String source)
(
put (String source, String dest)

Jun 16, 2016

OpenGL rendering replaced by new rendering interface

Instead of using the legacy OpenGL 2 API, ArtiSynth components now draw themselves using a rendering API that is
independent of the underlying implementation. The main purpose of this is to (a) allow ArtiSynth to take advantage of
more advanced versions of OpenGL, and (b) ultimately allow models to be rendered with other graphical APIs such as
Renderman.

Previously, renderable components drew themselves by overriding their render () method with code similar to the
following:

public void render (GLRenderer renderer, int flags) ({
GL2 gl = renderer.getGL2 ();
gl.glPushMatrix () ;
renderer.setLightingEnabled (false);
GLViewer.mulTransform (gl, myXFrameToWorld);
renderer.setLineWidth (myRenderProps.getLineWidth ());
gl.glBegin (GL2.GL_LINES);
renderer.setColor (myRenderProps.getLineColorArray (), 1isSelected());
float 1 = (float)myPlaneSize/2;
gl.glVertex3f (0f, 0f, 1);
gl.glVertex3f (0f, 0f, -1);

(
gl.glVertex3f (0f, 1, 0f);
gl.glVertex3f (0f, -1, 0f);
gl.glVertex3f (1, 0f, 0f);
gl.glVertex3f (-1, 0f, 0f);

gl.glEnd () ;
renderer.setlLightingEnabled (true);
gl.glPopMatrix () ;

Under the new interface, GLRenderer has been replaced by Renderer, and all draw operations now proceed through the
renderer; GL is no longer used or needed. The renderer’s functionality has been significantly enhanced to accomodate
this. For example, the code sample above could be now be written as

public void render (Renderer renderer, int flags) {
renderer.pushModelMatrix () ;
// lighting is now controlled by setShading ()
Shading savedShading = renderer.setShading (Shading.NONE) ;
renderer.mulModelMatrix (myXFrameToWorld) ;
renderer.setLineWidth (myRenderProps.getLineWidth ());
renderer.setlineColoring (myRenderProps, isSelected());
renderer.beginDraw (Renderer.DrawMode.LINES) ;
float 1 = (float)myPlaneSize/2;
renderer.addVertex (0f, 0f, 1);
renderer.addVertex (0f, 0f, -1);
renderer.addVertex (0f, 1, 0f);
renderer.addVertex (0f, -1, 0f);
renderer.addVertex (1, 0f, 0f);

ArtiSynth Update Log 35

renderer.addVertex (-1, 0f, 0f);
renderer.endDraw () ;
renderer.setShading (savedShading);
renderer.popModelMatrix () ;

Complete documentation for the new rendering interface, with detailed examples, is given in the “Rendering” chapter of
the Maspack Reference Manual. The new Renderer interface itself is described in the “Renderer Interface” section.

This update entails changes to the ArtiSynth API. For application code that does not explicitly implement component
render () methods or manipulate the viewer, those changes should be limited to API changes involving RenderProps,
described below. For application code those does implement render () methods or manipulate the viewer, further
changes as described under API changes involving the renderer or API changes involving the viewer will likely be
necessary.

Support for texture mapping

Proper support has now been added for texture mapping, including color, normal, and bump mapping. These can be
controlled through the Renderer interface via the composite property objects ColorMapProps, NormalMapProps, and
BumpMapProps. The revised RenderProps object also exports these through its subproperties colorMap, normalMap, and
bumpMap.

Texture maps can be set up either directly through the renderer, as described in the “Texture mapping” section of
the Maspack Reference Manual, or by setting the colorMap, normalMap, or bumpMap rendering subproperties
of ArtiSynth components that contain polygonal meshes (as described in the “Texture mapping” section of the
ArtiSynth Modeling Guide).

API changes involving RenderProps

Some changes have been made to the RenderProps object and associated enumerated types which components use to
specify generic rendering properities.

* The enumerated types Shading, Faces, PointStyle, and LineStyle are now defined in the interface Renderer
instead of RenderProps, and Faces has been renamed to FaceStyle.

e The fields for Shading have changed from FLAT, GOURAUD, and PHONG to FLAT, SMOOTH, METAL, and NONE. SMOOTH
takes the place of both GOURAUD and PHONG to simply indicate smooth shading; different renderer implementations
are free to implement this using Gouraud or Phong shading as desired. METAL is used to indicate smooth shading with
more metalic-like qualities; renderer implementations are free to implement this as they wish and in some cases there
will be no difference between SMOOTH and METAL. Setting the shading to NONE disables lighting.

e The field ELLIPSOID in LineStyle has been renamed to SPINDLE.
* The subproperty specular has been added to RenderProps. If not null, this specifies the specular reflectance color.

* The class TextureProps that describes (colored) texture mappings has been renamed to ColorMapProps, and the
corresponding property textureProps has been renamed to colorMap. The properties sphereMapping and automatic are
no longer supported and have been removed along with their associated methods.

e Within RenderProps, methods named setTextureProps have been renamed to setColorMap, and static methods
of the form setTextureXxX have been renamed to setColorMapXxX. Also, the default value for colorMap is always
null, and so code fragments that were written

TextureProps tprops = renderProps.getTextureProps();
set tprops

should be rewritten as
ColorMapProps tprops = new ColorMapProps();

set tprops
renderProps.setColorMap (tprops);

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/ColorMapProps.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/NormalMapProps.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/BumpMapProps.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/RenderProps.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/Renderer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/RenderProps.html

ArtiSynth Update Log 36

* The enumerated type TextureProps.Mode has been replaced by Renderer.ColorMixing, and the corresponding
mode property has been renamed to colorMixing.

* The additional subproperties normalMap and bumpMap have been added to RenderProps to control normal and bump
mapping.

* The subproperties pointSlices and lineSlices have been removed from RenderProps. The resolution of built-in point
and line primitives can now be controlled with the renderer’s setSurfaceResolution() method.

» RenderProps no longer maintains material classes for faces, lines, points, etc., and so the methods getXXxXMaterial ()
have been removed. Also, the methods get XXXColorArray (), where XXX is Face, Line, Point, etc., have been
renamed to get XXXColorF ().

The renaming is summarized in the first part of the table, Changes involving RenderProps, in the Summary of changes
section below.

API changes involving the renderer

API changes involving the renderer involve some class renaming and method refactoring, and the addition of enough
renderer functionality so that calls to OpenGl are no longer needed to draw objects. A complete description of this
additional functionality is given in the “Rendering” chapter of the Maspack Reference Manual.

Changes associated with renaming and reactoring include:
* GLRenderable and GLSelectable (in the render package) have been renamed to IsRenderable and IsSelectable.
Also, GLRenderableHolder (in artisynth.core.renderables) has been renamed to IsRenderableHolder.
* GLSelectionListener and GLSelectionEvent have been renamed to ViewerSelectionListener and ViewerSelectionEvent.

* GLSupport has been moved from the render package to render.GL, and the color support methods RGBAequals (),
interpolateColor (), HSVtoRGB (), and RGBtoHSV () have been moved from GLSupport to render.color.ColorUtils.

* The method updateBounds () (formerly in GLRenderable, now in IsRenderable) has had its signature change from
updateBounds (Point3d, Point3d) to updateBounds (Vector3d,Vector3d).

* The flag GLRenderer.SELECTED has been changed to Renderer .HIGHLIGHT. Other renderer flags are no longer
needed and have been removed.

* The flag GLRenderable.TRANSLUCENT has been changed to IsRenderable. TRANSPARENT.
* The renderer method setFaceMode () has been renamed to setFaceStyle ().

* The renderer method setLightingEnabled () has been removed. Lighting is now disabled with the call setShading
(Shading.NONE). Code fragments of the form

renderer.setLightingEnabled (false);
renderer.setLightingEnabled (true);

should be replaced with

Shading savedShading = renderer.setShading (Shading.NONE);
renderer.setShading (savedShading);

e The renderer method drawSphere (renderProps, center) has been replaced with drawSphere (center, radius).
Code fragments of the form

renderer.drawSphere (props, center)
can be replaced with

renderer.drawSphere (center, props.getPointRadius())

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/render/Renderer.html#setSurfaceResolution-int-
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf

ArtiSynth Update Log

37

e The static method Frame.drawAxes (renderer, frame, length, selected) (located in core.mechmodels.Frame)
has been replaced with the renderer method drawAxes (frame, length, lineWidth, highlighted). Code fragments

of the form

renderer.setLineWidth
(renderer,

Frame.drawAxes
can be replaced with

renderer.drawAxes

(frame,

(lineWidth);

frame, length, selected);

length, lineWidth, selected);

* The renderer method setMaterialAndShading () has been removed. Instead, the shading for a RenderProps object
can be set using setPropsShading (), and the color settings associated with faces, lines, points, etc. can be set using
setXXXColoring (props,highlighted) where XXX is Face, Line, Point, etc. Code fragments of the form

renderer.setMaterialAndShading
renderer.restoreShading

can be replaced with

renderer.setPropsShading
renderer.setXXXColoring

(props, props.getXXXMaterial (), selected);

(props) ;

(props) ;
(props, selected);

* Renderer methods of the form restoreXxX (), where XXX is some graphical state property, have been removed.
Typically, saving and restoring graphics state is no longer necessary as the renderer now restores state before calling
each renderable’s render () method.

e The OpenGL calls glLineWidth () and glPointSize () can be emulated with the renderer methods setLineWidth ()

and setPointSize().

* Finally, OpenGL immediate mode can be emulated using the renderer methods beginDraw (DrawMode . XXX) and
endDraw (), where XXX can be POINTS, LINES, LINE_STRIP, LINE_LOOP, TRIANGLES, TRIANGLE_STRIP, and
TRIANGLE_FAN. POLYGON is not supported. The intervening OpenGL methods glvertex3f (), glColor3f (), and
glNormal3f (), etc., are replaced with the renderer methods addvertex (), setColor (), and setNormal (). Code

fragments of the form

gl.glBegin _
gl.glvertex3f (p0);
gl.glvertex3f (pl);
gl.glVertex3f (p2);
gl.glVertex3f (p3);
gl.glEnd();

can be replaced with

renderer.beginDraw
renderer.addVertex
renderer.addVertex
renderer.addVertex
addVertex
endDraw () ;

renderer.
renderer.

(GL.GL_LINES);

(DrawMode.LINES) ;
(p0);

(pl

(p2
(p3

)i
)i
).

’

Full details are given in the section “Drawing using draw mode” of the Maspack Reference Manual.

These changes are summarized in the second part of the table, Changes involving the renderer, in the Summary of

changes section below.

API changes involving the viewer

API changes involving the viewer take the form of class renaming and method refactorization, including moving some
classes into the subpackage render.GL, as described in the third part of the table, Changes involving the viewer, in the
Summary of changes section below.

A complete description of the viewer is given in the “Viewers” section of the Maspack Reference Manual.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf

ArtiSynth Update Log

38

Summary of changes

Changes involving RenderProps:

Old name/signature

New name/signature

Classes and enums

render.RenderProps.PointStyle
render.RenderProps.LineStyle
render.RenderProps.Faces
render.RenderProps.Shading
render.TextureProps
render.TextureProps.Mode

render.Renderer.PointStyle
render.Renderer.LineStyle
render.Renderer.FaceStyle
render.Renderer.Shading
render.ColorMapProps
render.Renderer.ColorMixing

Enum fields

Shading.GOURARD
Shading.PHONG
LineStyle.ELLIPSOID

Shading.SMOOTH
Shading.SMOOTH
LineStyle.SPINDLE

Renamed methods

RenderProps.setTextureProps ()
RenderProps.setTextureXXX ()
RenderProps.set/getPointSlices ()
RenderProps.set/getLineSlices ()
RenderProps.getXXXMaterial ()
RenderProps.getXXXColorArray ()
TextureProps.setMode ()
TextureProps.setSphereMapping ()
TextureProps.setAutomatic ()

RenderProps.setColorMap ()
RenderProps.setColorMapXXX ()
removed, not needed
removed, not needed
removed, not needed
RenderProps.getXXXColorF ()
ColorMapProps.setColorMixing()
removed, not supported
removed, not supported

Changes involving the renderer:

Classes and enums

render.GLRenderable
render.GLSelectable
render.GLSelectionListener
render.GLSelectionEvent
render.GLSupport
core.renderables.GLRenderableHolder

render.IsRenderable
render.IsSelectable
render.ViewerSelectionListener
render.ViewerSelectionEvent
render.GL.GLSupport
core.renderables.IsRenderableHolder

Flags

GLRenderer.SELECTED
GLRenderable.TRANSLUCENT

GLRenderer .HIGHLIGHT
IsRenderable.TRANSPARENT

Renamed and refactored methods

GLSupport .RGBAequals ()
GLSupport.interpolateColor ()
GLSupport .HSVtoRGB ()

GLSupport .RGBtoHSV ()
GLRenderer.setFaceMode ()
GLRenderer.setLightingEnabled ()

GLRenderer.drawSphere (props, center)

Frame.drawAxes (rdr, frame, len, selected)
GLRenderable.updateBounds (Point3d,Point3d)

GLRenderer.setMaterialAndShading ()

GLRenderer.restoreXXX()
gl.glLineWidth ()
gl.glPointSize()
gl.glBegin (GL.GL_XXX)
gl.glVertex3f, etc.
gl.glColor3f, etc.
gl.glNormal3f, etc.
gl.glEnd()

moved to render.color.ColorUtils

moved to render.color.ColorUtils

moved to render.color.ColorUtils

moved to render.color.ColorUtils
Renderer.setFaceStyle()
Renderer.setShading () (Shading.NONE disables
lighting)

GLRenderer.drawSphere (center, radius)
Renderer.drawAxes (frame, len, lineWidth, selected)
IsRenderable.updateBounds (Vector3d, Vector3d)
replaced with Renderer.setPropsShading () and
Renderer.setXXXColoring()

removed, not generally needed
Renderer.setLineWidth ()
Renderer.setPointSize ()

Renderer.beginDraw (DrawMode . XXX)
Renderer.addVertex ()

Renderer.setColor ()

Renderer.setNormal ()

Renderer.endDraw ()

Changes involving the viewer:

ArtiSynth Update Log 39

Classes and enums

render.GLClipPlane render.GL.GLClipPlane
render.GLViewer render.GL.GLViewer
render.GLViewer.DraggerType render.Dragger3d.DraggerType
render.GLViewer.BlendType render.GL.GLViewer.BlendFactor
render.GLViewerFrame render.GL.GLViewerFrame
render.GLMouseListener render.GL.GLMouseListener
render.GLGridResolution render.GL.GLGridResolution
Renamed and refactored methods
GLViewer.autoFitOrtho(flags) GLViewer.autoFitOrtho () (removed argument)
GLViewer.autoFitPerspective (flags) GLViewer.autoFitPerspective () (removed argu-
ment)
GLViewer.getWorldToEye () GLViewer.getViewMatrix ()
GLViewer.getWorldToEye (TWE) GLViewer.getViewMatrix (TWE)
GLViewer.getWidth () GLViewer.getScreenWidth ()
GLViewer.getHeight () GLViewer.getScreenHeight ()
GLViewer.set/getDBlending () GLViewer.set/getBlendDestFactor ()
GLViewer.set/getSBlending () GLViewer.set/getBlendSourceFactor ()
GLViewer.getHeight () GLViewer.getScreenHeight ()

Legacy rendering with OpenGL 2

If necessary, it is still possible for objects to draw themselves using OpenGL 2. To do this, it is necessary to run
ArtiSynth using the OpenGL 2 version of the viewer, which can be requested with the command line argument
-GLVersion 2:

> artisynth -GLVersion 2

This will ensure that the Renderer supplied to the render () methods is an instance of GL2Viewer. The render ()
method can then obtain the necessary gl references from this viewer and perform direct GL rendering:

import maspack.render.GL.GL2;

public void render (Renderer renderer, int flags) {
if (! (renderer instanceof GL2Viewer)) {
return; // do nothing; GL2 not available

}

GL2Viewer viewer = (GL2Viewer) renderer;
GL2 gl = viewer.getGL() .getGL2 () ;
viewer.beginGL () ;

perform direct GL rendering

viewer.endGL () ;

As shown in the example, direct GL rendering should be surrounded with calls to the viewer methods beginGL () and
endGL () so that the renderer’s graphics state will not be affected by the direct GL calls.

Jan 24, 2016

New mesh interface for normals, colors, and texture coordinates

The interface for setting normals, colors, and texture coordinates in meshes has been redesigned. Full documentation
can be found in Section 3.5 (“Meshes”) of the ArtiSynth Modeling Guide. These changes have been made partly in
preparation for switching to the upcoming new rendering interface. Some of the main changes are:

* Normal, color and texture information is now stored in the mesh base class MeshBase. Colors are no longer stored in
mesh vertices.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth Update Log 40

* Index information can also be specified, which maps normals, colors and texture coordinates onto the vertices of
individual features such as faces or lines.

e Normal information for PolygonalMesh can be created automatically.
» Vertex or feature coloring modes can be enabled, under which a mesh will automatically maintain colors for each

vertex or feature.

For normals, some of the main methods are:

setNormals (

List <Vector3d> nrmls, int([] indices); // set all normals and indices
ArrayList<Vector3d> getNormals () ; // get all normals
int [] getNormalIndices () ; // get all normal indices
int numNormals () ; // return the number of normals
Vector3d getNormal (int idx); // get the normal at index idx
setNormal (int idx, Vector3d nrml); // set the normal at index idx
clearNormals () ; // clear all normals and indices

Similar methods exist for colors and texture coordinates. If automatic normal creation is available, the method

hasAutoNormalCreation () ;

returns true and normals are created automatically whenever getNormals () is called. Vertex and feature coloring can
be enabled and queried using

setVertexColoringEnabled () ;
getVertexColoringEnabled () ;
setFeatureColoringEnabled () ;
getFeatureColoringEnabled ()

4

Note: textures may not behave correctly at the moment, as other aspects of the texture interface are being re-
designed. When the new render interface is installed, texture properties will move from RenderProps into
MeshBase.

Renamed methods in mesh classes

In order to provide greater API uniformity, the following methods for querying the number of vertices, faces, and lines
in various mesh subclasses have been renamed:

Base class Old name New Name

MashBase getNumVertices () numVertices()

PolygonalMesh getNumFaces () numFaces ()

PolylineMesh getNumLines () numLines ()
Dec 3, 2015

New mechanisms for transforming geometry

The geometry transform mechanism has been completely rewritten, to make it both more robust and more general. It
is now possible to transform components, or collections of components, with a GeometryTransformer object, special
instances of which can be used to apply a transformation based on a nonlinear deformation field.

Full details, and a demonstration example, as given in the section “Transforming geometry” of the ArtiSynth Modeling Guide.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/geometry/GeometryTransformer.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth Update Log 41

Adding application-defined menu items

The mechanism to add application-defined menu items which can be invoked from the ArtiSynth menu bar has been
changed and generalized.

First, the menu name under which these items appear has been changed from Model to Application.

Second, application-defined menu items can now be provided not only by the RootModel, but by any top-level compo-
nent of the RootModel (e.g., models, controllers, probes, etc.). Formerly, the RootModel could provide menu items by
overriding the method makeMenuItens (). Now, instead, menu items can be provided by either the RootModel or any
top-level component that implements the interface HasMenultems, which declares the method

public boolean getMenultems (List<Object> items);

The total of all menu items supplied is used to populate the pull-down Application menu in the ArtiSynth menu bar.

The Application menu will only appear if getMenuItems () returns true for one or more of these components.

For more details, see the section “Application-Defined Menu Items”, in the ArtiSynth Modeling Guide.

Updates to the Pardiso library

The Pardiso library has been updated to include the ability to dynamically set the number of threads used by the solver.
From code, one can do this by calling

PardisoSolver .setDefaultNumThreads (num);

which will then set the number of threads to num upon creation of the next instance of PardisoSolver.

Note: setting the number of threads globally affects all solver instances within the current process. There is no
current way to specify the thread number for individual solver instances. Also, the specified thread number is only
a hint; fewer threads may be employed, depending on the machine resources available.

The named convention for the Pardiso library has also been changed. The current library is now PardisoJNI.11.1.2.1,
where the first three numbers correspond to the version numbers of the underlying MKL library. The new library should
download automatically from the ArtiSynth web server.

Tetgen has been updated to 1.5.1

The Tetgen library has been updated to Tetgen 1.5.1 (May 2014), with the new library named TetgenJNI.1.5.1.0.
The first three numbers correspond to the version numbers of the underlying Tetgen library. The new library should
download automatically from the ArtiSynth web server.

Creating Fem surface meshes
Support has been added for interactively creating and rebuilding FEM surface meshes from the right-click context menu.

* Adding new surface meshes. If an FEM model is selected, then the context menu command Add new surface mesh
will create a new surface mesh and add it to the set of mesh components contained in the list meshes. If a clipping
plane is active, the mesh will include only those elements which are not obscured by the clipping plane.

* Adding new surface meshes from selected elements. If one or more elements of an FEM are selected, then the context
menu command Add new surface mesh for selected elements will create a new surface mesh encompassing only the
selected elements and add it to the set of mesh components contained in the list meshes.

* Rebuilding an existing surface mesh. If an FEM mesh component is selected, and the underlying mesh type is a
PolygonalMesh, then the context menu command Rebuild as surface mesh will rebuild the mesh as a surface mesh
for the FEM. If a clipping plane is active, the mesh will include only those elements which are not obscured by the
clipping plane.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/HasMenuItems.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth Update Log 42

ControlPanels now support component deletion

ControlPanels have been updated to take advantage of the updateReferences() method in ModelComponent to update
themselves appropriately if any components associated with their widgets are deleted.

Changes to the javaclass and javamethod LaTeX commands

The LaTeX javaclass and javamethod commands (defined in doc/texinputs/artisynthDoc.tex to generate links
to Javadoc class and method documentation from within ArtiSynth docu) have been changed as follows:

* javamethodx and javaclassx, which prepended package information with a string defined by the command
javabase, are no longer supported. While this means that javaclass and javamethod must now fully specify their
class packages, this should result in documentation that is clearer and easier to maintain.

* Antonio has added a new command, javamethodAlt, that allows one to specify arbitrary visual text for a given
method link.

* When compiling HTML documentation files, the postprocessing step will now produce visible WARNING messages for
class and method links that cannot be located.

For more details, see the Javadoc References section in Writing Documentation for ArtiSynth.

Aug 27, 2015

ArtiSynth 3.2 released

ArtiSynth 3.2 has been released and is available on the website.

Class and Method Renaming

Some classes and methods were renamed as described in the following charts. The reasons for this were twofold: first,
since joints can now be applied to deformable as well as rigid bodies, the notion of RigidBodyConnector not longer
made sense. Second, there are a number of subclasses of MeshComponent that are used to encapsulate various mesh
objects defined in maspack .geometry (such as PointMesh and PolygonalMesh). However, these container classes had
names like FixedMesh and FemMesh, leading to confusion over whether they were actual mesh classes, or components
that simply contained meshes.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/gui/ControlPanel.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#updateReferences-boolean-java.util.Deque-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/documentation.pdf

ArtiSynth Update Log

43

Renamed classes

Old name

New Name

Renamed classes

mechmodels.RigidBodyConnector
mechmodels.RigidBodyConstrainer
mechmodels.FixedMesh
mechmodels.RigidMesh
femmodels.FemMesh
femmodels.SkinMesh
renderables.EditableMesh
renderables.EditablePolygonalMesh

mechmodels.BodyConnector
mechmodels.BodyConstrainer
mechmodels.FixedMeshBody
mechmodels.RigidMeshComp
femmodels.FemMeshComp

femmodels. SkinMeshBody
renderables.EditableMeshComp
renderables.EditablePolygonalMeshComp

Renamed methods in MechModel

addRigidBodyConnector (RigidBodyConnector)
removeRigidBodyConnector (RigidBodyConnector)
rigidBodyConnectors ()
clearRigidBodyConnectors ()

addBodyConnector (BodyConnector)
removeBodyConnector (BodyConnector)
bodyConnectors ()
clearBodyConnectors ()

Renamed methods in FemModel3d

addMesh (FemMesh)
getMesh (String)
getNumMeshes ()
getMeshes ()
removeMesh (FemMesh
removeAllMeshes (
getSurfaceFemMesh ()

addMeshComp (FemMeshComp)
getMeshComp (String)
numMeshComps ()
getMeshComps ()
removeMeshComp (FemMeshComp)
clearMeshComps ()
getSurfaceMeshComp ()

Renamed methods in CompositeRigidBody

addMesh (RigidMesh)
getMesh (String)
getNumMeshes ()
getMeshes ()
containsMesh (RigidMesh
removeMesh (RigidMesh
removeMesh (String

Aug 24, 2015

Method renaming

addMeshComp (RigidMeshComp)
getMeshComp (String)
numMeshComps ()

getMeshComps ()

containsMeshComp (RigidMeshComp)
removeMeshComp (RigidMeshComp)
removeMeshComp (String)

FemMarker.setElement (e) has been renamed to FemMarker.setFromElement (e)

Frame attachments added

The long-standing ability to attach points to certain types of ArtiSynth components is now complemented by the ability
to attach frames to components, including other frames and FEM models. See Sections 4.5.3 and 7.6 in the Modeling
Guide, and the examples artisynth.demos.tutorial .FrameBodyAttachment and artisynth.demos.tutorial.FrameFemAttach

Joints can be connected to FEM models

The ability to add frames to FEM models allows us to connect joints directly to these models. See Section 7.6.2 in the
Modeling Guide, and the example artisynth.demos.tutorial.JointedFemBeams.

Point-FEM attachments can involve arbitray nodes

Point attachments can now be made for arbitrary collections of FEM nodes. See Sections 7.4.3 through 7.4.6 in the
Modeling Guide, and the example artisynth.demos.tutorial.PointFemAttachment. The same ability holds for

FEM markers; see Section 7.5.

ArtiSynth Update Log 44

Wrapping surface support added
Support has been added for wrapping surfaces. This is done by extending MultiPointSpring to make some segments

wrappable, allowing them to wrap around any Wrappable obstacle that is added to the spring. Documentation is being
prepared. In the meantime, see the example artisynth.demos.tutorial.CylinderWrapping.

Mar 16, 2015

MATLAB interface revised and documented
The ArtiSynth MATLAB interface has been overhauled and significant functionality has been added to enable ArtiSynth
to be run and scripted within MATLAB. The Jython interface has also been revised so that the scripting commands are

essentially the same in both interfaces. A new document, “Interfacing ArtiSynth to MATLAB and Jython”, has been
prepared that describes both interfaces in detail.

Pardiso library updated

The Pardiso library has been recompiled with MKL 11.1.2. This is the most recent version of MKL for which hybrid
solves still work properly in ArtiSynth. The updated Pardiso library is named PardisoJNI.1.1. You may want to run
updateArtisynthLibs in SARTISYNTH_HOME/bin to make sure that the library is properly updated.

ArtiSynth server renamed

The domain name of the ArtiSynth file server (used by some applications to access files using maspack.fileutil.FileManager)
has been changed from

www.magic.ubc.ca
to
artisynth.magic.ubc.ca

Where necessary, application code has been updated to reflect this change.

Changed everything in demos to use build method

All RootModel instances in the package artisynth.demos now create their models using the build () method. Code
that depends on these packages has been updated accordingly.

Removal of static methods from Main

To improve code modularity almost all methods and attributes in Main have now been made non-static. This means that
they must now be called using a Main instance, as in:

main.getWorkspace () ;

The current Main instance can still be obtained using Main.getMain (), so that

Main.getMain () .getWorkspace () ;

ArtiSynth Update Log 45

will work if necessary.

In some cases, the required functionality has been moved directly into the RootModel, and whenever possible this
interface should be used instead:

Static Main method RootModel replacement
Main.rerender() rerender()
Main.getMainFrame().getViewer() getMainViewer()
Main.getMainFrame() getMainFrame()
Main.getWorkspace().scanProbes (rtok, root) scanProbes (rtok)
Main.getWorkspace().writeProbes (pw, fmt, root) writeProbes (pw, fmt)

Also, these methods should ideally not be called from within the RootModel constructor but from within its build ()
method instead.

Please use Main.getMain () sparingly. The use of the static Main instance is being reconsidered, since it prevents
the possibility of creating multiple ArtiSynth instances within the same executing program (one place where it
might be useful to do this is within MATLAB).

Feb 3, 2015

Removal of old collision handling code

The old collision handling code has been removed, along with the command line option -collisionHandler GENERIC.

Changes to collision and self-collision control

The ability to control collisions and self-collisions among objects has been enhanced.

The Collidable interface now contains a method isCollidable (). If this method returns false, then collisions will
be disabled for that collidable, regardless of which default and explicit collisions behaviors have been specified. For
most currently implemented bodies, the value returned by isCollidable () is associated with a collidable property,
so setting that property to false will disable collisions for that body.

Collidable has also been modified to properly support self-collisions. If a collidable A has any descendant compo-
nents which are also collidable, then these descendents are called sub-collidables of A. Self-collision within A can then
be effected by enabling collisions between all pairs of its sub-collidables for which its allowSelfCollision () method
returns true.

As a particular example, FemMode13d is a collidable, while the mesh components located in its meshes sublist are
sub-collidables. If self-collision is enabled for an FEM model, collisions will be enabled between any of these mesh
components which (a) contain a polygonal mesh and (b) are marked as collidable. The surface mesh is excluded, since
FemModel3d.allowSelfIntersection() returns false for the surface mesh.

More details are given in the Collision Handling section (currently 5.6) of the ArtiSynth Modeling Guide.

Removal of FemMeshVertex

FemMeshVertex, which was a special subclass of Vertex3d used for creating FEM meshes, has been removed. Its pur-
pose had been to store the FemNode3d (if any) associated with a mesh vertex. This information is now maintained else-
where, and the node (if any) associated with a vertex can now be determined using either get SurfaceNode (vertex) (in
FemMode13d), or getNodeForVertex (vertex) (in FemMesh).

One change required by this is that FemFactory.createHexWedgeExtrusion () now takes an additional fifth argu-
ment, which is either the FEM associated with the supplied surface mesh, or null if there is no FEM associated with the
mesh.

Also, in FemMode13d: getSurfaceMeshVertex () has been replaced by getSurfaceVertex ().

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/modelguide.pdf

ArtiSynth Update Log 46

Changes to scanMesh() in FemModel3d

The methods scanMesh (fileName) and scanMesh (tokenizer) in FemModel3d, which read FEM meshes from a
special file in which faces are identified by node numbers, have been changed so that they now create and return a
FemMesh object instead of a PolygonalMesh. The PolygonalMesh itself can be obtained using getMesh () on the
returned FemMesh.

Meshes can still be scanned and added to an FEM model using code snippets of the form

fem.addMesh (fem.scanMesh (meshFileName));

In addition, the file format has been changed from one in which faces are indicated simply by the numbers of the
underlying FEM nodes, as in

[£01 2
£ 2 34
£ 456

to one where faces are specified by vertex indices and vertices are in turn specified by their associated nodes and
weights, as in:

[
1 0.5

52 0.35 3 0.25 4 0.25
4 0.5

HhoHhoHh << S <<
W RN R W W
(G INE, VI e B e I = e
W oo ;o

This allows the handling of situations where each vertex does not correspond exactly to one FEM node, such as fine
surface and embedded meshes. For more details, see the API documentation for scanMesh () and writeMesh () in
FemMesh.

The old face-node format is maintained for backward compatibility.

Note: more changes are likely in the way that FEM meshes are created and maintained.

Changes to attachPoint() in MechModel

The following methods in MechModel:

attachPoint (Point pnt, RigidBody body);

attachPoint (Point pnt, Particle p);

attachPoint (Point pnt, FemElement3d elem);

attachPoint (Point pnt, FemModel3d fem, double reduceTol);

have all been replaced with the single method

attachPoint (Point pnt, PointAttachable comp);

where PointAttachable is an interface indicating any component that is capable of creating it’s own point attachments
using the method:

PointAttachment createPointAttachment (Point pnt);

Implementing components include RigidBody, Particle, FemElement 3d, and FemModel3d.

For FemMode13d, the previous attachPoint () method also allowed the specification of a reduction tolerance, which if
non-zero could be used to reduce the number of nodes the point was attached to. This can still be achieved by explicitly
creating and adding the attachment like this:

ArtiSynth Update Log 47

double reduceTol = 1le-8;
PointAttachment ax = fem.createPointAttachment (pnt, reduceTol);
mech.addAttachment (ax);

The PointAttachment interface makes it possible to decouple MechModel from other packages that implement
PointAttachable components.

New key binding to select parent of current selection

Recent changes have moved the surface meshes of some body components into separate components located beneath the
body in question. For example, the surface mesh for a FemMode13d is now stored as a FemMesh component located in
meshes/surface beneath the FEM model. This allows for greater flexibility in controlling the visibility and rendering
of mesh components, but it also means that when you graphicaly select on a body’s surface mesh, you select the
component containing the mesh rather than the body itself.

To make it easy to navigate to the body in question, you can now use the ESC key to quickly select the parent of the
last selected component. For surface meshes, two quick presses of ESC will get you from the surface mesh to the body
itself (and the path name of the revised selection will appear in the component selection box at the bottom of the main
ArtiSynth frame). While it was already possible to do parent selection using the "UP" arrow in the component selection
box, using the ESC key is faster.

New createSurface() method for FemMesh

A new static method in FemMesh,

FemMesh createSurface (String name, FemModel3d fem, Collection elements);

allows the creation of an FEM surface mesh which encloses a specified collection of elements. This should make it
easier to create sub-surfaces.

Jan 21, 2015

Refactoring of collision code

The collision code has been refactored internally. These changes should be largely invisible, but if you encounter any
problems, you can (at the moment) revert to the old collision code using the command line option -~collisionHandler
GENERIC. The old collision code will be removed completely at a later date.

Forces now zeroed in preadvance()

Forces applied to dynamic components are now zeroed in the MechModel’s preadvance () method, before its input
probes and controllers are applied. This is a subtle change, but it means that probes and controllers can now set forces
directly, rather than having to set the external force. (Note that input probes and controllers not associated with the
model are called before preadvance () and so these will still need to set external forces in order to have any effect.)

EigenDecomposition added to matrix package

A new decomposition class, EigenDecomposition, has been added to maspack.matrix. This computes eigen-
value decompositions for both unsymmetric and symmetric dense matrices, using the methods factor () and
factorSymmetric (). Some of the code, particularly for the unsymmetric case, was taken for the public domain
JAMA library.

ArtiSynth Update Log 48

Oct 29, 2014

ArtiSynth can now be run in "batch" mode

Changes have been made to allow ArtiSynth to be run in "batch" mode. To do this, simply run ArtiSynth with the
command line option

-noGui
and it will start up without any of the GUI structures. The options -model and -playFor can be used to load a particular

model and have it play for a specific time (in seconds), as in:

artisynth -noGui -model artisynth.demos.tutorial.NetDemo -playFor 3

It is also possible to specify a Jython script to be run, as in

artisynth -noGui -script experiment.py

Since there is no GUI, Jython will be initiated using a terminal console instead of the usual Swing text panel. When the
script finishes, the console will remain available for interactive operation.

One may also simply start with a Jython console, and no script:

artisynth -noGui -showdythonConsole

Batch mode causes some GUI structures to be null

When run in batch mode, certain standard GUI structures, such as the viewer, viewer manager, timeline, and main frame,
will not be created and any references to them will be null. Models which refer to these structures must allow for this if
they are to run properly in batch mode.

In particular, calls to the RootModel methods getMainFrame () and getMainViewer () will return null when operating
in batch mode. The Main method getViewerManager () and getTimeline () will also return null.

Control panels can still be created as before: in batch mode, they will still be added to the RootModel but will not be
activated or made visible.

Jython support code has been refactored

In order to support both Swing panel and terminal versions of Jython, it was necessary to refactor the Jython support
code. The Swing panel is implemented using a ReadlinePanel (formerly called ReadlineConsole), while the terminal
console is implemented by subclassing the JLineConsole class found in the Jython package itself.

Because of the different underlying implementations, the Swing panel and terminal implementations may behave
slightly differently. In particular, keyboard interrupts (CTRL-C) are implemented for the Swing panel and cause any
currently existing command to be interrupted. However, CTRL-C may not do this for the terminal console (depending
on the operating system), because of underlying issues with JLineConsole. On Linux, entering CTRL-C on the
terminal console simply aborts the entire program.

Command line options can be passed to models

It is now possible to specify command line model options that are passed to the args argument of a model’s build ()
method. Any command line option appearing after the delimiter option -M will be passed to args (whichis a String
array). For example,

artisynth -model artisynth.demos.tutorial.NetDemo -M -color red

will cause args to have a length of two and contain the strings "-color" and "red". If no model options are specified,
then args will have a length of zero.

Model options can also be specified in Jython, by supplying additional arguments to the 1oadModel command:

>>> loadModel (’'artisynth.demos.tutorial.NetDemo’, ’'-color’, 'red’)

ArtiSynth Update Log 49

getFrame() not needed when creating ControlPanels

When creating ControlPanels, it was once necessary to explicity pack them, make them visible, and set their position
with respect tp the main ArtiSynth frame, using a code fragment in the attach () method that would look like this:

public void attach (DriverInterface driver) ({
ControlPanel panel;
create panal
panel.pack () ;
panel.setVisible (true);

JFrame frame = driver.getFrame ();
java.awt.Point loc = frame.getLocation ();
panel.setlLocation (loc.x + refFrame.getWidth (), loc.y);

root .addControlPanel (panel);

All of these things are now done automatically by the addControlPanel () method, and so the above code can be
simplified to

public void attach (DriverInterface driver) {
ControlPanel panel;
create panal
root .addControlPanel (panel);

Calling driver.getFrame () is now only necessary to place the panel in an unconventional location. Moreover, the
frame can be obtained from the RootModel method getFrame (), and so there is no need to refer to the DriverInterface
structure and the code itself can be moved into the build () method.

Sep 24, 2014

Joint coordinate frames renamed
To simplify documentation and explanation, the coordinate frames F and C associated with joints and rigid body
connectors have been renamed to C and G, respectively.

I am also (slowly) converting the base variable name for rigid body transforms from X to T (with the idea to use X for
more general affine transforms).

Correspondingly, the following methods for joint components have also been renamed as indicated:

getXFA () -> getTCA ()
getCurrentXFA () -> getCurrentTCA ()
getCurrentXFW () -> getCurrentTCW ()
setXFA () -> setTCA ()

Where appropriate, transforms named XFA and XFD have been renamed to XCA and XCD, and some other transforms
beginning with X have had their first letter changed to T.

Sep 2, 2014

Pardiso JNI libraries temporarily reverted

Some problems have been observed with hybrid solves using the MKL 11.1 version of Pardiso that was used to build
libPardisoJNI.1.1. The Pardiso library has been reverted to libPardisoJNI.1.0 until this is resolved.

ArtiSynth Update Log 50

Aug 18, 2014

Pardiso JNI libraries recompiled

The Pardiso JNI libraries have been recompiled, with the new version called PardisoJNI.1.1. You should run bin/updateArtisynthLi!
(or bin\updateArtisynthLibs.bat on Windows) to ensure that it is properly installed.

Java version upgraded to JDK 1.7

The supported Java version has been upgraded to JDK 1.7. Eclipse users should change their compatibility settings
accordingly: Project > Properties > Java Compiler, and then set Compiler compliance level to 1.7. You should also install
and activate a 1.7 JDK if necessary. The default settings in eclipseSettings.zip have been updated.

MacOS native library directory has been renamed

The native library directory on MacOS has been renamed from 1ib/Darwin-x86_64 to 1ib/Mac0S64. You shouldn’t
need to do anything; this directory should be created automatically by updateArtisynthLibs. The old Darwin-x86_64
directory can be deleted.

build() method added to RootModel

A new method, build (), has been added to RootModel as the recommended way to build models. RootModel sub-
classes should override this method to construct themselves:

void build (String[] args) throws IOException {
build your model here

}

The first string in the args list contains the model name. Other strings will (in the future) contain user-supplied
arguments.

The current method of model construction, using a constructor that contains a single String name argument, is still
supported and is used for RootModel subclasses that don’t override build () (ArtiSynth checks this at run time). For
classes that do override build (), ArtiSynth first creates the class using a default no-args constructor, and then calls the
build() method to complete the construction.

Control panels are automatically positioned

By default, when you now add a ControlPanel to a RootModel using addControlPanel (), it is automatically
positioned to the upper right of the main viewer. There is no need to call additional code to do this.

EXTCLASSPATH format has been modified

The format for the EXTCLASSPATH file has been modified. Multiple paths can now be placed on a single line if separated
by the system-specific path separator (’;” for Windows and ’:” for Linux and MacOS). Paths can no longer be placed in
double quotes, and any spaces that appear are incorporated directly into the path name. See the install guide for details.
A template file EXTCLASSPATH. sample has also been created.

Jul 8, 2014

ArtiSynth released under a BSD license

The core ArtiSynth system has been separated from the anatomical models and released under an open source BSD-style
license.

An subset of the anatomical models have been collected into a separate ArtiSynth Models package, which is also
publicly available from the Models section of the ArtiSynth website.

ArtiSynth Update Log 51

Repositories switched to subversion

The ArtiSynth repositories have been switched from CVS to Subversion. The current development version is available
for anonymous checkout from

> svn co https://svn.artisynth.org/svn/artisynth_core/trunk artisynth_core

RootModel moved new workspace package
RootModel has been moved from its previous package, core.modelbase, to a new package core.workspace, along

with a few classes from core.driver. This was done because RootModel is highly dependent on many other core
packages and so is not really part of the "base" at all.

Jun 30, 2014

Some changes have been made in preparation for the upcoming move to Subversion and the separation of ArtiSynth
from the model packages.

Creation of artisynth.demos package

A new super package artisynth.demos has been created, to contain demo models that will be bundled with the main
ArtiSynth distribution. Some of the principal demos from mechdemos, femdemos, and inversedemos have been moved
there:

artisynth.demos.mech <- artisynth.models.mechdemos
artisynth.demos. fem <- artisynth.pmodels.femdemos
artisynth.demos.inverse <- artisynth.models.inversedemos

Note that anatomical models have not been moved.

Reworking of the Model Menu

By default, ArtiSynth now loads a model menu from $ARTISYNTH_HOME/demoMenu.xml, which presents as follows:

Demos contents of the .demoModels file
All Demos every RootModel found in artisynth.demos, arranged hierarchically
Models contents of the .mainModels file

All Models every RootModel found in artisynth.models, arranged hierarchically

As before, the model menu can be overridden by the ~demosMenu <xmlFile> or ~demosFile <txtFile> command
line arguments.

Menu entries that don’t contain at least one RootModel are omitted. This way, the default model menu will still "work"
if the (soon to be separate) artisynth.models package is not present.

New utility class to create FEM control panels

The static methods in FemModel, FemModel3d, FemMuscleModel, and HexTongueModel that were used to create various
control panels for model properties and exciters have been moved into a new utility class artisynth.core.gui.FemControlPanel.

ArtiSynth Update Log 52

Jun 23, 2014

Simplification of save/restore state infrastructure

The infrastructure by which components save and restore their state has been simplified. Components which have state
include dynamic components, for which the state consists of positions and velocities, plus any component which with
additional auxiliary state that implements HasAuxState.

As before, HasAuxState components use getAuxState () and setAuxState () to save and restore their state from a
DataBuffer. However, the DataBuffer has been modified to use put () and get () type operations to store and retrive
information from its double, integer, and Ob ject data buffers. These operations keep track of buffer sizes and offsets,
so the application no longer has to do this. Also, buffers are autosized automatically, so there is no need for an initial
presizing step; this also means that the HasAuxState method increaseAusStateOffsets () has been replaced by the
simpler method skipAuxState ().

As a simple example, getState () and setState () methods to save and restore auxiliary state consisting of a vector
might be implemented like this:

getState (DataBuffer data) {
data.zput (size); // store vector size as an integer
for (int i=0; i<size; i++) {
data.dout (vector.get(i)); // store vector data as doubles

setState (DataBuffer data) {
int size = data.zget (); // get the vector size
vector = new VectorNd (size);
for (int i=0; i<size; i++) {

(

vector.set (i, data.dget()); // restore the vector data

Jun 18, 2014

Reference and dependency handling simplified

Note: the term reference in this update denotes generally components that are refered to by other components, as
opposed to the specific ReferenceComponents and ReferenceLists described in the last update.

There has been a major simplification of the implementation required to support component references. Specifically, it
is no longer necessary to maintain a getDependencies () method for ModelComponents. Instead, the system uses the
reference information supplied the by the ModelComponent methods getHardReferences() and getSoftReferences() to
build whatever dependency information it needs automatically.

This also means that it is no longer necessary to use connectToHierarchy() and disconnectFromHierarchy() to maintain
back-pointers to a component’s references (although these methods are still available for other purposes).

The ArtiSynth Reference Manual has been updated to reflect these changes.

Reference updating for soft references

The old ModelComponent method getReferences () has been replaced with getHardReferences() and getSoftReferences().

Hard references are those that the component cannot do without. When you request a Delete operation from the context
menu, components with hard references to any deleted components will also be deleted (after user confirmation).

Soft references are those that can be removed from a component. When one or more of a component’s soft references
are deleted, the system will call the component’s (new) updateReferences() method to remove the references and update
the component’s internals as required. updateReferences () also contains support for undo operations; more details
are given in the Component References section of the ArtiSynth Reference Manual.

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/maspack/util/DataBuffer.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getHardReferences-java.util.List-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getSoftReferences-java.util.List-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#connectToHierarchy-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#disconnectFromHierarchy-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getHardReferences-java.util.List-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#getSoftReferences-java.util.List-
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ModelComponent.html#updateReferences-boolean-java.util.Deque-
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf

ArtiSynth Update Log 53

Gains now working in ExcitationComponents

ExcitationComponents have been refactored so that gain values for sources are now stored alongside the source
components themselves. In particular, ExcitationComponent now supports the following additional methods,

public void addExcitationSource (ExcitationComponent ex, double gain);
public void setExcitationGain (ExcitationComponent ex, double gain);

public double getExcitationGain (ExcitationComponent ex);

and a special class, ExcitationSourceList, has been created to help implement exitation source lists and keep track of
the gain values. All current implementations of ExcitationComponent have been refactored to use this. Gains are no
longer stored in MuscleExciter; setting a gain value there now simply updates the corresponding source gain value in
the target component.

One major advantage of this is that gains now actually work. Before, they were inoperative.

Jun 6, 2014

MechModel now supports arbitrary composition

MechModels can now accept an arbitrary arrangement of components. That means you can create your lists of particles,
springs, renderables, etc. and group and place them in whatever way is needed. Before simulation begins (or whenever
the model structure is changed), MechModel will recursively traverse the component hierarchy and create its own
internal lists of the physical components it needs to run.

Example: NetDemo

An example of this is shown in models.mechdemos.NetDemo. If you run this and open the navigation panel, you will
see several component lists, including springs and redParticles. Openning springs will reveal two more lists:
greenSprings and blueSprings. The particle list was created with code similar to the following:

// create a list for storing points:
PointList<Particle> redParticles =

new PointList<Particle> (Particle.class, "redParticles");
RenderProps.setPointColor (redParticles, Color.RED);

add points to it

mech.add (redParticles); // add to the mechmodel

The spring lists were created with code like this:

// create a list for storing the green springs:
RenderableComponentList <AxialSpring> greenSprings =
new RenderableComponentList <AxialSpring> (
AxialSpring.class, "greenSprings");
RenderProps.setlineColor (greenSprings, new Color(0f, 0.5f, 0f));

add springs to it

create another list for the blue springs the same way
// create a list to hold both greenSprings and blueSprings:
ComponentList <ModelComponent > springs =

new ComponentList<ModelComponent >(ModelComponent .class, "springs");

springs.add (greenSprings);
springs.add (blueSprings);

mech.add (springs); // add to the mechmodel

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/mechmodels/ExcitationComponent.html

ArtiSynth Update Log 54

Component list types

Lists of any model component type can be created using the generic class ComponentList. For example,

ComponentList<Particle> plist =
new ComponentList<Particle> (Particle.class, "parts"));

ComponentlList<Frame> frames =
new ComponentList<Frame> (Frame.class, "frames"));

creates a list for particles and a list for frames. The constructor takes two arguments: the class type associated with the
list, and the name for this list.

In addition to ComponentList, there are several "specialty" lists:

RenderableComponentList A subclass of ComponentList, that has its own set of render properties which can be
inherited by its children. This can be useful for compartmentalizing render behavior. Note that it is not necessary
to store renderable components in a RenderableComponentList; components stored in a ComponentList will
be rendered too.

PointList A RenderableComponentList that is optimized for rendering points, and also contains it’s own pointDamping
property that can be inherited by its children.

PointSpringList A RenderableComponentList designed for storing point-based springs. It contains a material
property that specifies a default axial material that can be used by it’s children.

AxialSpringList A PointSpringList thatis optimized for rendering two-point axial springs.

Custom lists and lists of lists

If necessary, it is relatively easy to define one’s own customized list by subclassing one of the other list types. One of the
main reasons for doing so, as suggested above, is to supply default properties to be inherited by the list’s descendents.

As seen in the NetDemo example above, component lists can also grouped under other lists, which allows model compo-
nents to be arranged in any way necessary. Generally ComponentList<ModelComponent> or RenderableComponentList<ModelComg
are the best classes to use for groupings.

Reference containment

MechModel, along with other classes derived from Mode1Base, enforces reference containment. That means that all
components referenced by components within a MechModel must themselves be contained within the MechModel.
This condition is checked whenever a component is added directly to a MechModel or one of its ancestors. This means
that the components must be added to the MechModel in an order that ensures any referenced components are already
present. For example, in the NetDemo above, adding the particle list after the spring list would generate an error.

Legacy component lists

For backward compatibility, the existing component lists in MechModel have been left in place. These include
particles, rigidBodies, frameMarkers, etc. The reason these cannot be immediately removed is because there

are software methods (such as addParticle ()) that assume their existence. These components are created at construc-
tion time and added to MechModel using addFixed () instead of add (), which marks them as fixed, indicating that they
should not be removed.

We may try to find some way to reduce the footprint of these legacy component lists in the future. In the meantime,
to reduce their visibility, the navigation panel no longer shows empty composite components by default (although it is
possible to override this; see below).

Other Model components

Other models, in particular RootModel and FemModel, inherit from ModelBase and so also allow the introduction of
application specific components. However, at the present time, these components won’t do anything, other than be
rendered in the viewer if they are Renderable.

ArtiSynth Update Log 55

New implementation class for CompositeComponents

Coincident with the above changes, the internal implementation of composite components has been streamlined. In
particular, ComponentListImpl is available as an internal implementation class for constructing instances of either
CompositeComponent or MutableCompositeComponent (the latter is a composite component, such as ComponentList,
that can be modified by the application. ComponentListImpl provides most of the implementation methods needed for
a mutable component list, which can be exposed in the client class using delegate methods. Components implementing
only CompositeComponent may choose to expose only some of these methods.

Details on CompositeComponent and MutableCompositeComponent can be found in the ArtiSynth Reference Manual.

Enforcement of hame uniqueness

The ability for applications to create arbitrary component arrangements, along with the default hiding of empty
components in the navigation panel, makes it important to ensure that any name given to a component is unique among
its siblings in the hierarchy. Otherwise, ambiguities could arise in component and property paths, and models may not
save and load correctly from persistent storage.

To enforce this, component name validation has been extended to ensure that the component’s parent does not already
have another child with the same name.

This may cause the loading of some existing models to fail. The proper solution to this problem is to fix the name
uniqueness problem within the model. However, for legacy purposes, name validation can be disabled by setting
ModelComponentBase.enforceUniqueNames to false.

As before, components do not need to have names. Paths for unnamed components can still be generated using the
component’s number, which is assigned automatically when it is attached to a parent and is unique.

Write/scan has been reimplemented

Allowing an application to specify components in an arbitrary arrangement has impacted how models can be written
to and read from persistent storage using write () and scan (). In particular, the scanning of component references
becomes more difficult, because when a component’s scan () method is called, some or all of the components that it
references may not yet exist.

The solution to this problem has been to supplement the scanning process with a second post-scan step. Information
which cannot be resolved on the first scan pass is stored in a special "token queue", which is then processed later in
a postscan () method. The details are beyond the scope of this update. However, comprehensive documentation is
available in the ArtiSynth Reference Manual.

In addition to adding postscan (), the scan/write code was significantly rewritten, streamlined, and made more uniform.
Details are again provided in the ArtiSynth Reference Manual.

Use of ScanWriteUtils

A new utility class, modelbase.ScanWriteUtils, has been added that provides a large number of methods to assist in the
scanning and writing of files.

"pokes” attribute removed from NumericlnputProbe

As part of the overhaul of write/scan, the legacy attribute name pokes, which was a synonym for props, has been
removed. The change has been made in all . art files that are checked in. However, if you have external .art files
containing input probe definitions, you may want to check if they contain the word pokes, and if so, replace this with
props. The command $ARTISYNTH_HOME/bin/gsubst can be used for this purpose:

> gsubst pokes props *.art

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ScanWriteUtils.html

ArtiSynth Update Log 56

Reverting to the old scan method

If there is any problem with the new scan method, you can revert to the old (pre-postscan) method by setting
modelbase.ScanWriteUtils.useNewScan to false.

Reference lists implemented

A special type of component, ReferenceComponent, has been created, which simply provides a reference to another
component. This is used to implement ReferenceList, which provides a collection of references to other components.

Reference lists are intended to allow an application to group together components in ways that are independent of the
main component hierarchy. One of their intended purposes is for component navigation and interaction, and they can
be thought of as "predefined selection lists" that allow components to be grouped together for convenient inspection or
editing of common properties.

Interaction in the navigation panel

A Referencelist can be expanded in the navigation panel like any other composite component. However, the names
that appear for its (ReferenceComponent) children are, by default, the path names for the components that they refer to,
preceded by a "->".

Selecting a reference component in the navigation panel will, by default, cause the selection of both the reference
component and the component that it refers to.

Interaction with the context menu

The behavior of the right-click context menu accommodates the selection of reference components and lists in the
following way:

Reference lists If the current selection consists entirely of reference lists, then the context menu will contain a special
section entitled For reference list components:, which provides editing options for all the components referred
to by all the lists. The (small number) of properties of the reference lists themselves can be editing through the
separate menu item Edit reference list properties

Reference components When reference components are selected, the editing options provided in the context menu
apply to the components that are referenced, as opposed to the reference components themselves. Editing options
for the reference components themselves appear as separate menu items, such as Edit reference properties ... or
Delete reference(s).

Example: NetDemo

The NetDemo example contains two reference lists, middleGreenSprings and middleBlueSprings, that contain
references to the green and blue springs running down the center of the net. By selecting one of the reference lists and
then choosing Editing properties ..., a property panel will appear that allows editing of their common properties. This
includes changing their excitation levels (the springs are actually simple muscle components), which will cause a flexing
behavior in the net as the demo is run.

Enhancements to the navigation panel

Visibility control for empty components
By default, empty composite components are no longer displayed in the naviagtion panel. This behavior can be changed
by selecting Show empty components in navpanel under the View menu.

The visibility of components can also be individually controlled through their (new) navpanelVisibility property. This can
be set to one of three values:

https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ReferenceComponent.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/modelbase/ReferenceList.html

ArtiSynth Update Log 57

Hidden Component will not be displayed in the navigation panel.

Visible Component will be displayed in the navigation panel, unless overridden by a policy such as not displaying
empty components.

Always Component will always be displayed in the navigation panel.

Note that currently only CompositeComponent exposes navpanelVisibility for property panel editing.

Alphabetical ordering

It is now possible to arrange for the child nodes of a composite component to be ordered alphabetically by name. This is
done individually on a per-component basis, by setting their navpanelDisplay property. This currently has two values:

Normal Named children are displayed in the order in which they appear in the composite component.

Alphabetic Named children are displayed in alphabetical order by name. For unnamed reference components, the path
name of the referenced component is used in place of the name.

Note that in both cases, unnamed components are still displayed after named components. ComponentLists expose the
navpanelDisplay property for property panel editing.

Apr 27,2014

CollisionManager added to MechModel

MechModel has been refactored to include a CollisionManager (as a child component) that manages the collision
interactions between its colliable bodies. The existing MechModel methods for doing this, namely:

setDefaultCollisionBehavior (enabled, mu);
setDefaultCollisionBehavior (typeA, typeB, behavior);
setDefaultCollisionBehavior (typeA, typeB, enabled, mu);
CollisionBehavior getDefaultCollisionBehavior (typeA, typeB);

enabled);

setCollisionBehavior b,

a, b, enabled, mu);
b
b

setCollisionBehavior
setCollisionBehavior
getCollisionBehavior

, behavior);
)i
now delegate their functionality to the collision manager.

The collision manager can be obtained using the MechModel method

getCollisionManager () ;

Collision rendering should now be controlled by controlling the render properties of the collision manager, instead of the
(now removed) collision handler list that was returned by collisionHandlers (). That means, for example, that

Renderable collisions = myJawModel.collisionHandlers () ;
RenderProps.setVisible (collisions, true);

should be changed to

Renderable collisions = myJawModel.getCollisionManager () ;
RenderProps.setVisible (collisions, true);

Some collision related properties formerly associated with MechModel have now been moved to the collision manager,
and should be accessed there instead. These include:

ArtiSynth Update Log 58

contactNormalLen
collisionPointTol
collisionCompliance
collisionDamping

The collision manager also contains its own inherited property penetrationTol, which is also found in MechModel.
Setting this value in MechModel will cause it to be propagated to other components besides the collision manager
(such as RigidBodyConnectors). If not set explicitly, MechModel will try to compute an appropriate default value for
penetrationTol based on the estimated radius of its components. It is also possible to explicitly set penetrationTol
to this default value by specifying a value of -1.

Apr 18, 2014

MeshBody merged with MeshComponent

The class mechmodels.MeshBody has been removed and merged into mechmodels.MeshComponent. Both classes
represented objects whose dominant feature was a mesh (either fixed or variable), as defined by an instance of
maspack.geometry.MeshBase, so having two such classes was redundant.

Skin meshes extended to include FEM models

The SkinMesh class has been refactored and extended to include finite element models (class FemModel3d) in addition
to Frames. It has also been moved to femmodels because of its dependency on FEMs.

SkinMesh works by assigning a subclass of PointAttachment, called PointSkinAttachment, to each mesh vertex.
This attachment controls the vertex position as a weighted sum of influences from various master components, which
may include Frames, FemNode3d, arbitrary Particles, and the vertex base position. Implementing skinning in this way
allows for the possibility of attaching dynamic points or markers to a skin mesh, where they may be used to propogate
forces back onto the master components controlling the shape.

Full details on how to work with the new SkinMesh class are given in its javadoc header.

FemMeshComponent renamed to FemMesh

FemMeshComponent has been renamed to FemMesh and redesigned to use attachments to control its vertices. Unlike
SkinMesh, it uses the existing PointParticleAttachment and PointFem3dAttachment classes.

Both SkinMesh and FemMesh are now subclasses of SkinMeshBase, so the overall type hierarchy looks like:

MeshComponent
SkinMeshBase
SkinMesh
FemMesh

Generic readers and writers added for meshes

Two new classes, GenericMeshReader and GenericMeshWriter, have been added to maspack.geometry.io. These
allow the reading and writing of meshes, using the file extension to determine the actual mesh format and which type of
specific reader or writer is needed. Currently supported formats include .obj, .off, .ply, and .st1l. Unrecognized file
extensions will result in an error being thrown. To read a mesh from an arbitrary file, one can use either

GenericReader reader = new GenericReader (fileName) ;
MeshBase mesh = reader.readMesh () ;
or the static convenience method

MeshBase mesh = GenericReader.readMesh (fileName) ;

ArtiSynth Update Log 59

The mesh that is returned is either a PolygonalMesh, PointMesh, or LineMesh depending on the contents of the file.
To ensure reading of a specific mesh type, one can pass an empty mesh of the desired type to the companion method
readMesh (mesh),

GenericReader reader = new GenericReader (fileName) ;
MeshBase mesh = reader.readMesh (new PolygonalMesh ());

or use the corresponding static method:

MeshBase mesh = GenericReader.readMesh (fileName, new PointMesh ());

If the reader cannot parse the file into an instance of the specified mesh, an exception will be thrown.
The interface for writing a mesh is similar:
GenericWriter writer = new GenericWriter (fileName);
writer.writeMesh (mesh) ;
or

GenericWriter . .writeMesh (fileName, mesh);

One reason for explicitly creating a writer is to obtain control over the output formating. For example, the method
setFormat (string) takesa printf () style string used to format floating point numbers in ASCII output:

GenericWriter writer = new GenericWriter (fileName) ;
write.setFormat ("%8.3f");

writer.writeMesh (mesh) ;

Another method, setFormat (reader), takes a generic reader as an argument and sets the output format to match that
of the file that the reader most recently read. This is useful for formats like .ply, which can be either ASCII or several
flavours of binary, and one would like to read in a mesh, transform it, and write it out to another file using the same
format as the original input file:

GenericReader reader = new GenericReader (inFileName) ;
MeshBase mesh = reader.read ();

transform the mesh in some way
GenericWriter writer = new GenericWriter (outFileName) ;
writer.setFormat (reader);
writer.writeMesh (mesh) ;

Memory efficiency improved for meshes

A few rarely-used items have been removed from the Face and HalfEdge data structures used for polygonal meshes:

Centroids in faces: getCentroid() has been removed from Face; instead, use computeCentroid (pos) to compute
the centroid.

Unit vector in half-edges: getU () has been removed from HalfEdge; instead, use computeUnitVec (u) or
computeEdgeUnitVec (u) (see the documentation for the difference).

Surprisingly, these two changes have reduced the typical memory footprint for a triangular mesh from about 1050
bytes/vertex to about 650 bytes/vertex.

Mar 25, 2014

Upgrade to JOGL 2

The version of JOGL (Java OpenGL) used by ArtiSynth has been upgraded to JOGL 2. Because this involves some
changes in jar files and native libraries, the upgrade procedure is a bit more complex:

ArtiSynth Update Log 60

1. Do a CVS update as usual, but do not clean or recompile.

2. Do an explicit library update. You can do this from the command line by running $ARTISYNTH_HOME/bin/updateArtisynthLik
(on Linux and MacOS), or $ARTISYNTH_HOME\bin\updateArtisynthLibs.bat (on Windows). You can also
update by running an ArtiSynth program with the —updateLibs command line option.

3. Remove the jar files jogl. jar and gluegen-rt. jar from SARTISYNTH_HOME/lib.
4. If you are using Eclipse, you will also need to explicitly change the JOGL jar files in the build path:

(a) Navigate to Project > Properties > Java Build Path, and select the Libraries tab.

(b) Remove jogl.jar and gluegen-rt. jar. (Since they were removed in the last step, these should be
indicated as missing.)

(c) On the right side, choose Add JARSs, navigate to artisynth_2_0/1ib, select jogl2-all. jar and
jogl2-gluegen-rt. jar, and choose OK.

5. Refresh, clean and recompile ArtiSynth as usual.

If you are authoring your own rendering code, you need to note that JOGL 2 introduces some minor syntax changes into
the API. The main change is that the class GL has been replaced by GL2. That means that code fragments like

import javax.media.opengl.GL;

GL gl = renderer.getGL();

gl.glBegin (GL.GL_TRIANGLES) ;
should be changed to

import javax.media.opengl.GL2;
GL2 gl = renderer.getGL2();
gl.glBegin (GL2.GL_TRIANGLES);

Flags argument added to render methods

The render () method in GLRenderable has been extended to include a f1ags argument:

void render (GLRenderer renderer, int flags);

This contains a number of flags that may be used to control different aspects of an object’s rendering. The flags are
defined in GLRenderer, and adherance to them is recommended but not mandatory. Current flag definitions include:
SELECTED Requests that the object be rendered as though it is selected, whether or not it actually is selected;
VERTEX_COLORING For meshes, requests that rendering should be done using explicit colors set at the vertices;

HSV_COLOR_INTERPOLATION Requests that HSV color interpolation should be used when the VERTEX_COLORING
flag is set;

SORT_FACES For polygonal meshes, requests that faces should be sorted in Z direction order. This is to enable better
rendering of transparency;

CLEAR_MESH_DISPLAY_LISTS For meshes, requests that display lists be cleared.

A render () method with a flags argument was available previously through the interface GLRenderableExtended,
which has now been removed.

ArtiSynth Update Log 61

Mar 24, 2014

Explicit references to Youngs modulus and Poissons ratio removed from FemModel

The legacy methods:

setYoungsModulus (E)
setPoissonsRatio (nu)
setElasticity (E, nu)
setWarping (enable)
getYoungsModulus ()
getPoissonsRatio ()
getWarping ()

have been removed from FemModel. Instead, one should now use:
setMaterial (mat)
getMaterial ()

where mat is an appropriate material. A convenience method,

setMaterial (E, nu, corotated)

has been added; this is equivalent to

setMaterial (new LinearMaterial (E,nu, corotated));

Where necessary, existing calls to setYoungsModulus () and setPoissonsRatio () have been replaced with calls to
setLinearMaterial ().

Feb 5, 2014

The MeshViewer application in maspack.apps now has all the grid and view controls of the main ArtiSynth viewer. It
is intended to be used as a command line tool to allow one to quickly view meshes whose file names are specified on the
command line. For example, the command

java maspack.apps.MeshViewer mesh.ob’

will display the mesh in the file mesh.obj. Multiple meshes can also be specified. By default, multiple meshes will be
displayed together, unless the option —queue is given, as in:

java maspack.apps.MeshViewer -queue meshl.obj mesh2.obj mesh3.o0bj

This will cause the viewer to display each mesh one at a time, with the user able to move back and forth through the
"queue" using the <space> and <backspace> keys. One can also choose meshes from a menu obtained by choosing File
> Show mesh selector.

The option ~help can be used to find out about other options:
java maspack.apps.MeshViewer -help

The enhancement of MeshViewer was enabled by a refactoring which moved viewer control infrastructure from
artisynth.core.driver into maspack.widgets. Aspects of this refactoring which may impact user model code
include:

* ViewerController no longer exists. Applications which controlled viewer properties through this object should now
control the viewer directly.

e The AxialView enumerated type of ViewerController, which consisted of Default, Left, Right, etc., has been
replaced with the enumerated type maspack.matrix.AxisAlignedRotation, which specifies all of the 24 possible
axis-aligned rotations using names such as X_Y, Y_7, X_NZ, etc. These specify which axes of the rotated frame lie
along the x and y axes of the base frame, with X, Y, Z, NX, NY, and NZ denoting the positive and negative X, y, and z
directions.

* For brevity, maspack.widgets.GuiUtilities has been renamed to maspack.widgets.GuiUtils.

ArtiSynth Update Log 62

Jan 28, 2014

Some improvements have been made to the 3D dragger tools and to the viewer grid.

* By default, when a dragger is initialized for an object with a coordinate frame (such as a rigid body), its axes are
aligned with that coordinate frame (see Sep 26, 2013). However, it is now possible to request that a dragger’s axes are
always initialized to world coordinates. To do this, choose Init draggers in world coordinates in the ArtiSynth Settings
menu.

* The CTRL modifier key (or the ALT key on some systems) can be used to decouple dragger motion for the object(s) it is
controlling. This allows its position and orientation relative to the selected objects to be changed. This is particularly
useful for changing the orientation of the scaling directions in the scaling tool (which now contains rotatory drag
components for this purpose).

¢ For the translation tool, if the viewer grid is turned on and the grid axes are aligned with the tool axes, then con-
strained motions (selected using the SHIFT modifier key) will cause the dragger motions to align exactly with the grid
cell corners. (For motions outside the grid plane, the grid is artifically extended into three dimensions.)

e The automatic resizing of grids has been improved to provide a more visually useful set of cell divisions. Major cells
may now be divided into 5 or 10 subdivisions, and major cells sizes may be set to either 10X or 5 x 10%, for some
integer k.

 Grid sizes can also be set explicity by the user by simply typing the desired ratio S/N into the Grid: display box,
where S is the major cell size and N is the number of cell divisions. S can be any non-negative value and N can be any
positive integer. Specifying an explicit value will disable auto-sizing, unless S is specified as O or the special value * is
entered, both of which will reenable auto-sizing. Auto-sizing can also be enabled or disabled by right clicking on the
Grid: label and choosing Turn auto-sizing on or Turn auto-sizing off, as appropriate.

 Grid properties have been enhanced for greater control over the grid appearance. As before, to set properties, right
click on the Grid: label and choose Set properties.

The user interface documentation has been updated for these changes.

Jan 23, 2014

Package reorganization is now largely completed on maspack. Some of the most prominent changes include:

* Moving stand-alone and GUI-dependent applications (like MeshViewer) into maspack.apps;
* Moving much of the GUI support code from artisynth.gui into maspack.widgets;

 Rationalizing the mesh I/O code and moving it all into maspack.geometry.io.

A major goal of this effort has been to reduce coupling between packages, and to try and ensure that package depen-
denices flow one-way. This in turn means that packages can be arranged in a (not necessarily unique) “dependency
stack”. Except for few dependencies between maspack.util and maspack.matrix, the maspack dependency stack,
from least to most dependent, now looks like this (where packages between lines are not dependent on each other):

maspack.util
maspack.matrix
maspack.graph
maspack.fileutil
maspack.properties
maspack.interpolation
maspack.function
maspack.spatialmotion

maspack.solvers

ArtiSynth Update Log 63

maspack.collision
maspack.widgets
maspack.sph
maspack.fluid
maspack.matlab

maspack.apps

Dec 1, 2013

Refactoring is now mostly finished on the bounding volume hierarchy code in maspack.geometry.

The main change in this update is the removal of the getObbtree () method in PolygonalMesh and its replacement
with getBVTree (). The latter method will return a bounding volume hierarchy that can be used for queries and
intersections, but it won’t necessarily be an OBBTree. At present, it will be an OBBTree if the mesh is fixed, and an
AABBTree (which is easier to update) otherwise. Also, the various 231 bounding volume classes in maspack.geometry
have been removed and their functionality has been taken over by the BVTree classes.

Other changes include:

* The class OBBNode has been merged into 0BB, and AABBNode has been renamed to AABB.

* BVHierarchy has been renamed to BVTree.

Nov 26, 2013

A major refactoring is in progress on the code in maspack.geometry that handles bounding volume hierarchies and
the associated spatial query and intersection code. The purpose of this is to unify the different bounding volume classes
and ensure that spatial queries will work properly with oriented bounding box (OOB) and axis-aligned bounding box
(AABB) hierarchies.

In particular, the query and intersection methods that have been previously available through the OBBTree class have
been moved into the classes BVFeatureQuery and BVIntersector. BVFeatureQuery provides

nearestFaceToPoint (nearPnt, uv, mesh, pnt);

nearestFaceAlongRay (nearPnt, duv, mesh, origin, dir);
nearestFaceAlongLine (nearPnt, duv, mesh, origin, dir, min, max);
nearestVertexToPoint (mesh, pnt);

nearestEdgeToPoint (nearPnt, sval, mesh, pnt);

isInsideOrientedMesh (mesh, pnt, tol);
isInsideMesh (mesh, pnt, tol);

while BVIntersector provides

intersectMeshMesh (intersections, meshl, mesh2);
intersectMeshPlane (intersections, mesh, plane);

These methods obtain the bounding volume hierarchy from the mesh itself. Alternate forms of the methods allow the
application to provide the bounding volume hierachy directly. Some arguments are optional and can be specified as
null, such as nearPnt, uv, and duv that return nearest points and their barycentric coordinates. Full details are given in
the Javadocs for BVvFeatureQuery and BVIntersector.

For “point inside mesh” queries, isInsideOrientedMesh () assumes that the mesh is oriented so that all face nor-
mals point outward, and works by investigating the nearest face, edge, or vertex to the point. An alternate method,
isInsideMesh (), does not assume that the faces are oriented and works by the well-known method of counting the

ArtiSynth Update Log 64

intersections of a ray cast from the point. Because it uses local feature information, isInsideOrientedMesh () does not
require that the mesh is actually closed, and is also faster than isInsideOrientedMesh (), but is also potentially less
robust.

Somes examples of using these query methods are:

double inf = Double.POSITIVE_INFINITY;

Point3d pnt; // point for the query
Vector3d dir; // ray or line direction
Point3d nearPnt; // nearest point on the face

PolygonalMesh mesh;

// find the nearest face to pnt, along with the nearest point:
BVFeatureQuery query = new BVFeatureQuery () ;
Face f = query.nearestFaceToPoint (nearPnt, null, mesh, pnt);

// find the nearest face and point along a line passing through pnt
// with direction dir:
Face f = query.nearestFaceAlongLine (

nearPnt, null, mesh, pnt, dir, -inf, inf);

// check if a point is inside a mesh, within a tolerance of 1le-10:
boolean inside = query.isInsideMesh (mesh, pnt, 1le-10);

// check if a point is inside a mesh, within a default tolerance:
boolean inside = query.isInsideMesh (mesh, pnt, -1);

Other changes include:

e The class PolygonalMeshIntersector has been removed and its methods incorporated into BVIntersector;

* IndexedPointSource and Intersector have been renamed to Boundable and TriangleIntersector, respec-
tively.

Oct 23, 2013

A new shading mode has just been added to the shading properties of RenderProps objects:
RenderProps.Shading.NONE
This will cause shading and lighting to be disabled, and the object to be rendered completely flat using the diffuse color

of the current material.

To ensure that this shading mode is respected, application rendering code that used to call renderer.setMaterial ()
like this:

renderer.setMaterial (material, selecting);
render something

should now call renderer.setMaterialAndShading () and renderer.restoreShading (), like this:

renderer.setMaterialAndShading (renderProps, mat, selecting);
render something
renderer.restoreShading (renderProps);

Likewise, renderer.updateMaterial () now takes a RenderProps object as its leading argument, so that calls that
used to look like this:

renderer.updateMaterial (material, selecting);

now look like this:

renderer.updateMaterial (renderProps, material, selecting);

ArtiSynth Update Log 65

Oct 9, 2013

The viewer selection mechanism has been reimplemented. This was done because the original mechanism, based on the
GL_SELECT render mode, has been deprecated, and has also been reported as being slow on some machines.

The new mechanism uses both GL occlusion queries and color-based selection (where each object is rendered in a
unique color in an offscreen buffer). At present, the former is used for drag selection and the latter is used for single
selection. Internally, selection is now implemented by a maspack.render.GLSelector class, with the subclasses
GLOcclusionSelector and GLColorSelector providing occlusion query and color-based selection, respectively.
Another subclass, GLSelectSelector, implements the old GL_SELECT mechanism.

If desired, the old GL_SELECT mechanism can be reenabled by calling the static method
GLViewer.enableGLSelectSelection (boolean enable)

It can also be enabled using Enable GL_SELECT selection in the Settings menu.

Within an object’s render () method, the selection interface has been changed, with calls to glLoadName (),

gPushName (), and glPopName () being (approximately) replaced by the GLRenderer renderer methods beginSelectionQuery (),
endSelectionQuery (), beginSubSelection (), and endSubSelection (). Users who work with selection code in-

side render methods should consult the updated “Object Selection” documentation in the Maspack Reference Manual.

Do not set colors or lighting when the renderer is selecting!

Because part of the new selection mechanism is based on setting a unique color for each object, it is important
that application rendering code does not do anything that affects pixel coloring while selection is in progress. In
particular, it is important to not set colors, or enable GL_LIGHTING, GL_TEXTURE, GL_FOG, or GL_DITHER.

One way to adhear to these restrictions is to conditionalize the relevant calls on whether or not renderer.isSelecting ()
returns true:

if (!renderer.isSelecting()) {
gl.glColor (1f, 0.5f, 0f);

A more compact option, for colors and lighting control, is to use the following GLRenderer methods:

setLightingEnabled (boolean enable);

boolean isLightingEnabled () ;

setColor (float r, float g, float b);

setColor (float r, float g, float b, float a);
setColor (float[] rgbx);

Sep 26, 2013

A few features have been added to the user interace:

Centering the viewer on selected objects
When one or more renderable objects are selected, the option
Center view on selection

appearing under the View menu will center the viewer on the selected object(s).

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/maspack.pdf

ArtiSynth Update Log 66

Adding model-specific menu items

It is now possible to create menu items specify to a particular RootModel subclass. This is done by overriding the
RootModel method

Object[] getModelMenultems ();

to return a list of menu objects. These objects will then be added to a Model menu appearing in the main ArtiSynth
toolbar. Menu objects may include anything that can be added to a JMenu, including javax.swing.JMenultem,
java.awt.Component, and String. Menu items, in particular, can be created using the RootModel convenience
method

JMenuItem makeMenultem (String cmd, String toolTip);

Menu command items should specify the current RootModel as an action listener, and implementation of these
commands should be effected by overriding the RootModel method

void actionPerformed (ActionEvent event);

Draggers now track object poses

Dragger fixtures will now adjust their orientation to fit the current orientation of objects that have poses (i.e., position
and orientation). Such objects are identified by the interface HasPose which implements the method

void getPose (RigidTransform3d X);

to obtain the pose information. At present, objects having pose information include Frame, RigidBodyConnector, and
their subclasses.

May 31, 2013

A number of changes have been made to the class maspack.geometry.MeshFactory thatis used to create polygonal
meshes.

MeshFactory methods now create triangular meshes by default

A large problem in the past has been that many of the mesh creation methods did not return triangular meshes. Instead,

they returned meshes containing quads. This led to difficulties because the ArtiSynth collision code relies on triangular

meshes. In order to obtain triangular meshes, it was necessary to either call a method with Triangular explicitly in the
name (as in createTriangularBox), or explicitly triangulate the mesh using the triangulate () method.

The MeshFactory methods have now been renamed so that triangular meshes are created by default, and meshes which
contain quads have Quad in the name. For example, the methods

createBox (wx, wy, wz); // create a quad-based box mesh
createTriangularBox (wx, wy, wz); // create a triangle-based box mesh

have been renamed as

createQuadBox (wx, wy, wWz); // create a quad-based box mesh
createBox (wx, wy, wz); // create a triangle-based box mesh

ArtiSynth Update Log 67

Methods for adding components to a mesh

MeshFactory now contains a number of methods that can be used to build meshes by piecing together planar or curved
components:

addQuadRectangle (mesh, wx, wy, nx, ny, XLM, vtxMap)

addQuadAnnularSector (mesh, r0, rl, ang, nr, nang, XLM, vtxMap)
addQuadCylindricalSection (mesh, r, h, ang, nh, nang, outward, XLM, vtxMap)
addQuadSphericalSection (mesh, r, maxthe, maxphim nthem nphi, XLM, vtxMap)

These take an existing mesh and add new faces to from a rectangle, annular sector, or portion of a cylinder or sphere. By
combining these in different ways, more complex mesh geometries can be created. When creating faces, the methods
first check a vertex map (argument vtxMap) to see if any of the required vertices are already present in the mesh.
Vertices that are not present are created on demand. The argument XLM provides a transform thats maps from the local
frame in which the component is defined to the mesh coordinate frame.

Methods for CSG mesh construction

Antonio has added some methods to MeshFactory for building meshes using CSG (constructive solid geometry). These
are adapted from Evan Wallace’s CSG Library. The main methods are:

getSubtraction (meshl, mesh2)
getUnion (meshl, mesh2)
getIntersection (meshl, mesh2)

New method for extruding FEM models from surfaces

A new method has been added to artisynth.core.femmodels.FemFactory for extruding thin FEM models from a
polygonal mesh:

createHexWedgeExtrusion (model, n, d, surface)

This creates an FEM model by extruding either hex or wedge elements from a surface mesh. The mesh contains

n layers, each of depth d. Quads and triangles are extruded as hexes and wedges, respectively. Also, if the surface
mesh is the current surface mesh for an FEM model, then any triangle pairs corresponding to a quad element face are
collectively extruded as a hex.

December 12, 2012

Materials added to FrameSprings

The force behavior of a FrameSpring is now defined by a special material which is a subclass of FrameMaterial. This
formulation is identical to that of using AxialMaterial to define the force behavior of AxialSpring components, and
will facilitate the introduction of new and more complex frame spring behaviors.

At present, two types of FrameMaterials have been implemented:

RotAxisFrameMaterial

Implements the behavior previously associated with FrameSprings: a translational force along the displacement
between frame origins, a torque about the rotation axis proportional to the rotation angle, and damping forces
proportional to the relative velocity between the frames. In addition, different translational stiffness and damping
terms can be specified for each axis.

LinearFrameMaterial

Implements a behavior which is identical to RotAxisFrameMaterial for velocity and translational displacement.
Rotational displacement results in restoring torques along each of the x, y, and z axes that, for small displace-
ments, are approximately proportional to the angular displacement about each axis. Different stiffnesses can be
specified for each axis.

ArtiSynth Update Log 68

The properties stiffness, rotaryStiffness, damping, and rotaryDamping, along with their accessors, have been
removed from FrameSpring. Instead, the force behavior is now controlled through the material property, which can
be set interactively using a property panel for the spring. In code, the fragment

FrameSpring spring = new FrameSpring ("springl");

spring.setStiffness (10.0);

spring.setRotaryStiffness (100.0);

is replaced by

FrameSpring spring = new FrameSpring ("springl");
spring.setMaterial (new RotAxisFrameMaterial (10.0, 100.0, 0.0, 0.0));

The required substitutions have been made for all checked-in code.

A custom frame material can be created by subclassing FrameMaterial, and requires implementing three methods:

computeF()

Computes the forces as a function of the relative displacement and velocity between the two primary frames
associated with the spring;

computeDFdq()

Computes the positional Jacobian giving the change in force resulting from differential changes in the displace-
ment between the two primary frames;

computeDFdu()

Computes the velocity Jacobian giving the change in force resulting from differential changes in the velocities
between the two primary frames.

December 2, 2012

Automatic downloading of library files

The latest update to ArtiSynth features automatic downloading of library files from the ArtiSynth webserver. This
reduces (significantly, in some cases) the size of the core distribution. The downloading features uses Antonio’s new
FileManager utility, described below.

After you perform the most recent update, you will notice that most of the files in $ARTISYNTH_HOME/1ib have been
removed. You will now need to run a standalone command, updateArtisynthLibs, located in SARTISYNTH_HOME /bin,
which will download all the required . jar files and native libraries from the webserver. On Windows systems, you can
execute updateArtisynthLibs.bat instead. For more details on this, see Section 6.2, Downloading Libraries, of the
online installation guide.

In the future, you will not usually need to run updateArtisynthLibs when you update the software; ArtiSynth itself
will be able to check for most required libraries and download them automatically. Also, if you specify the command
line argument —updateLibs to ArtiSynth, it will not only ensure that the necessary libraries are present, but that they
also match the most recent versions on the server (updateArtisynthLibs does this by default).

Situations where it typically will be necessary to explicitly run updateArtisynthLibs include

* whenever you do a fresh check out of the distribution

* whenever an update adds a new . jar file.

ArtiSynth libraries are stored under $ARTISYNTH_HOME/1ib, with the . jar files being placed in the 1ib directory

and the native libraries in an appropriate subdirectory (e.g., Linux64 or Windows) which is created if necessary. The
required libraries are listed in the file SARTISYNTH_HOME/1ib/LIBRARIES. This file is checked into the repository, so
the system can always determine what libraries are needed for a particular checkout version. Some library files are as-
sociated with version numbers, which can be indicated in a system-independent way. For details, see the documentation
for the new class maspack.util.NativeLibraryManager.

ArtiSynth Update Log 69

Updates to the Pardiso solver

The PardisoSolver class has been updated to expose various parameters and results relating to the solve process.
Some of the more significant of these include:

setReorderMethod(method)
Allows the fill-in reduction reorder method to be set to either AMD, METIS, or METIS_PARALLEL.

setMaxRefinementSteps(n)

Sets the maximum number of iterative refinement steps that should be performed to improve the accuracy of the
solution.

setPivotPerturbation(n)
Sets the size of the perturbation that should be used to resolve zero pivots.

getNumNonZerosInFactors()

Returns the number of non-zeros in the factorization.

getNumNegEigenvalues()
After factorization, returns the number of negative eigenvalues for a symmetric indefinite matrix.

getNumPosEigenvalues()

After factorization, returns the number of positive eigenvalues for a symmetric indefinite matrix.

getNumPerturbedPivots()
After factorization, returns the number of pivot perturbations that were applied, if any.

Note also that factor (Matrix) has been renamed to analyzeAndFactor (Matrix), and the factorAndSolve ()
methods have been renamed to autoFactorAndSolve ().

FileManager

Antonio has implemented a new class called maspack.fileutil.FileManager that allows an application to locate a
local system file, and if the file is not there, try to download it from a specified URI. The idea is to use this to retrieve
large data files from a server, without having to check them into the ArtiSynth version control system. Usage can be
illustrated through a few examples:

FileManager grabber = new FileManager ();
File file = grabber.get (
"bigmesh.obj", "http://www.mysever.org/meshes/bigmesh.obj");

This will try to obtain a File handle for bigmesh.obj, looking first on the local system and then, if not found, trying to
download it from the URI specified by the second argument.

By default, FileManager looks for local files in the current working directory. However, it is possible to specify the
local directory explictly, as well as a default base URI that should be used to obtain remote files:

FileManager grabber = new FileManager ();
grabber.setDownloadDir ("/home/joe/meshes");
grabber.setRemoteSource ("http://www.mysever.org/meshes");

File filel = grabber.get ("boneMesh.obj");
File file2 = grabber.get ("muscleMesh.obj");

Here, the local directory is set to /home/joe/meshes and the remote location is set to http://www.mysever.org/meshes.
The two subsequent calls to get () will try to obtain boneMesh.obj and muscleMesh.ob?j within the local directory,
and if not found will try to download them from the remote directory.

Finally, it is also possible for FileManager to "update" a file by checking to see if the local version is consistent with
the version on the server, and downloading the server version if it is not. This is done by checking hashes, and is enabled
with a CHECK_HASH option:

File filel = grabber.get ("boneMesh.obj", FileManager .CHECK_HASH) ;

Note that these examples are not complete; FileManager contains a large variety of methods to provide considerable
flexibility of use.

ArtiSynth Update Log 70

October 16, 2012

Improvements to FEM incompressibility
Hard incompressibility

The signatures of the set Incompressible () and getIncompressible () methods of FemModel3d have been changed:
they now accept and return the enumerated type FemModel. IncompMethod that specifies what type of hard incompress-
ibility constraint should be applied to the model.

The following IncompMethod values can be specified via set Incompressible (method):

OFF

Turns hard incompressibility off.

ELEMENT

Specifies element-based incompressibility, where an incompressibility constraint is applied to the volume of each
FEM element.

NODAL

Specifies nodal incompressibility, where an incompressibility constraint is applied to a volume surrounding each
node, rather than the volume of each element. This is recommended for meshes dominated by linear tetrahedra in
order to prevent locking.

AUTO, ON

Specifies that incompressibility should be enabled, with the exact method (ELEMENT or NODAL) being set automati-
cally depending on what is appropriate for the given mesh structure.

Soft incompressibility

New methods setSoft IncompMethod () and getSoftIncompMethod () have been added to FemMode13d to allow spec-
ification of the method used to implement soft incompressibility. Soft incompressibility is enforced for incompressible
materials (which are subclasses of IncompressibleMaterial) using the value of the material’s bulk modulus (specified
by the bulkModulus property), in conjunction with a bulk potential (see below), to create pressures within the FEM that
enforce the incompressibility.

The soft incompressibility method is specified using the enumerated type FemModel. IncompMethod, the following
values of which can be specified via setSoft IncompMethod (method) :

ELEMENT

Specifies element-based incompressibility, where pressures are determined within each element, using a reduced
integration scheme to help prevent locking. Since reduced integration is not possible for linear tetrahedra, locking
effects may be observed in meshes dominated by these elements.

NODAL

Specifies nodal incompressibility, where pressures are determined at each node. This results in a denser stiffness
matrix and so is more computationally expensive, but is less prone to locking. It also ignores per-element
material settings, and instead uses the bulk modulus and potential of the overall FEM model material (which must
therefore be an instance of IncompressibleMaterial).

AUTO

Automatically sets the soft incompressibility method to be either ELEMENT or NODAL, depending on which is more
appropriate for the given mesh structure.

ArtiSynth Update Log 71

An IncompressibleMaterial also exports a new property, the bulkPotential, which specifies the energy function
producing the pressure that enforces the incompressiblity. The default value for the bulkPotential is LOGARITHMIC,
which defines a potential U (J) and pressure p of the form

InJ

1
U(J) = 51<(1nJ)2, p=K—

where k is the bulk modulus and J is the determinant of the deformation gradient. Alternatively, one can specify a
QUADRATIC bulk potential, which has a potential and pressure given by

%K(]—])Z, p=x(J—1).

Both potentials should behave similarly for small deviations from incompressibility. For large deviations, the quadratic
potential is more forgiving but may also be more stable.

Improvements to quadratic elements

Addtional elements
Quadratic wedge and pyramid elements (QuadraticWedge and QuadraticPyramid) have now been added to comple-
ment the quadratic hex and tet elements.

The FemFactory method createQuadraticModel has been extended to allow the creation of a quadratic model
(containing quadratic tets, hexes, wedges, and pyramids) from an input model containing linear tets, hexes, wedges, and
pyramids.

Fine surface rendering

Because quadratic elements use second-order shape functions, their faces and edges are composed of curved quadratic
surfaces. This means that the normal method of rendering elements using linear edges and faces is insufficient to display
their shape.

To overcome this problem, it is now possible to request that the surface of an FEM be rendering using a fine sur-
face, which uses a mesh containing a large number of triangles to capture the detailed structure of the underlying
elements. Fine surface rendering can be specifying by setting the surfaceRendering property of FemModel3d to
FemModel.SurfaceRender.Fine. This is only recommended for models containing quadratic elements, since no
additional detail will be observed for linear elements.

Meshes can be embedded within FEM models

It is now possible to embed a polygonal surface mesh within an FEM model. An embedded mesh will track the
deformations of the model, in a manner analgous to skinning. For a demo, please see

artisynth.models. femdemos.EmbeddedSurface
To add or remove embedded surfaces, one may use the FemMode13d methods
FemSurface addEmbeddedSurface (PolygonalMesh mesh);
boolean removeEmbeddedSurface (FemSurface surf);

void removeAllEmbeddedSurfaces ();

The first method, addEmbeddedSurface, creates an embedded surface using the specified polygonal mesh. Each vertex
of the mesh is associated with the FEM nodes of the nearest mesh element, and its position is then updated based on a
weighted sum of the positions of these nodes.

ArtiSynth Update Log 72

Initial model state now supports structural changes

The initial state of a model (which is restored after a reset command) is now tolerant of structural changes to the model
incurred by adding or removing components. Previously, any structural change caused the initial state to be reset to the
model’s state at the time of the change.

This feature has been facilitated by adding the method
void getInitialState (ComponentState state, ComponentState prevstate);

to the interface HasState.

July 28, 2012

Polyline meshes added

A new PolylineMesh class has been added to maspack.geometry for storing collections of Polylines (which are
open-ended polygonal lines). The immediate purpose of these is to represent muscle fiber collections.

Both PolylineMesh and the original PolygonalMesh class are now subclassed from MeshBase, which provides an
abstract representation of a geometric structure that is formed from a collection of vertices. Vertex-specific methods are
provided by MeshBase, while the topological connectivity is provided by the subclass. A polyline can be read from and
written to a .obj file, in which the line designator ’1’ is used in place of the face designator ’£’; for example, a simple
three-segment line is described by:

v 0.0 0.0 0.0
v 1.0 0.0 0.0
v 1.0 1.0 0.0
v 1.0 1.0 1.0
11234

Polyline meshes can be added to an ArtiSynth model using the components FixedMesh or SkinMesh, both of which are
subclasses of MeshBody and both of which can now be formed from either polygonal or polyline meshes. For a demo,
see the updated version of

artisynth.models.mechdemos.SkinDemo

Component mesh information encapsulated in Meshinfo

Mesh information for RigidBody or MeshBody components is now encapsulated within a MeshInfo object, which stores
the mesh itself, along with, for meshes associated with a file, the name of the file plus an optional affine transform that
generates the mesh from the defintiion found in the file.

When a RigidBody or MeshBody is written to a Print Stream, the information for meshes associated with a file is saved
as the name of the file, plus the associated affine transform if appropriate:

mesh=maspack.geometry.PolyonalMesh [
"/home /users/jim/meshdata/myMesh.obj"
transform=RigidTransform3d [1 2 3 1 0 0 45]

July 17, 2012

Default view orientation for models

It is now possible for a RootModel to define it’s preferred orientation for display in the viewer. This can be done using
the property defaultViewOrientation, which is accessed via the methods:

ArtiSynth Update Log 73

void setDefaultViewOrientation (AxisAngle REW);

AxisAngle getDefaultViewOrientation ();

REW is a rotation transform from eye to world coordinates. The view orientation is used to set up the viewer(s) correctly
when the model is loaded. The default value for defaultViewOrientation is described by the static variable

AxisAngle.ROT_X_90

which indicates an orientation where the world x axis points to the right and “up” is aligned with the world z axis.
Alternatively, setting the orientation to

AxisAngle.IDENTITY

will specify an orientation where the world x axis points to the right and “up” is aligned with the world y axis.
It is recommended that any default orientation be axis-aligned.

Given a default orientation, the view toolbar allows the user to jump to six predetermined orientations:

Default

Default orientation.

Top

Looking down along the “up” direction.

Left
Rotated 90 degrees about the “up” direction.

Bottom

Looking up along the “up” direction.

Right
Rotated -90 degrees about the “up” direction.

Back

Rotated 180 degrees about the “up” direction.

June 24, 2012

Physics solver refactoring completed

Refactoring of the physics solver has been completed, and the MechSystem interface should now be largely stable.
Any system implementing MechSystem can be solved using the various integrators offered by MechSystemSolver.
MechSystemBase implements MechSystem by maintaining internal lists of state-bearing dynamic components
(DynamicMechComponent), force effectors (ForceEffector), and objects that produce constraints (Constrainer).

Particular features of the updated solver include:

» Compliance capabilites for bilateral and unilateral constraints (see below);
* Force computation for parametrically controlled components;
» Computation of fictitious forces induced by attachments;

* Constraint forces added to dynamic components at the end of the time step.

The following changes have been made to the overall code base:

ArtiSynth Update Log 74

e ParticleConstraint has been removed, and ParticlePlaneConstraint now directly implements the more
general interface Constrainer.

* ForceEffector has been renamed to ForceComponent, and ForceEffector now defines an interface to any compo-
nent capable of applying a force. The list of general force components in MechModel is still called forceEffectors.

e The method getActiveNodes () has been removed from FemModel. Applications should now use getNodes () and
check node activity, if necessary, using each nodes’s isActive () method.

Updating forces at the end of each time step

A property updateForcesAtStepEnd has been added to MechSystem that enables the computation of forces at the end
of each time step to reflect the updated position and velocity values. Otherwise, values observed at the end of each step
will be those that were computed at some point during the step (but not necessarily the end) in order to compute the
advance.

The default value for this property is false, since force updating can be expensive, and is often not needed.

Changes to Model advance interface

The class Model has been given an extra method,
preadvance (time t0, time tl, int flags);

which is called before the application of input probes, controllers, and the model’s advance () method. The astute
observer will recognize this as a resurrection of the old setDefaultInputs () method. It is mainly intended for
situations where the model has internal state that needs to updated at the beginning of the time step, before probes and
controllers are applied.

Both the model’s preadvance () and advance () methods now indicate a request for a smaller time step by returning
a StepAdjustment object. Previously, this was done by returning a double indicating a recommended scaling for
the time step. That scaling information is now contained in the scaling attribute of the StepAdjustment object.
The StepAdjustment object can also indicate the reason for the recommendation via its message field. If no step
adjustment is required, preadvance () and advance () can return null.

State now supported for muscles

Implementations of muscles (and in fact all ForceEffectors) can now contain state. Force effectors that contain state
should implement the interface mechmodels.HasAuxState. This supplies methods for saving and restoring auxiliary
state into a vector of doubles and/or a vector of integers. Auxiliary state is defined as state that is supplemental to the
position and velocity state of the mech system.

Components with auxiliary state implement a method advanceAuxState () which is called by the preadvance ()
method of the component’s MechSystem, at the beginning of the each step, before the application of input probes and
controllers. This can be used, if necessary, to update internal state information.

Settings menu added

A new Settings menu has been added and some items have been moved there from other menus. In addition, enabling
or disabling articulated transforms (see September 8, 2011) is now done using this menu, and the corresponding
enable/disable button which was previously located on the selector panel has been removed.

ArtiSynth Update Log 75

Pull manipulator

A new "pull" manipulator has been added to ArtiSynth, which allows a user to interactively apply a spring-like force to
either a point or rigid body by clicking on it and then dragging. To enable pull manipulations, select the pull icon on the
left-hand side selector panel.

The pull manipulator is only effective when simulation is running. It works by adding a special PullController to the
current root model. When attached to the root model, the controller attempts to estimate an appropriate spring stiffness
based on the overall mass and dimensions of the first underlying MechModel.

If necessary, the stiffness setting can also be adjusted manually by selecting PullController > properties in the Settings
menu. Render properties for the pull controller can be set from this menu also.

Constraint compliance

Compliance and damping capabilities have been added to both bilateral and unilateral constraints. This allows con-
straints to be given a certain amount of “softness”.

Compliance is the inverse of stiffness, so that a compliance of zero (which is the default setting) implies an infinitely
stiff constraint. To make a constraint compliant, one needs to set appropriate compliance and damping parameters. The
compliance ¢ can be estimated from

Cc = A—x,
where f is the typical force likely to be applied along the constraint’s direction(s), and Ax is the desired displacement
that should result from this force. It is also necessary to choose a damping d; otherwise, the constraint will oscillate.
Given an estimate of the effective mass m along the constraint direction(s), then d can be choosen to ensure critical

damping:
[m
d=2,/—.
C

Ways to set compliance for specific constraints are now described.

Rigid body connector

Compliance for a rigid body connector can be controlled by the following properties:

linearCompliance
rotaryCompliance
compliance
damping

For a demonstration, run the demo
artisynth.models.mechdemos.CompliantConstraintDemo

which allows these to be set for the joints of a two-link planar mechanism. Setting 1inearCompliance and rotaryCompliance
will set compliance terms for a connector’s linear and rotary constraint directions, respectively, while also estimating

critical damping parameters from the inertias of the attached rigid bodies. For more detailed control, the compliance

and damping properties can be used; these are vector-valued properties that allow indivudal values to be set for each

constraint direction (although this requires detailed knowledge of the connector’s constraint structure). All four proper-

ties are coupled: setting 1inearCompliance or rotaryCompliance will automatically compute values for compliance

and damping, while setting compliance and damping will set linearCompliance and rotaryCompliance to either

the equivalent value, or -1 if no consistent equivalent value exists.

Contact constraints

Compliance for contact constraints can be controlled using the following MechModel properties:

collisionCompliance
collisionDamping

ArtiSynth Update Log 76

For a demonstration, run
artisynth.models.mechdemos.BlockTest

Collision damping is not set automatically. To estimate it, one should use the critical damping formula above with an
estimate of the typical mass of the colliding objects. A lower damping value will cause colliding objects to bounce,
creating a kind of restitution effect.

FEM Incompressibility

Compliance for FEM incompressibility can be controlled using the incompCompliance property of FemModel3d.
Setting this value causes an appropriate critical damping value to be computed automatically.

Added isWritable() to ModelComponent

ModelComponent now provides a method isWritable () (which by default returns t rue). When saving a root model
(or portion thereof) to a file, components for which isWritable () returns false will be omitted.

May 28, 2012

AxialSpring Materials Completed

The addition of materials to PointSpringBase and its subtypes (AxialSpring, MultiPointSpring, Muscle, and
MultiPointMuscle) is now complete.

All of the spring properties associated with material-type parameters, including

stiffness
damping
maxForce
optLength
maxLength
tendonRatio
passiveFraction
forceScaling

have been removed, along with their accessor methods.
As a convenience, three static methods have been added to PointSpringBase:

void setDamping (PointSpringBase s, double d)
void setMaxForce (PointSpringBase s, double maxf)

double getMaxForce (PointSpringBase s)

Where possible, these set or get the indicated property from the spring’s underlying material.

May 13, 2012

Materials added to Muscles
Following the addition of AxialMaterial for point-based springs, we have implemented materials for the various types
of point-based muscles.

AxialMuscleMaterial has been added to encapsulate the properties for the existing muscle types, along with sub-
classes:

ArtiSynth Update Log 77

* ConstantAxialMuscle

* LinearAxialMuscle

* PeckAxialMuscle

* PaiAxialMuscle

These material classes replace the MuscleType property in Muscle. In addition, the Muscle.createXXX () static
methods have been replaced by convenience methods of the form setXxXMuscleMaterial () in Muscle.

For the moment, the properties associated with various AxialMuscleMaterial parameters have been left in place

in Muscle, along with their setters and getters, which access, where appropriate, the corresponding parameters in the
underlying muscle material. These properties and accessors will be deleted once their usage has been removed from the
code base.

BlemkerAxialMuscle

A new AxialMuscleMaterial has been added that implements an force-length behaviour analogous to the along-fiber
strain in the BlemkerMuscle FEM material.

May 9, 2012

All documentation converted to LaTeX

All Artisynth documentation that was formerly maintained using AsciiDoc has been converted to LaTeX, with HTML
output produced by LaTeXML. If you update SARTISYNTH_HOME/doc, you will see that all the . txt files have been
replaced with . tex files. For details about the changes, please see the (revised) Documentation Manual.

The new HTML files have already been uploaded to www.artisynth.org, and the documentation area now provides PDF
files as well.

The move from AsciiDoc was done for several reasons:

* Our use of AsciiDoc required a lot of customization that was becoming very hard to maintain.
* AsciiDoc was difficult to install, while LaTeX and LaTeXML, on the other hand, are relatively easy to install and use.
e LaTeX is a fairly stable and standard environment that many people are already familiar with.

* The math support for AsciiDoc did not work out as well as expected.

In the end, the emergence of LaTeXML as a relatively reliable LaTeX to HTML converter prompted the change.

May 1, 2012

Materials added to Axial Springs

In order to better modularize the behavior of point-based springs and muscles, we are replacing the various force
parameters (such as stiffness and damping) with a material object that encapsulates these parameters and can be
exchanged with other materials to provide different force/length behaviors. This material will behave analagously to the
materials used in FEM models. All materials for point-based springs will be subclasses of AxialMaterial, which is in
turn a subclass of MaterialBase.

This first part of this transition is complete: a material property has been added to the base class for point-based
springs, and the linear parameters stiffness, damping, and restLength for AxialSpring and MultiPointSpring
have been replaced with a linear material object called LinearAxialMaterial.

For the moment, the setters and getters for stiffness, damping, and restLength have been left in place, with these
methods accessing an underlying linear material. Also, a convenience method has been added which allows you to set a
linear material:

http://www.methods.co.nz/asciidoc
http://www.latex-project.org
http://dlmf.nist.gov/LaTeXML
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/documentation.pdf
http://www.artisynth.org

ArtiSynth Update Log 78

setLinearMaterial (stiffness, damping, restLength);

The next step in this process will be to implement materials for the various muscle types.

Material package moved

The package artisynth.core.femmodels.materials has been moved into artisynth.core.materials, which
now also contains the new materials for point-based springs.

April 26, 2012

Changes to the model advance framework

There have been some significant changes to the model advance framework:

e The maximum step size of the root model (returned by RootModel.getMaxStepSize ()) is now used to control the
overall simulation advance rate. Models located under the root model will be advanced at this rate, unless they specify
a smaller step size using getMaxStepSize ().

e Scheduler.setStepTime () has been removed. Instead, you can call the root model method setMaxStepSize (), or
Main.setMaxStep (). The command line argument -singleStepTime has also been changed to -maxStep, and now
determines the default maximum step size for root models.

* Models can now leave their maximum step size undefined by having getMaxStepSize () return -1. In this case, the
model will be advanced using the root model step size.

* The default maximum step size for the root model is 0.01. This can be overriden by specifying a different step size in
the root model’s constructor, or by using the -maxStep command line argument.

* Output probes can now be associated with models located under the root model. Previously, only input provbes could
be associated with a model. Output probes that are associated with a model will called immediately after that model is
advanced.

* If the update interval for an output probe is undefined (i.e., getUpdateInterval () returns -1), then it’s apply ()
method is called at the rate determined by its model’s effective step size (the minimum of the root model step size, or
the value returned by getMaxStepSize (), if defined).

e setDefaultInputs () has been removed. The small amount of code that was declared for that method has been
moved into the advance () methods of the respective models.

* Model.initialize () is now called whenever the system is reset to a particular time (such as when going to a
WayPoint location). Previously, it had been called only when starting simulation at time t = 0.

Full details about model advancement are contained in the (fledgling) ArtiSynth Reference Manual.

Adaptive stepping

Adaptive stepping is now supported. If a model’s advance () method returns a value s < 1, then this indicates that the
current time step is too large and should be reduced. The system will then reduce the step size, restore the model’s state,
and retry the advance.

The value returned by advance () can also recommend how much to reduce the step size by. If s = 0, no recommenda-
tion is made, but for 0 < s < 1, it is recommended to reduce the step size by scaling by s. A value of s >= 1 indicates that
the advance has succeeded, with s > 1 recommending to increase the step size by scaling by s.

Once an advance succeeds, the system will try to incrementally increase the step size back to its nominal value.

Adaptive step sizing is enabled or disabled using the adaptiveStepping property of RootModel. It is enabled by
default.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf

ArtiSynth Update Log 79

MechModel has been adjusted to request adaptive stepping when collision distances exceed a theshhold defined by the
collisionLimit property, and FemModel3d has been adjusted to request adaptive stepping when it encounters inverted
elements.

As an example of the latter, you can run the FemMuscleTongue demo with probes enabled and FemModel3d.abortOnInvert-
edElems set to false (i.e., omit the command line argument -~abortOnInvertedElems). The model experiences some
slight instability around t = 1, but completes the simulation without element inversion.

Full details on adaptive stepping are given in the “Adaptive Stepping” section of the ArtiSynth Reference Manual.

State for Probes, Monitors and Controllers

Probes, monitors, and controllers can now contain state. Details are given in the “Model Agent State” section of the
ArtiSynth Reference Manual.

April 21, 2012

Mesh Bodies

Mesh bodies (type MeshBody) have been added to MechModel. A mesh body is an object consisting primarily

of a polygonal mesh (type PolygonalMesh). It is an abstract class for which two concrete subclasses are cur-
rently implemented: FixedMesh, which defines a fixed mesh shape, and SkinMesh, which defines a mesh whose
shape is defined by the motion of a set of rigid bodies through a skinning algorithm. Both classes are defined in
artisynth.core.mechmodels.

At present, SkinMesh implements a simple linear skinning. More sophisticated algorithims may be supported later.
Once created, it is necessary to set the weights for a SkinMesh. If the weights are known, they can be set with the
setWeights () method. Otherwise, they can be computed automatically with the method computeWeights (), which
determines the weights from the current mesh and body positions, based on the nearest distance of each vertex to each
body.

The demo artisynth.models.mechdemos.SkinDemo shows a simple SkinMesh.

Note that MeshObject and its subclasses are likely to undergo significant changes since this is still a fairly
experimental component.

April 10, 2012

Time type changed from long (hanoseconds) to double (seconds)

The basic type used to denote time in Artisynth has been changed from a 1ong giving the time in nanoseconds, to a
double giving the time in seconds.

In particular, the following methods now receive or return time as a double value in seconds:

Model.initialize (tO0)
Model.setDefaultInputs (t0, tl)
Model.advance (t0, tl, flags)
Model.getMaxStepSize ()

Probe.apply (t)
Controller.apply (tO, t1)
Monitor.apply (t0, t1)

The orginal reason for representing time using an integer nanosecond quantity was to make it easy to determine
precisely the sequence of timeline events without worrying about round-off error. However, in practice, this approach
was cumbersome, difficult to read, and required most methods to convert nanoseconds into a double quantity internally.

Instead, to handle round-off issues, TimeBase now provides the following methods to compare and manipulate time
quantities within a fixed tolerance (currently set to one picosecond, or le-12):

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf
https://www.artisynth.org/doc/artisynth_core_3.7/pdf/artisynth.pdf

ArtiSynth Update Log 80

TimeBase.equals (t0, tl)
TimeBase.compare (t0, t1)
TimeBase.modulo (t0, t1l)
TimeBase.round (t)

These methods are used by the scheduler to sequence timing events in a precise way.

Time quantities in probe files and probe data files are now written in seconds instead of nanoseconds. All .art files
that are currently checked in have been converted. For backward compatibility, integer time quantities (i.e., those not
containing a decimal point) are still read as nanoseconds and converted to seconds.

Extra Toolbar

A toolbar has been added to the top of the main Artisynth frame, under the menu bar, and is used to contain icons that
were previously contained in the menu bar.

April 4, 2012

A large number of changes have been made as part of a general refactoring of the physics solver. Many of the changes
are "under the hood", but the following are visible to developers:

Changes to Model.advance

The signature of Model.advance () has been modified in prepartion for adaptive step sizing. It now returns a double
value that will be used to indicate desired changes in step size. If no step size change is desired the method should return
1. All declarations of advance have been altered to ensure that 1 is presently returned.

A flags argument has also been added, although this is not expected to be used much except internally.

Removal of effective mass and inertia

The effective mass and spatial inertia fields of particles and rigid bodies have been removed. These had been used
to store the "effective" masses and inertias that resulted from attaching particles to these objects. The effective mass
calculation is now done within the solver itself.

Rigid body velocites and forces now integrated in world coordinates

The solver now integrates rigid body velocities and forces in world-rotated coordinates (i.e., a coordinate frame
coincident with the body frame but with an orientation aligned with world coordinates). Before, velocities and forces
were integrated strictly in body coordinates. This change was made for several reasons:

* The coriolis force terms are less complex when using world-rotated coordinates, which allows for more accurate
integration.

It makes the velocity seen by the solver indentical to the internal rigid body velocity state (which also uses world-
rotated coordinates).

* Velocities in body coordinates are not independent of body position, which makes it difficult to save and restore
velocity state exactly.

* World-rotated coordinates are easier for a user to conceptualize.
The only disadvantage to using world-rotated coordinates is that the spatial inertia matrix is no longer constant.

However, this is not a major issue since the inertia matrix is easy to compute and invert, particularly since it differs from
the constant body-centric inertia by only a rotational similarity transform.

ArtiSynth Update Log 81

Note:
The velocity property of a rigid body is not affected by this change, since this was always presented in world-
rotated coordinates.

Save and restore model state now properly implemented
Save and restore state for MechModels and FemModels is now properly implemented, and in particular properly handles

collision and viscoelastic state. This means that backtracking to a waypoint and then advancing should yield results
identical to when the waypoint was first traversed.

Changes to the model and probe file formats

Some of the scan and write methods for saving and loading models from a file have been refactored to simplify the
code.

The file format for AxialSpring and Muscle objects has been changed: the old format whereby parameter values are
specified as a simple untagged list of numeric values is no longer supported.

There has also been a change in the file format for probes: the field element, which identifies the model associated with
the probe, has been renamed to model, so that entries such as

element=models/xxx
now appear as
model=models/xxx

All the . art files which are currently checked in have been patched to reflect this change.

Removal of local position correction

The position correction code, used to stablize bilateral and unilateral constraints, has been refactored. All position
correction is now done globally by the solver itself. Local position correction, which was done using ad-hoc model-
specific methods, and was formerly available using the command line option

-posCorrection Local

has been removed.

Time display

A time display box has been added to the main frame.

January 4, 2012

New release, ArtiSynth 2.8
A new release has been put on the website. Main changes include:

* moving the inverse simulation code to artisynth.core.inverse.
e creating a set of inverse demos in artisynth.models.inversedemos (thanks to Ian for this).
* removal of old shared libraries.

 updating the installation documentation and making the Eclipse installation easier.

ArtiSynth Update Log 82

October 13, 2011

Automatic creation of CompositePropertyPanels

A CompositePropertyPanel for a widget is now created automatically for composite properties that export the

static method get SubClasses () (which returns a list of the various instances of said composite property that can be
instantiated by the panel). This replaces the need to create property-specific composite panels such as MaterialPanel,
MuscleMaterialPanel, etc.

Specifying expandibility for property widgets

The PropertyInfo structure, which provides information about properties, has been augmented with the method
getWidgetExpandState (), which returns a code describing if the property’s widget should be able to expand or
contract in order to save GUI space, and if so whether it should be initially expanded or contracted. The settings for this
can be specified using the flags XE (initially expanded) CE (intially contracted) in the property declaration options string.

Creating FemModels from surface meshes

Functionality has been added to FemFactory allowing FEM models to be created directly from a surface mesh, using
Tetgen called via the TetgenTessellator class. The relevant method is

FemFactory createFromMesh (model, surface, quality)

This functionality has also been added to the FemModel editing panel, allowing to you specify a surface mesh in
addition to other options.

October 5, 2011

Passive sections added to MultiPointSpring

It is now possible to specify certain sections of a MultiPointSpring to be passive, meaning that they will not con-
tribute to the total length used to determine the spring’s force. The relevant methods within MultiPointSpring are:

setSegmentPassive (idx, passive)
isSegmentPassive (idx)
clearPassiveSegments ()

where idx is an index identifying the segment between points idx and idx+1.

September 10, 2011

Updates to PolygonalMesh

PolygonalMesh has been updated to include an addMesh () method that allows meshes to be combined. This is based
on some code that lan recently wrote. Also, the triangulate () method has been rewritten so that texture and normal
information (if present) will be preserved.

September 8, 2011

Articulation constraints preserved when manipulating bodies

A feature has been added that allows articulated body constraints to remain enforced when rigid bodies are moved using
the translation and rotation manipulators. To enable this feature, you can specify ~useArticulatedTransforms on the
artisynth command line. The feature can also be enabled using the articulation icon located below the manipulator icons
on the left side of the main viewer.

ArtiSynth Update Log 83

Properties now validated using a getRange method

The method for validating property values has been changed. Previously, if property xxx had restricted values, the
application could define a validateXxx () method to validate proposed values for that property. Now, instead, the
application should define a getXxxRange () method that returns a Range object for the property. The result from this
method will then be returned through the getRange () method of the Property handle itself. The Range object contains
an 1sValid () method that can be used to validate values.

For numeric properties, a user can still define a default numeric interval range of the form "[lo,hi]" in the options string
of the property’s definition. If no getXxxRange () is defined, then the property’s getRange () method will return this
interval instead. The default numeric range is also used to determine bounds on slider widgets attached to the property,
in cases where the upper or lower limits returned by any getXxxRange () method are unbounded.

The main reason for reformulating property validation to use Range objects is that ranges can be combined using their
intersect () method. Then if a widget is controlling the same property on several objects, it is possible to determine a
range that is acceptable to all objects.

NumericRange, DoubleRange and IntRange have been renamed

The classes NumericRange, DoubleRange and IntRange have been renamed to NumericInterval, DoubleInterval
and IntegerInterval, and have been moved from maspack.property to maspack.util, along with Range.

Important:
This has caused a change in the file format, since .art files sometimes make direct reference to these class names.
The format has been corrected for any . art files that were checked in.

Angle coordinates added to revolute and spherical joints

Revolute and spherical joints have now been augmented with angle variables that represent generalized coordinates
associated with the degrees of freedom allowed by these joints. In particular, the class RevoluteJoint is associated
with an angle theta, and a new class of spherical joint, called SphericalRpyJoint, has been defined that allows its
orientation to be controlled using roll, pitch, and yaw angles. Demos of both can be found in RevoluteJointDemo
and SphericalJointDemo, bothin artisynth.models.mechdemos.

The joint angles are exposed as properties, which can be used to get or set their values in degrees. Setting the properties
will cause the joint to move by changing the position of one of the rigid bodies to which it is attached. In determining
which body to move, the system tries to identify one which is “free”, i.e., has no connections to ground, either directly
or indirectly via other bodies in the articulation chain. Moreover, when moving such a free body, all other bodies
connected to it are moved in unison.

Joint angles are not bounded by the usual range of £180 degrees, and their values will grow indefinitely as a joint
continues to “wind”. This is acheived by placing a state variable in the constraint that keeps track of the most re-
cent joint value. Joint angles can also be given range limits, which themselves are controlled by properties such as
getThetaRange, getRol1lRange, etc. By default, the angles have no limits, corresponding to a range of [-inf,inf].
Note that limits with a range greater than 360 degrees, such as [-400,400], are perfectly feasible, and often occur in
mechanical systems as an artifact of gearing.

The spherical joint represented by SphericalRpyJoint models a gimble system in which rotation is achieved by a
roll rotation about the z axis, followed by a pitch rotation about the new y axis, followed by a yaw rotation about
the final x axis. Such gimble systems experience restricted motion and instability when the pitch angle is close to
490 degrees.

Connector scaling fixed

Problems associated with scaling certain kinds of connectors (such as SegmentedPlanarConnector), and models
containing them, have been fixed.

ArtiSynth Update Log 84

Frame information added to FemElement3d

It is now possible to add frame information to a FemElement 3d, using the methods

FemElement3d.setFrame (Matrix3dBase M)
Matrix3d FemElement3d.getFrame ()

The frame information can be specified using any Matrix3d type (such as RotationMatrix3d) and is mainly intended
for use in computing anisotropic material behaviors. At present, the frame information is stored repeatedly at each of
the element’s integration points, within the point’s IntegrationData3d object. The ability to store individual frame
information at each integration point may be added in the future.

Frame information maybe accessed by the computeStress and computeTangent methods of Material, which now are
now supplied with the integration point’s IntegrationData3d structure as an additional parameter:

public void computeTangent (
Matrix6d D, IntegrationPoint3d pt, IntegrationData3d dt);

public void computeStress (
SymmetricMatrix3d sigma, IntegrationPoint3d pt, IntegrationData3d dt);

and the frame information itself can be obtained using

dt .getFrame ()

Slider ranges and out-of-range values
The procedures for automatically determining ranges for slider widgets have been reworked. In addition, in some cases
(particularly involving the joint angle properties described above) the actually value for a slider widget may lie outside

the slider’s range. When this happens, the slider background is changed to a dark gray color, indicating that subsequent
adjustments to the slider may produce a jump in the property’s value.

August 9, 2011

Ability to duplicate FEM models

It is now possible to duplicate a FemMode13d. Simply select the model, choose Duplicate from the context menu, and
click in the viewer where you want to model to appear.

In code, one can do

FemModel3d femCopy = (FemModel3d)fem.copy (0, null);

Ability to merge FEM models

A method has been added to FemFactory which allows you to add a copy of an FEM model to an existing FEM model:
addFem (fem0, feml, nodeMergeDist)

This creates copies of the nodes, elements, markers, and attachments of fem1 and adds them to fem0. It will also merge
nodes that are within a certain distance of each other: if nodeMergeDist >= 0, then if a node in feml has a nearest node
in fem0 within a distance of nodeMergeDist, then the fem0 node will be used instead of copying the feml node.

For a demo of this, see the new demo HexFrame.

ArtiSynth Update Log 85

August 3, 2011

Attaching FemNodes to other FEM models

Support has now been added to allow you to attach an FemNode directly to an element of another FEM model (in the
same way that a FemMarker can be attached to an element).

For the demo, run AttachDemo, select one of the FEMs, and then choose Attach particles from the context menu. A
dialog will then appear which allows you to select the nodes (and other particles) to attach. By default, the particles will
be attached either to their containing element, or projected onto the nearest surface element. If you select project points
onto surface, then the particles will always be projected onto the nearest surface element, which can be a useful option if
the particles are inside the FEM you want to connect to. The FEMs must be contained within a MechModel.

I’ve made some attempt to ensure reasonable behavior if you move either an attached point (or one of the nodes to which
it is attached) using the dragger fixtures. However, the element will not (yet) change with these operations and so you
may end up with an attachment that lies outside the element. This is not necessarily a bad thing, and in fact I noticed that
you can place attachments outside an element and still get reasonable behavior.

For the API, the main methods are:

MechModel .attachPoint (Point pl, FemModel3d fem, double reduceTol)
MechModel .attachPoint (Point pl, FemElement3d elem)

The former finds the element to attach to, while the latter assumes you know the element already. See the Javadocs for
more info.

To locate an element within an FEM, you can use

FemModel3d.findContainingElement (Point3d pnt)
FemModel3d.findNearestSurfaceElement (Point3d loc, Point3d pnt)
FemModel3d.findNearestElement (Point3d loc, Point3d pnt)

Again, see the Javadocs for more info.

June 26, 2011

FEM muscles integrated with linear materials
FEM-based muscle forces (implemented in FemMuscleModel using different kinds of MuscleMaterial) now work with
linear base materials. In addition, stress and strain plotting now also works with linear materials.

One caveat is that all currently implemented MuscleMaterials are quite non-linear, so it is not clear how useful this
will be. One could implement a companion linear-type MuscleMaterial. Alternatively, if you use GenericMuscle
with expStressCoef and fibreModulus set to 0, you will get a very basic behavior that simply applies a uniform,
activation-proportional stress along the muscle direction.

June 2, 2011

Controllers added

Controller objects have just been added to Artisynth. They are the complement of Monitors.
Like a Monitor, a Controller contains a single function

apply (t0, tl1)

that is called before the advance routine of an associated model. Times t0 and t1 denote the start and end times
associated with the time step. You can add/remove controllers from the RootModel using

ArtiSynth Update Log 86

addController (controller)
addController (controller, model)
removeController (controller)

The first method adds a "free" controller that is called before all the advance methods. The second method adds a
controller that is called before the advance method of a particular model (this probably won’t be used much).

Important:

The apply method for a Monitor now takes two time arguments as well (it used to take only a t 0 argument). Also,
Monitors are now called after the advance method, so you might want to convert any previous Monitors that you
were using to Controllers.

April 21, 2011

Jython console updated

The Jython console has been fixed to properly handle loops within scripts. Previously, all the output from within a loop
was printed only when the loop finished. Output is now correctly routed to the console as it is generated. Also, scripts
can now be nested. Typing *~C’ in the console window will also about cause a script to abort, although only after the
return of any blocking call.

Jython has also been updated to 2.5.2. Since the jython jar file is bundled with ArtiSynth, I don’t think this will require
anyone to explicitly upgrade to Jython 2.5.2 on their system, although that might not be a bad idea.

I still notice an occasional crash when loading models in a script. This seems to occur inside GUI code associated with
the model creation, and may be related to the fact the construction and handling of GUI components should in theory be
done only within the GUI thread. If this starts causes anyone trouble, I'll try to investigate further.

April 14, 2011

Target positions and velocities

Both the Point and Frame components have been augmented with properties to describe target positions and velocities.
For a Point, we have

targetPosition

Target position for the point.

targetVelocity
Target velocity for the point.

while for a Frame (which includes RigidBody), we have

targetPosition

Target position for the frame’s origin.

targetOrientation

Target orientation for the frame (specified as an AxisAngle).

targetPose

Complete target pose for the frame (specified as a RigidTransform3d).

targetVelocity

Target translation and angular velocity for the frame.

ArtiSynth Update Log 87

Another property, called targetActivity, is supplied to control which of the position and velocity targets are actually
active. This allows the user of the target data (e.g., the solver) to know whether it should interpolate position data,
velocity data, or both. The settings for targetActivity are:

Position

The position target is active, while the velocity target is inactive and tracks the current velocity.

Velocity

The velocity target is active, while the position target is inactive and tracks the current position.

PositionVelocity

Both the position and velocity targets are active.

None

Both the position and velocity targets are inactive.

Auto

Both the position and velocity targets are initially inactive, but will become active when their values are set. This
is the default setting.

Note:

Position and Velocity target activity refer to generalized positions and velocities. In particular, for Frames,
Position activity refers to targetPosition, targetOrientation, and targetPose. One way to resolve this
ambiguity might be to rename the position property of a Frame to something like translation.

Specifying a target position and/or velocity is now the preferred way to control the motion of one of these components
parametrically: If the component is set to be non-dynamic, then the target position and/or velocity is used by the
simulator to control the component’s motion, and its actual position and/or velocity will be matched to the target over
the coarse of the next time step.

Current plans also call for targets to be used to specify the desired motions of dynamic and attached components (such
as markers) for tracking by a controller (e.g., inverse actuator control).

Proper interpolation for rotations

As part of implementing target orientations for Frames, it was necessary to construct a proper interpolation methods for
rotations. These are now available for probes which control the orientation of a Frame, through either orientation or
pose properties. The interpolation methods include

SphericalLinear

Interpolates between two orientations by finding the axis-angle that separates them and then uniformly interpo-
lating the angle about this axis (this is the slerp method that was described by Ken Shoemake at SIGGRAPH
1985).

SphericalCubic

Smoothly interpolates between orientations by taking into account estimated angular velocities. The method
used is described in “A general construction scheme for unit quaternion curves ...”, by Kim, Kim and Shin at
SIGGRAPH 1995.

The above interpolations are actually enabled for numeric data probes with vector sizes of 4 and 16. For the former,
the data is assumed to be an orientation in AxisAngle format. For the latter, the data is assumed to be the 4x4
matrix associated with a RigidTransform3d, with the rotation interpolated as described above and the translation
interpolated using standard linear or cubic methods.

ArtiSynth Update Log

Displacement properties added to FemNode3d

FemNode3d now has two additional properties:

displacement

A read-only property giving the displacement of the node from the rest position.

targetDisplacement

An alternate way of specifying a target position relative to the rest position.

March 2, 2011

Constrained motions have been added to draggers. If you press SHIFT while moving a dragger, then rotations are
constrained to multiples of 5 degrees, and translations are constrained to multiples of a step size determined as follows
(this may be improved):

* If the viewer grid is visible, then the step is the size of the smallest grid cell.

* Otherwise, the step is 1/10 of the size of the dragger.

Feb 3, 2011

Changes to RenderProps

A new style for rendering lines, SOLID_ARROW, has been added. Also, the following render properties have been
renamed:

cylinderRadius

Renamed to lineRadius

cylinderSlices

Renamed to lineSlices

sphereRadius

Renamed to pointRadius

sphereSlices

Renamed to pointSlices

Finally, two new properties, edgeWidth and edgeColor, have been added, but are currently only used for rendering
contact information, as described below.

Rendering contact normals and contours

Support has been added for rendering the intersection contours and contact normals associated with collisions. This
rendering is controlled by the render properties associated with MechModel.collisionHandlers ().

By default, contact and contour rendering is disabled. To enable it, one can use the following code fragment:
RenderProps.setVisible (mechModel.collisionHandlers(), true);

The following render properties are used:

ArtiSynth Update Log 89

lineStyle

Style of the line used for rendering the contact normals

lineWidth

Width (in pixels) of the contact normal if the Line line style is used

lineRadius

Radius of the contact normal if a solid line style is used

lineSlices

Number of slices in the contact normal for a solid line style

lineColor

Color of the contact normal

edgeWidth

Width (in pixels) of the line used to render the contour

edgeColor

Color of the contour

Note:
Contours will only be rendered in Andrew Larkin’s collision code is enabled, i.e., ~useAjlCollision.

These properties can be set in the same way as the visibility, e.g.,

Renderable collisions = mechModel.collisionHandlers () ;
RenderProps.setEdgeWidth (col, 2);
RenderProps.setEdgeColor (col, Color.Red);

To access them on a read-only basis, one can do

RenderProps props = mechModel.collisionHandlers () .getRenderProps () ;

Finally, to set the length of the rendered contact normals, set the contactNormalLen property in MechModel. Since
contact normals have no preferred direction, it may be necessary to use a negative length value in order to visualize them

properly.

For a demo, run the model DentalCasts (artisynth.models.articulator.DentalDemo), and set the top cast invisible to
see the contact interactions.

Note:
The artisynth command line option -renderCollisionContours has been removed.

Jan 31, 2011

User interface guide completed

The ArtiSynth UI Guide is now complete, and contains detailed descriptions of most of the interactions and editing
operations available through the GUI. In particular, all of the editing panels are now documented. The user interface
guide can be obtained from the website, or directly through

http://www.artisynth.org/doc/html/uiguide/uiguide.html

ArtiSynth Update Log 90

New editing features for FemMuscleModel

A new MuscleElementAgent allows elements to be added to MuscleBundles contained within a FemMuscleModel.
Other menu-based features allow you to automatically set the direction vectors in the elements, or add elements that are
a certain distance from the fibres. For details, see the UI Guide, under "Editing Muscle Bundles".

Exclusive open mechanism for editing panels

A lock mechanism has been introduced to enable some editing panels to function on an "exclusive open" basis, whereby
only one can be open at a time. This is useful for panels that modify the GUI state, and for which simultaneous panels
could lead to unexpected side effects. Edit operations that cannot open because of the exclusivity lock will still appear in
the context menu, but disabled.

If it turns out that the exclusivity locks are too restrictive, we can try to relax them on an as-needed basis.

Revised interface for specifying collisions

The API and GUI interface for specifying collision behavior has been revised. In particular, the functions

setCollisions (a,b,behavior)
getCollisions (a,b)

have been replaced by

setCollisionBehavior (a,b,behavior)
getCollisionBehavior (a,b)
setDefaultCollisionBehavior (a,b,behavior)
getDefaultCollisionBehavior (a,b)

and related convenience methods. See the Javadocs for MechModel.

In the GUI, you can either set the default behaviors for a MechModel, or set specific collision behaviors by selecting a set
of bodies and choosing Set collisions ... from the context menu. Self collision behavior can be set from the context menu
for a single deformable body. See "Collision handling" in the UI Guide.

Updated editing panels
As part of the process of finishing the UI Guide, many of the editing panels have been revamped to make them clearer
and easier to use. To simplify their initial presentation, many of the default property panels are now expandable.

Also, the label alignment mechanism for LabeledComponent has been generalized to allow it to take account of
component borders. This means that labels align propertly even for panels within panels.

Jan 19, 2011

The reduced tongue model is working again, and has been renamed to models.reducedFem.ReducedTongue.

MuscleTissue, MuscleFibreTissue and their associated classes have been removed, and replaced with FemMuscleModel
(which is the renamed version of MuscleElementTissue). In addition, MuscleElementBundle has been renamed to
MuscleBundle.

Jan 17, 2011

The JNI interface for Pardiso 4.1 has been compiled for MacOS (Snow Leopard), Windows, and both 32 and 64 bit
Linux systems.

ArtiSynth Update Log 91

If you specify ~usePardiso4 to artisynth (or if this is set in your .artisynthInit file), then Pardiso 4.1 will be used.
Otherwise, Pardiso 3 will be used.

To use Pardiso 4.1, you will need to obtain a new licence from http://www.pardiso-project.org if you haven’t
already. The pardiso.lic file that you create from this will not be compatible with Pardiso 3, so if you switch between
versions you will also need to switch the licence files. Be sure to save your old licence file if you do this because you
can no longer get Pardiso 3 licences.

There appears to be a bug in the Intel OpemMP library provided for the MacOS Pardiso version, which causes spordic
crashes occur if Pardiso is called from more than one Java thread. I seem to have been able to work around this by
making the Scheduler "play" thread persistent, so that we simply create one play thread at startup and use it for all
subsequent play actions.

Jan 2, 2011

It is now possible to load a model by specifying its RootModel class directly. Select Load from class in the File menu.

Dec 8, 2010

Control panels:

Control panels are now scrollable by default (previously, scrollablity had to be enabled via the scrollable property).

Tetgen and Delaunayinterpolator:

As part of the support for MuscleElementTissue, we have added a JNI interface for tetgen, called
maspack.geometry.TetgenTessellator

The native interface has been compiled for Linux, Windows, and MacOS.

Building on top of this, we have created a method called
maspack.geometry.DelaunayInterpolator

which can be used for sparse unstructured 3D interpolation. Suppose you have a set of 3D points which contain data
values that you wish to interpolate. You can create a Delaunay interpolation and pass it the points via the setPoints
method, which will create a Delaunay tessellation of these points. The method get Interpolation can then identify
which of these data points should be used for interpolating at an arbitrary point, along with the weights needed for the
interpolation.

Dec 7, 2010

A new class, MuscleElementTissue, has been completed in which muscle activation is effected by means of
MuscleElementBundles. A MuscleElementBundle may contain both point-to-point actuators (of type Muscle, as

in the current MuscleBundle used by MuscleTissue), as well as sets of FEM elements whose material behaviour may
be augmented using a MuscleMaterial that acts in a specific direction.

Each element associated with a MuscleElementBundle is described by a FemElementDesc that identifies the element
and specifies the direction (relative to the element’s rest position) along which the anisotropic behaviour should be
exercised. This direction acts in concert with a MuscleMaterial to produce a material behavior that is superimposed on
top of the element’s default isotropic material behaviour. A default MuscleMaterial is specified for the MuscleElement-
Tissue. This may be overridden by specifying non-null MuscleMaterial materials for specific MuscleElementBundles or
for individual FemElementDescs.

ArtiSynth Update Log 92

By default, the point-to-point actuators (called fibres) in a MuscleElementBundle are inactive and are used only for
visualization and determining the activation directions within individual elements (see below). However, the actuators
can be activated via the fibresActive property. Likewise, the directional material behavior associated with the
elements may be deactivated by specifying Nul1Muscle as the muscle material.

Two methods are currently provided to assist in determining the elements and activation directions for a MuscleElement-
Bundle:

computeElementDirections ()

Computes directions for each element by performing a Delaunay interpolation based on the center position of the
element and the centers of the nearest point-to-point actuators (with "nearest" being determined using a Delaunay
tessellation). All calculations are done with respect to rest coordinates.

addElementsNearFibres (dist)

Adds all elements that are within dist units of a fibre center, and sets their directions to that of the closest fibre.
A demo of MuscleElementTissue is provided by
artisynth.models.femdemos.MuscleElementDemo

which contains three muscle bundles: "top", "mid", and "bot". The following variables within the code can be used to
control the muscle elements and directions associated with the middle ("mid") bundle:

defaultMidElements

Describes which elements should be initially added (either all, none, or the middle elements).

addMidElementsWithin

Adds all elements within a prescribed distance of the middle bundle fibres.

autoComputeMidDirections

Automatically compute element directions from the middle bundle fibres using the Delauany interpolation
described above.

Nov 18, 2010

After much delay, gravity has now been made an inherited property in both FemModel and MechModel. Also, gravity is
now set using a full 3-vector. So instead of

model.setGravity (9.8);
you should do either
model.setGravity (0, 0, -9.8);
or
model.setGravity (new Vector3d (0, 0, -9.8));

Don’t forget the minus sign! Likewise, getGravity () now returns a 3-vector. All the current code has been updated to
reflect this.

ArtiSynth Update Log 93

Nov 17, 2010

A constraint ParticlePlaneConstraint has been added to MechModel which allows particles to be constrained to a
fixed plane. The principal methods are

ParticlePlaneConstraint c =

new ParticlePlaneConstraint (particle, plane);

model.addParticleConstraint (c);
model.removeParticleConstraint (c)
model.clearParticleConstraints () ;

For a demo, see
artisynth.models.femdemos.PlaneConstrainedFem

ParticlePlaneConstraint is an instance of a more general constraint class. It should now be relatively easy to add
more complex constraints involving particles.

Nov 14, 2010

Problems have been fixed in the panel for editing the mesh geometry and inertia of a RigidBody. To edit these, select a
rigid body, and choose

Edit geometry and inertia

from the context menu.

The methods in RigidBody for setting inertia have also been rationalized. First, there are two new methods:

setInertiaMethod (InertiaMethod m)
specifies the method by which inertia is determined

getInertiaMethod()

returns the current inertia method
along with a corresponding property inertiaMethod, which has three settings:

Explicit
Inertia is specified explicitly
Density

Inertia is calculated from the mesh using a specified density

Mass

Inertia is calculated from the mesh using a specified mass.

Both the Density and Mass methods cause the inertia to be recomputed whenever the mesh, mass, or density is changed.
Density is now defined simply as mass divided by mesh volume, and so setting either will cause the other to be updated
to reflect this. There are also three main support methods:

setInertia (Spatiallnertia M)

explicitly sets the inertia and sets the inertia method to Explicit

setInertiaByDensity (double density)

sets the inertia from a given density and sets the inertia method to Density

setInertiaByMass (double mass)
sets the inertia from a given mass and sets the inertia method to Mass.

As before, there are a bevy of methods for explicitly setting the inertia in special ways. Note also that set /getSpatial-
Inertia have been renamed to set/getInertia, and -1 is no longer a valid value for the density.

ArtiSynth Update Log 94

Nov 10, 2010

A FullPlanarJoint constraint has been implemented to restrict the motion of a RigidBody to a plane. This constraint
is similar to RevoluteJoint, except that it allows translation in the plane perpendicular to the joint axis. For a demo, see

artisynth.models.mechdemos.PlaneConstrainedJaw

Note that when this joint is attached to a rigid body, care must be taken that other joints attached to the body do not
over-constrain it. In particular, you can’t attach both a RevoluteJoint and FullPlanarJoint to a single body (although if
the z axes of the two joints are parallel, you won’t need to, since RevoluteJoint restricts the body to a plane as part of
it’s normal operation). While there exist techniques that allow for the resolution of redundant constraints, these are not
currently implemented in ArtiSynth.

The main motivation for FullPlanarJoint is to allow implementation of a reduced-complexity symmetric models.

Nov 10, 2010

Self-collision handling for deformable bodies is now implemented using sub-surfaces. This should be considered a
temporary measure until proper self-intersection detection is implemented for meshes.

A deformable body will now handle self-collisions if
 Collisions are enabled between the body and itself, e.g.,
mechModel.setCollisions (femModel, femModel, true);
e The model contains two or more sub-surfaces (described below).
For a demo, see
artisynth.models.femdemos.SelfCollision

A sub-surface is a closed, manifold mesh that enclosed a portion of the FEM model. Each vertex of a sub-surface
must correspond to a node of the FEM. Self-collision within the model is implemented by enforcing collision handling
between all the sub-surface pairs. Note that this is not a complete solution, since collision handling will be restricted to
sub-surface interactions. However, this may be desirable in some cases.

FemModel3d contains the following methods for managing sub-surfaces:

numSubSurfaces ()
getSubSurface (int)
addSubSurface (PolygonalMesh)
removeSubSurface (PolygonalMesh)
clearSubSurfaces ()

Rendering of sub-surfaces can be enabled via the subSurfaceRendering property.
A sub-surface can be created by reading it in from a file. FemMode13d contains the following methods to support this:

scanMesh (String fileName)

scanMesh (ReaderTokenizer rtok)
scanSurfaceMesh (ReaderTokenizer rtok)
scanSurfaceMesh (String fileName)

writeMesh (PrintWriter pw, PolygonalMesh mesh)
writeSurfaceMesh (PrintWriter pw)
writeSurfaceMesh (String fileName)

The file format contains a list of faces, whose vertices are described by a (counter-clockwise) list of their corresponding
node numbers.

One way to create a sub-surface is to select the elements that should be used to form the sub-surface, and then choose
Build surface mesh for selected elements

in the context menu. The resulting surface mesh can then be saved to a file using the Jython console and the write
methods listed above.

ArtiSynth Update Log 95

Nov 9, 2010

I have added a couple of new flags to the artisynth command:

-useAjlCollision

Enables Andrew Larkin’s collision detection

-showJythonConsole

Create the Jython console on start-up

May 13, 2010

A trapezoidal integrator has been added. This is a second-order Newmark method which does a fully constrained solve
in the manner of ConstrainedBackwardEuler and should provide greater accuracy. To select it in code, you can do

model.setIntegrator (MechSystemSolver .Integrator.Trapezoidal);

Otherwise, you can set the model’s integrator property through a widget.

Mar 9, 2010

I have created a general CompositePropertyPanel class which can be used for setting and selecting CompositeProperties
within a larger panel, in the same style as MaterialPanel. The latter is now an instance of the former.

In particular, CompositePropertyPanel (and hence MaterialPanel) should work properly when directed at multiple
components.

Another small change: property and render property panels now have names based on the set of components they are
controlling.

Jan 26, 2010

I have added support for different kinds of position stabilization, through the artisynth option -posCorrection, which
can be specified either on the command line or in your .artisynthInit file. This option accepts one of the following
string arguments:

Local

applies a local (Gauss-Seidel type) stabilization which we have been using until now.
GlobalMass

applies a global position correction using impulses computed with the system mass matrix.
GlobalStiffness

applies a global position correction using impulses computed with the complete system stiffness matrix.

Default

applies the default position correction.

At the moment, I have set the default behavior to use Local stabilization for explicit integrators and GlobalMass stabi-
lization for implicit ones, since GlobalMass stabilization doesn’t seem to incur much compute penalty. GlobalStiffness
stabilization, on the other hand, while a bit more robust, can (at present) almost double the computation time.

For implicit integrators, I do apply a one-time GlobalStiffness correction at the start of the first time step.

ArtiSynth Update Log 96

Jan 15, 2010

The code has been refactored to correctly implement point-based attachments, and some minor bugs involving de-
formable body contact have also been fixed.

Also, the rendering of individual finite elements now includes an optional widget in the center of the element that can
be used for selection. The widget shows the shape of the element in miniature, with its proportionate size controlled by
the property elementWidgetSize, which appears in both FemMode13d and FemElement3d. Element rendering has also
been improved so that the edges of selected elements appear fully illuminated.

Oct 22, 2009

Improvements have been made to the Jython console. These include:

e Built in functions (see below)
* Initialization files
* Scripting support

* Line wrapping now works correctly, and the console is embedded in a scroll pane

Built-in functions

A number of built-in functions have been added, allowing you to do certain things easily without having to locate the
appropriate java object and in particular without having to access main. For example, to add a break point and run the
current model, you can now do

>>> addBreakPoint (10)
>>> run ()

The current set of built-ins include:

run ()

run the simulation

run (tinc)

run for a certain time

pause ()

pause the simulation

wailtForStop ()

wait for the simulation to stop

reset ()

reset the simulation

step ()

single step the simulation

addWayPoint (t)

add a waypoint at time t

addBreakPoint (t)

add a breakpoint at time t

ArtiSynth Update Log 97

removeWayPoint (t)

remove a waypoint or breakpoint at time t

clearWayPoints ()

clear all waypoints and breakpoints

root ()

get the current root model

script (fileName)

run a script (see below)

loadModel (name)

load a model by it’s demo name

find (name)

find a component by a name relative to the root model

It is expected that the set of built-ins will expand greatly and will be subject to modification.

Initialization files

The built-ins are defined in the initialization file .artisynthJythonInit.py, located in the ArtiSynth home directory.
This is a Jython script that is executed once when the console starts up. It can be modified to add additional built-ins,
by either defining them directly using def, or by adding a java method directly to the interpreter’s dictionary using a
statement of the form

interpreter.set ("waitForStop", main.waitForStop)

where the symbol _interpreter_ references the interpreter itself.

Users can also define their own .artisynthJythonInit.py initialization files, in any directory inside the ARTISYNTH_PATH.
Multiple files can be defined, with evaluation proceeding from last to first along the path.

Scripting

The built-in script () executes a script file within the console. This is similar to the standard built-in execfile (),
except that the script is run in a separate thread and echos its commands to the console. This allows GUI interaction and
rendering to proceed concurrently with the script execution. A script can be aborted by typing "C.

As an example, try running
>>> script ("testscript.py")

in the ArtiSynth home directory. This loads and runs some demos with a variety of integrators and logs the resulting
state vectors into a file.

Oct 16, 2009

Materials have been made to properly implement scaleDistance and scaleMass. The numeric format string for a text
widget has been made into a property, so that it can now be set by selecting the widget and choosing set properties from
the context menu.

Some minor bugs have been fixed, and a number of internal changes have been made, mostly in preparation for fixing
the interaction problem between attached particles and other constraints.

ArtiSynth Update Log 98

Sept 22, 2009

For anyone installing documentation on the ArtiSynth web server:

The Makefiles in the documentation directories now contain the command
> make install_html

that will create html documentation and then copy it onto the server. This assumes you have an account on the server,
and that you have set the environment variable ARTISYNTH_WEB_ACCOUNT to the name of said account. Unfortunately
you’ll be asked for your account password twice: once to copy the files, and once again to set the permissions so other
people can modify them.

Permission setting is done by a revised script called setMagicPerms, located on the server.

For more details, see the Documentation Manual.

Sept 20, 2009

Lagrange multiplier-based incompressibility has been added for Hex elements. You can now select incompressible for
an FEM model consisting either entirely of Hex elements or Tet elements (although unfortunately not for mixed element
models because the formulations aren’t compatible). The results can be very good - try it with the HexTongue demo
using the Linear material.

Hex element incompressibility should work with nonlinear materials as well. For incompressible materials, it should
simply complement the incompressible penalty force added by the material.

However, as can be seen with the HexTongue and HexBeam3d demos, incompressibility with nonlinear materials also
seems to go unstable at higher compressions. The most likely culprit is that our semi-implicit integrators are no longer
sufficient, and we need to use a fully implicit integrator instead. That means adding Newton iterations onto the existing
semi-implicit steps, which will take a little bit of work. To begin, I’ll compute the residuals from the semi-implicit steps
- if these start getting large right before the instability, that will suggest the need for fully implicit integration.

Other changes:

The Material widget has been completed to the point where you should now be able to replace widgets controlling a
FemModel’s YoungsModulus, PoissonsRatio, and warping properties with a single widget controlling the model’s
material property. One remaining issue is that the Material widget will still not work properly with a group of objects
(such as a collection of elements). Obviously this needs to be fixed.

If you create a widget for a property whose value is double, the widget will now automatically contain a slider. The
range of the slider will be determined automatically from the current value of the property. If the current value is zero,
then a default range of [0,1] will be assigned. This is not restrictive since slider ranges now readjust on the fly, as
described next.

Sliders fields have been modified so that if you enter a number in the text box that exceeds the slider’s range, the range
will be automatically increased to accommodate this. This was done by giving these components a ’slider range’ in
addition to their regular range. Slider ranges must still lie within the regular range, but since the regular range is often
something like [0, +inf] or [-inf, +inf], this is not generally a problem.

Finally, slider widgets have been altered so that the system tries to ensure that they have a track length of 200 pixels.
This helps ensure reasonable value increments as long as the slider’s range is itself cleanly divisible by 200.

Sept 3, 2009

Support has been added for nonlinear FEM materials. For application programming, a material property has been
added to both FemModel and FemElement. This is a composite property whose sub-properties describe the parameters
of the material in question. A FemElement’s material can be null, in which case the material for the FemModel is used
instead.

https://www.artisynth.org/doc/artisynth_core_3.7/pdf/documentation.pdf

ArtiSynth Update Log 99

A new type of widget, called a MaterialPanel, has been created in artisynth.core.qgui to support editing of
materials and their properties.

Some simple materials are defined in artisynth.core.femmodels.materials.

There are still some rough edges being sorted out in the code. Incompressible materials are currently implemented
using a penalty method. This has yet to be unified with the constraint-based incompressibility available for tetrahedral
elements.

July 31, 2009

The ArtiSynth website now has an update log that you can access from the sidebar heading Update Log. All messages
posted to the artisynth-updates mailing list will appear there in a more readable form.

The update log is written in AsciiDoc and its source is located in SARTISYNTH_HOME/doc/updates/updates.txt.
You can make your own changes to the log if your system is configured to compile ArtiSynth documentation (see
Writing Documentation for ArtiSynth) and you have an account on the ArtiSynth web server machine.

Running the command
> make post

from within the updates directory will compile updates.txt into Atml and copy it to the website. You must have the
environment variable SARTISYNTH_WEB_ACCOUNT set to the name of your account on the web server.

Other things: all Asciidoc documentation on the website is now nested within the main frame (thanks to Byron for this),
and artdoc (the interface to AsciiDoc that generates documentation) has two new options:

—no-contents

do not create a table of contents

—section-number-depth depth

set the section number depth (where 0 disables numbering)

July 27, 2009

Probes has been modified so that start times, stop times, and update intervals are now specified in seconds instead of
ticks. This removes the need to call TimeBase.secondsToTicks () when accessing these quantities. All committed
code has been reformatted, so you shouldn’t need to do anything. All testing comes up clean, but let Dr. Lloyd know if
you see anything suspicious. A good number of files were touched so you should do a general update. Some internal
ArtiSynth code still uses ticks, so the convenience methods getStartTimeTicks () and getStopTimeTicks () have
been provided. Also, start and stop times are still written to files using ticks; this is to prevent breaking existing files and
will be changed when all the probe data files are converted.

July 26, 2009

The LegendDisplay code that controls the plotting of lines in NumericProbeBase displays has been reimplemented.
The main changes are:

1. The legend now contains more informative labeling which is based, if possible, on the properties associated with the
probe. 2. Labels can be set by the user: right click at the bottom of the panel and select "Enable label editing". 3. Legend
information is saved and restored with the probe.

In terms of implementation, the LegendDisplay is now actually owned by its probe, which may not be ideal but solves
a lot of problems and is consistent with the fact that the displays themselves are owned by the probe. All Legend code
that was in Probelnfo has been removed. Also, the LegendDisplay is now a subclass of PropertyPanel, which greatly
simplifies the code.

http://www.magic.ubc.ca/artisynth/pmwiki.php?n=Documentation.Documentation
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/gui/LegendDisplay.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/probes/NumericProbeBase.html
https://www.artisynth.org/doc/artisynth_core_3.7/javadocs/artisynth/core/gui/timeline/ProbeInfo.html

ArtiSynth Update Log 100

July 20, 2009

The last major updates for the collision code have been checked in. Here are the highlights:

Collision APl in MechModel

* The collision behavior between all Collidable bodies is specified in a MechModel using setCollisions (a, b,

enabled, friction) where ’a’,’b’ specifies a pair of Collidables, ’enable’ enables or disables collisions, and
“friction’ gives the coefficient of friction.

* You can specify collisions between individual collidables, or use Collidable.RigidBody or Collidable.Deformable
to specify default collision behaviors for

- RigidBody-RigidBody
— RigidBody-Deformable

— Deformable-Deformable

e The convenience method setDefaultCollisions (enabled, friction) specifies all three of the above.

* Default and specific collidables cannot currently be mixed; e.g., you cannot do

RigidBody box = createBox () ;
setCollisions (box, Collidable.RigidBody) ;

* The collision behavior for any pair of Collidables can be queried using getCollisions (a, b);. If the pairis
contained in one or more sub-models, then explicitly set behaviors in higher level models take priority. For example,
setCollisions(a, b, true, 1); hasahigher priority than subModel.setCollisions(a, b, false, 0);.

If there is no explicitly set behavior for the pair, then the default behavior in the lowest level sub-model containing
(a,Db) is used. The returned behavior will be determined by

— any explicitly set behavior for (a,b), or

— the default behavior for the given pair type.

Graphically Editing Collisions

There are several ways to graphically edit collisions.

* Select a MechModel, followed by "Edit Collisions" from the context menu. This will bring up a panel that shows you
the default settings for the model, plus all explicitly specified collision pairs, in the current model and any sub-model.
The latter are presented using a two-level expandable tree. To set new behaviors, select the desired defaults and/or
explicit pairs, set the desired enabled and the friction settings in the fields below the JTree, and click "Set". To remove
explicitly set behaviors from the current model, select said behaviors and click "Unset".

 Select a set of Collidables, followed by "Set Collisions" in the context menu. This will bring up a dialog which lets you
collectively set the collision behavior between all the selected collidables. This is done by adding explicit behaviors
in the lowest level MechModel containing all the collidables (or in the MechModel associated with the most recently
opened "Edit Collisions" panel).

* Select a set of Collidables, followed by "Unset Collisions" in the context menu. This will delete any explicitly set
collision behaviors between the selected collidables in the lowest level MechModel containing them all (or in the
MechModel associated with the most recently opened "Edit Collisions" panel).

ArtiSynth Update Log 101

Creating Basic RigidBodies

Some factory methods for creating RigidBodies have also been added. These automatically create the required mesh and
set the inertia:

RigidBody.createBox (name, wx, wy, wz, density);
RigidBody.createSphere (name, r, density, nslices);
RigidBody.createEllipsoid (name, a, b, c, density, nslices);
RigidBody.createCylinder (name, r, h, density, nsides);
RigidBody.createFromMesh (name, mesh, density, scale);
RigidBody.createFromMesh (name, meshFilePath, density, scale);

July 3, 2009

A collection of updates has been checked into CVS. The bulk of these involve reformatting code in several packages, so
a lot of files were touched, albeit without much change in functionality. The main changes are:

» Explicit integrators now use body coordinates by default. This shouldn’t cause any problem, but if it does, you can
revert by setting

private static boolean useBodyCoordsForExplicit = false;

MechSystemSolver.java.

* There is improved functionality for adding waypoints. Selecting "Add WayPoint(s) ..." on the timeline model track now
provides you with a "repeat" field that lets you add a whole bunch of waypoints in one go.

* Another option, "Delete Waypoints", lets you delete all waypoints (except for the first one) in one go.

June 29, 2009

Work on converting property paths from the old format to the new one has been checked in. A number of .java, .art, and
.probe files were touched, so updating is a good idea.

June 24, 2009

Modifications to code have been checked in, including:
* New editing functionality that allows attaching points to other points or to rigid bodies, or to remove these attach-
ments.

» Reformating the code in artisynth.core.gui.editorManager; this is a start at reformatting all the code as we have been
discussing, in order to make it more compatible with standard practice and hopefully easier for most people to write
and understand.

* An eclipse settings file for the new code format can be found in

\SARTISYNTH_HOME/support/eclipse/artisynthCodeFormat .xml

ArtiSynth Update Log 102

June 16, 2009

New property paths are now in effect. This affects both Java code and the .art files containing model and probe informa-
tion. Please do an update on the entire distribution. The property part of the path is now separated from the component
path by a semi-colon, as in models/mechmodel/particles/0:mass. Previously, a’/’ was used, so that the above
would have appeared as models/mechmodel/particles/0/mass. As many of the easily found old-style paths have
been updated, in both the Java code and .art files, but some may have been missed. Qsubst may be helpful in fixing any
.art files you have that are not checked in. The following invocations may be useful, and can be used independently:

> gsubst / (property="["\s]*)/([*/:"]1*")" "\1:\2' -re -find ’'*.art’

> gsubst ’/excitation’ ’:excitation’ -find ’*.art’

ArtiSynth is still forgiving if it encounters an old-style path name, and it will print a warning message like this:

Warning:
Old style property path models/jawmodel/frameMarkers/lowerincisor/displacement should be replaced with
models/jawmodel/frameMarkers/lowerincisor:displacement

which should be taken as a strong hint to fix old-style path.

June 15, 2009

Most of these involve improving the editing of RigidBody geometry and inertia, which in turn required some changes
and additions to the widget code. The artisynth script has been reworked. The main changes are:

* artisynth -help now works properly

* the log file is placed in SARTISYNTH_HOME/tmp, instead of SARTISYNTH_HOME

* The -v option has been removed. Output is sent to the console (as well as the log file) by default. If you don’t want

console output, use the —s option.

Note that the log file is a bit of a hack and may change/disappear later.

May 29, 2009

» Unstable behavior is now detected properly and you get an appropriate exception indicating such, rather than some
side effect like Bad Cholesky factorization.

» Dragger positions are now kept current with the bounded box for selected objects (or the coordinate frame if a single
Frame or RigidBody is selected).

* Button masks for things like the context menu are now stored in artisynth.core.gui.ButtonMask (the context
menu mask used to be stored in artisynth.core.gui.selectionManager.SelectionManager).

* All GUI components that create context popups now use ButtonMask.getContextMenuMask () and so should work
properly on the MacBook.

* To add Frame markers, you now use the add FrameMarkers option with a MechModel selected, and you can click on
any rigid body owned by that MechModel.

» Some extra material and figures has been added to doc/uiguide

ArtiSynth Update Log 103

May 26, 2009

Component names can no longer contain a colon ’:’, because that character is used in component/property path

names. It has been illegal for a number of weeks, but it has just been removed from names in existing model files, and
replaced with an underscore ’_’. This mostly affects tongue data files, where muscle groups were often given names like
"£12:3". Those names now look like "f12_3". If you have model or probe files that are not part of the checked-in code
base, then you can convert *:” to ’_’ yourself using the qsubst command:

> gsubst ‘name="([":]1*): ([":]1*)"" "name="\1_\2"' -re <files> ...

Also, this is no longer used in component path names. Instead, the *.” character is used, in complete analogy with
Unix path names. For example, “=this” has been replaced with “=.” in model and probe files; please do the same for
files that are not part of the code base.

May 21, 2009

A new command called gsubst has been added to SARTISYNTH_HOME /bin. It’s a python script that allows you to do
interactive string replacement in a set of files. You specify a string expression, its replacement, and one or more files,
and it goes through each file, prints all the matches with some surrounding context lines, and you hit a key indicating
whether or not to do the replacement. Hitting * > means replace, 'n’ means don’t replace. For example,

> gsubst double float Vector.java Matrix.java

will let you interactively replace "double’ with *float’ in Vector. java and Matrix. java. There are additional key
commands as well as some command line options;

> gsubst -help

provides a synopsis. In particular, if you specify the -re option, then the expression is a Python regular expression,

and the replacement string can contain group names. Fairly powerful stuff. qsubst will probably come in handy for
modifying model and probe files. No guarantees are made for Windows; that depends on how well the curses package
is supported.

May 14, 2009

Some fairly major ArtiSynth changes have been checked in. The visible changes are not that large, but there was some
significant code refactoring and about 200 files were modified. Users should do a cvs update -dP from the artisynth
root directory. These changes include:

e Adding documentation in the doc directory.

» Refactoring of the widget and viewer interface code.

¢ Changes in the look-and-feel of the probe editors.

* The grid and the clip planes now have properties, which allow you to set the grid spacing, color, line width, etc. To
edit properties for the grid, right click on the grid resolution widget (which appears at the right of the menu bar when
the grid is enabled). To edit properties for the clip planes, right click on the appropriate clip plane icon.

* The Viewer now has some properties too. To edit them, right click in the viewer when nothing else is selected. More
properties will be exposed in the future.

