
ArtiSynth Reference Manual

John Lloyd

September, 2021



ArtiSynth Reference Manual 2

Contents

1 Component Hierarchy 3

1.1 Model Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Component References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 CompositeComponentBase, ComponentList, and ComponentListImpl . . . . . . . . . . . . . . . . . . . 7

2 Models 8

2.1 Models and State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Model Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Controllers and monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Models associated with agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Model agent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Root Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Advancing Models in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Adaptive Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Writing and Scanning Components 14

3.1 Writing components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Writing references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Writing child components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Scanning components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Scanning references and post-scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Scanning child components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Post-scanning implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Post-scanning property values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.5 Invoking the complete scan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 File and token structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



ArtiSynth Reference Manual 3

Artisynth is a mechanical modeling system that allows users to combine finite element method (FEM) components with

multibody systems, constraints, and collision handling. It is implemented in Java, and provides a graphical interface for

interactive model editing and simulation control.

At present, most Artisynth models are created with Java code, using the Artisynth API. The programmatic aspects of

Artisynth are the focus of this manual.

1 Component Hierarchy

1.1 Model Components

Artsynth models are created from a hierarchy of components. Each component is an instance of ModelComponent,

which contains a number of methods used to maintain the component hierarchy. These include methods for naming and

numbering components:

// get the name for this component

String getName();

// set the name for this component

void setName (String name);

// get the number of this component

int getNumber();

// set the number of this component (for internal use only)

void setNumber (int num);

Each component can be assigned a name, which can be any sequence of characters that does not begin with a digit, does

not contain the characters ’.’, ’/’, ’:’, ’*’, or ’?’, and does not equal the string "null". For components which are not

assigned a name, getName() will return null.

Artisynth may also be configured so that components names must be unique for all components which are children of

the same parent.

Even if a component does not have a name, it has a number, which identifies it with respect to its parent. Numbers are

assigned automatically when a component is added to its parent, and persist unchanged until the component is removed

from its parent. This persistence of numbers is important to ensure that components keep the same path name as long as

they are connected to the hierarchy.

Names and/or numbers can be used to form a path name for each component that identifies its place in the hierarchy. If a

component does not have a name, its number is used in the path instead. Some example path names look like:

models/jawmodel/axialSprings /lat

models/mech/models/tongue/bundles/2/ elementDescs /12

ModelComponent contains a number of other methods for navigating and maintaining hierarchy structure:

// get the parent of this component

CompositeComponent getParent ();

// sets the parent of this component (internal use only)

void setParent(CompositeComponent parent);

// called by the system after a component, or one of its ancestors,

// is added to the component hierarchy by attaching it to hcomp

void connectToHierarchy (CompositeComponent hcomp);

// called by the system before a component, or one of its ancestors,

// is removed from the component hierarchy by detaching it from hcomp

void disconnectFromHierarchy ();

// get all hard references for this component (see below)

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getName--


ArtiSynth Reference Manual 4

void getHardReferences (List <ModelComponent > refs);

// get all soft references for this component (see below)

void getSoftReferences (List <ModelComponent > refs);

// called to update the component when soft references are removed

void updateReferences (boolean undo , Deque <Object > undoInfo);

// notify the parent of a change in this component

void notifyParentOfChange (ComponentChangeEvent e);

// returns true if this component contains state information

boolean hasState();

getParent() returns the component’s parent, which is a CompositeComponent (Section 1.3). Conversely, if getParent()

returns null, the component is not attached to any parent and is not connected to the hierarchy unless it is the top-level

RootModel component (Section 2.3).

When a model component (or one of its ancestors) is added or removed from the component hierarchy, its methods

connectToHierarchy(hcomp) or disconnectFromHierarchy(hcomp) are called, with hcomp indicating the hierarchy

component to which the component (or ancestor) was attached or detached. When either of these methods are called, the

component will still be connected to the hierarchy, and so hierarchy-dependent initialization or deinitialization can be

performed, like setting (or removing) back pointers to references, etc.:

connectToHierarchy () {

... perform hierarchy-dependent initialization ...

}

disconnectFromHierarchy (CompositeComponent parent) {

... undo hierarchy-dependent initialization ...

}

The methods getHardReferences() and getSoftReferences() are described in Section 1.2.

It is also necessary to notify components in the hierarchy when there are changes in structure or component properties,

so that the necessary adjustments can be made, including the clearing of cached data. Notification is done using the

method notifyParentOfChange(), which propagates an appropriate change event up the hierarchy. It will typically do this

by calling the componentChanged() method of the parent (see Section 1.3).

The method hasState() should return true if the component contains state information. This is always true if the

component contains dynamic state information such as positions or velocities, but components may sometimes contain

additional state information (such as contact state). Structural changes involving the addtion or removal of state-bearing

components should be announced to the system by calling notifyParentOfChange() with a ComponentChangeEvent

for which stateChanged() returns true.

A ModelComponent also maintains a number of flags:

// returns true if a component is selected

boolean isSelected ();

// sets whether or not a component is selected (system use only)

void setSelected (boolean selected);

// returns true if a component should not be removed from its parent

boolean isFixed();

// sets whether or not a component should be removed from its parent

void setFixed (boolean fixed);

// returns true if a component is marked

boolean isMarked();

// sets whether or not a component is marked

void setMarked (boolean marked);

All of these flags are false by default.

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getParent--
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#connectToHierarchy-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#disconnectFromHierarchy-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#notifyParentOfChange-artisynth.core.modelbase.ComponentChangeEvent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html#componentChanged-artisynth.core.modelbase.ComponentChangeEvent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#hasState--
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentChangeEvent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentChangeEvent.html#stateChanged--


ArtiSynth Reference Manual 5

selected indicates whether or not a component is selected. Components can be selected using various selection

mechanisms in the Artisynth interface, such as the navigation panel or the viewer. When selected, its isSelected()

method will return true.

fixed indicates, if true, that a component should not be removed from its parent. It is used to fix required child

components of composite components that contain otherwise removable children (Section 1.4).

marked is available for use by graph-processing algorithms involving the component hierarchy, to indicate when a

component has been visited or otherwise processed. This flag should be used with care to avoid side effects.

Important:

setSelected() should only be used by the SelectionManager, and should not be called by applications. Program-

matic component selection should be performed by calling the addSelected() or removeSelected() methods of

the SelectionManager.

Finally, all ModelComponents implement the interface Scannable, which provides methods for writing and scanning to

and from persistent storage. Details are given in Section 3.

For convenience, ModelComponentBase provides a base implementations of all the ModelComponent methods. Most

ArtiSynth components inherit from ModelComponentBase.

1.2 Component References

Model components can reference additional components outside of the parent-child relationships of the hierarchy. For

example, a point-to-point spring contains two references to its end-points, which are themselves model components.

As another example, components which implement the ExcitationComponent interface can maintain references to

other ExcitationComponents to use as excitation sources. References can be considered to be either hard or soft. A

hard reference is one which the component requires in order for its continued existence to be meaningful. The end-point

references for a point-to-point spring are usually hard. A soft reference is one that the component can do without, such

as the excitation source inputs mentioned above. The methods getHardReferences() and getSoftReferences() are used to

report all hard and soft references held by a component.

Note:

getHardReferences() and getSoftReferences() should report only references held by the component itself,

and not those held by any of its descendents.

The distinction between hard and soft references is used by the system when components in the hierarchy are deleted.

A component that holds a hard reference to a deleted component is generally deleted as well. However, when only

soft references are deleted, then the updateReferences() method of the referring component is called to update the

component’s internal structures. updateReferences() should also store information about the update, to allow the

update to be undone in case the method is called later with its undo argument set to true. A typical implementation

pattern for updateReferences() is shown by the following example, in which maspack.util.ListRemove is used to

remove selected items from a list of soft references, and store information needed to undo this later:

ArrayList<ModelComponent > mySoftRefs;

...

void updateReferences (boolean undo , Deque <Object > undoInfo) {

super.updateReferences (undo , undoInfo);

if (undo) {

// undo the update

Object obj = undoInfo.getFirst();

if (obj != ModelComponentBase .NULL_OBJ) {

(( ListRemove<ModelComponent >)obj).undo ();

}

}

else {

// remove soft references which aren ’t in the hierarchy any more:

ListRemove <ModelComponent > remove = null;

for (int i=0; i<mySoftRefs.size(); i++) {

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#isSelected--
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#setSelected-boolean-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponentBase.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getHardReferences-java.util.List-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getSoftReferences-java.util.List-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#updateReferences-boolean-java.util.Deque-


ArtiSynth Reference Manual 6

if (!ComponentUtils .areConnected (this , mySoftRefs .get(i)) {

// reference isn ’t in the hierarchy; request its removal

if (remove == null) {

remove = new ListRemove<ModelComponent >(mySoftRefs );

}

remove.requestRemove (i);

}

}

if (remove != null) {

remove.remove();

undoInfo.addLast (remove);

}

else {

undoInfo.addLast (ModelComponentBase .NULL_OBJ);

}

}

}

When updating, the method uses ComponentUtils.areConnected() to determine which soft references have been deleted

from the hierarchy. A ListRemove object is used to assemble the remove requests and then perform the remove all

at once and store information about what was removed for possible later undoing. The remove object is appended to

the end of undoInfo. If no undo was needed, then NULL_OBJ is stored instead because Deque objects don’t accept

null arguments. Undo information is stored at the end of the deque and removed from the front. This allows multiple

updates, including that for the super class, to be performed in sequence.

1.3 Composite Components

CompositeComponent is a subinterface of ModelComponent which can contain children. Its main methods include:

// returns the number of child components

int numComponents ();

// gets a child component by name

ModelComponent get (String name);

// gets a child component by index

ModelComponent get (int idx);

// gets a child component by number

ModelComponent getByNumber (int num);

// returns the index of a child component

int indexOf (ModelComponent c);

// finds a descendent component with a specified path relative to this component

ModelComponent findComponent (String name);

// called when a change occurs in one of the descendants .

void componentChanged (ComponentChangeEvent e);

Most of the above methods are self-explanatory. It is important to note the difference between indices and numbers

when identifying child components. An index is the location of the child within the list of children, starting from

0, and can change as children are added or removed. A number, on the other hand, as described above, is assigned

automatically to a child when it is added to the parent and persists as long as it remains.

The componentChanged() method is called to indicate structure or property changes. Appropriate actions may include

clearing cached data, and propogating the event further up the hierarchy (using notifyParentOfChange()).

MutableCompositeComponent is a subinterface of CompositeComponent which allows child components to be added

and removed by an ArtiSynth application. It is a generic class parameterized by a class type C which must be an

extension of ModelComponent. Its definition is:

public interface MutableCompositeComponent <C extends ModelComponent >

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentUtils.html#areConnected-artisynth.core.modelbase.ModelComponent-artisynth.core.modelbase.ModelComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html


ArtiSynth Reference Manual 7

extends CompositeComponent {

// add a component; return false if not possible

public boolean add (C comp);

// add a set of components at specified index locations

// (mainly for internal system use)

public void addComponents (ModelComponent [] comps , int[] indices , int num);

// remove a component; return false if not found

public boolean remove (C comp);

// removes a set of components and stores their original

// index locations (mainly for internal system use)

public void removeComponents (ModelComponent [] comps , int[] indices , int num);

}

1.4 CompositeComponentBase, ComponentList, and ComponentListImpl

A default implementation of CompositeComponent is provided by CompositeComponentBase. It is a non-generic class

that provides a base for composite components whose composition is created at construction time and is not intended to

change during the running of an ArtiSynth application.

ComponentList is a much more flexible class which implements MutableCompositeComponent and provides for

collections of components whose composition may be built and changed by an application. ComponentList is used

widely to store the many lists of components that comprise a working ArtiSynth model.

[]

In particular, MechModel and FemModel3d, the primary ArtiSynth classes for implementing mechanical and finite

element models, are themselves subclasses of ComponentList which contain lists of mechanical components (such as

particles, rigid bodies, and force effectors for MechModel, and nodes, elements, and geometry for FemModel3d).

In the case of MechModel, applications can create and add their own component lists to the model itself:

MechModel mech;

....

ComponentList <Particle > bigParticles =

new ComponentList <Particle >(Particle.class , "big");

ComponentList <Particle > smallParticles =

new ComponentList <Particle >(Particle.class , "small");

mech.add (bigParticles );

mech.add (smallParticles );

By default, child components that belong to a MutableCompositeComponent (which includes ComponentList)

may be selected by the ArtiSynth application for deletion. This may be undesirable, particularly if internal

structures depend on certain child components. Components that should not be removed from their parents should

have their fixed flag set to true in the composite component constructor, either by calling setFixed(), or by adding

the component using the addFixed() method of ComponentList.

The class ComponentListImpl is available as an internal implementation class for constructing instances of either

CompositeComponent or MutableCompositeComponent. It provides most of the implementation methods needed for a

mutable component list, which can be exposed in the client class using delegate methods. Components implementing

only CompositeComponent may choose to expose only some of these methods. For details, one should consult the

source code for CompositeComponentBase or ComponentList.

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponentBase.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentList.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/mechmodels/MechModel.html
https://www.artisynth.org/doc/javadocs/artisynth/core/femmodels/FemModel3d.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#setFixed-boolean-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentList.html#addFixed-artisynth.core.modelbase.ModelComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponentBase.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentList.html


ArtiSynth Reference Manual 8

2 Models

2.1 Models and State

A Model is a specific ModelComponent that can contain state and be advanced forward in time.

The methods associated with time advancement are:

// initialize the model for time t

void initialize (double t)

// prepare to advance the model from time t0 to t1

StepAdjustment preadvance (double t0, double t1);

// advance the model from time t0 to t1

StepAdjustment advance (double t0, double t1);

// gets the maximum step size for advancement (or -1 if undefined)

double getMaxStepSize ();

initialize() is called to initialize the model for a particular time. It is called at the beginning of a simulation (with

time t = 0), when the model is moved to a state and time defined by a WayPoint, and when a step is repeated during

adaptive stepping (Section 2.5).

preadvance() is called to prepare the model for advancement from time t0 to t1. Often this method does nothing; it

is supplied for situtations where the model needs to perform computation before the application of controllers or input

probes (Section 2.2), such as evolving internal state in some way. The method can optionally return a StepAdjustment

object to request a change in step size (Section 2.5).

advance() is called to advance the model from time t0 to t1. This is the main driver method for simulation, and

typically involves solving an ordinary differential equation (ODE) associated with an underlying mechanical system,

for which the model employs an internal physics solver. The method can optionally return a StepAdjustment object to

request a change in step size (Section 2.5).

A very basic simulation might proceed as follows:

t = 0;

model.initialize (t);

while (simulating ) {

model.preadvance (t, t+h);

model.advance (t, t+h);

t = t+h;

}

The rate of advancement (h in the above example) is limited by the model’s effective step size, which is nominally the

maximum step size of the root model (Section 2.3). The model can override this by providing its own maximum step

size (via getMaxStepSize()) that is less than that of the root model. Advance intervals can be smaller than the effective

step size, if required by other time events imposed by WayPoints, rendering, or output probes. The effective step size

may also be reduced when adaptive stepping is employed (Section 2.5).

A model can contain state, which is defined to be all information needed to deterministically advance it forward in time.

Models can contain state, as supported by the following methods:

// creates an appropriate state object for storing model state

ComponentState createState ();

// gets the current state for this model

void getState (ComponentState state);

// sets the current state for this model

void setState (ComponentState state);

If a model actually maintains state, then its hasState() method (inherited from ModelComponent) should return true,

and createState() should create an appropriate object for saving and restoring the state using using getState() and

setState().

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/Model.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/StepAdjustment.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/StepAdjustment.html


ArtiSynth Reference Manual 9

The state of a model should contain all the internal information required to advance it forward in time. In particular, in

the code fragment,

model.getState (state); // save state

model.preadvance (t1, t2);

model.advance (t1, t2);

model.setState (state); // restore state and

model.initialize (t1); // reinitialize to time t1

model.preadvance (t1, t2);

model.advance (t1, t2);

the model should have the exact same state and appearance after both the first and seconds calls to advance() (the call

to initialize() is used to reset time-dependent quantities, such as time-dependent forces). For mechanical systems,

the most prominent state quantities are the positions and velocities of the dynamic components, but there can be other

quantities as well, such as contact state and viscoelastic state for FEM models.

2.2 Model Agents

As models are advanced, auxiliary agents can be employed to control the inputs and observe the outputs of the model.

These include probes, controllers, and monitors.

2.2.1 Probes

A Probe is an agent that sets model input data, or records model output data, over a specific window of time. Probes

that set input data are input probes (InputProbe), while those that record output data are output probes (OutputProbe).

Examples of input data include muscle excitation signals or external forces. Output data often includes items such as

velocities, postions, or internal forces.

Input probes can be used to perform a function analagous to the “loading curves” used in FEM analysis.

A probe contains several principal methods:

// apply this probe at time t

apply (double t);

// returns the start time of this probe

double getStartTime ();

// sets the start time

void setStartTime (double t);

// returns the stop time of this probe

double getStopTime ();

// sets the stop time

void setStopTime (double t);

// returns the update interval of this probe (or -1 if undefined)

double getUpdateInterval ();

// sets the update interval

void setUpdateInterval (double dt);

// returns true if this probe is active

boolean isActive();

// sets whether or not this probe is active

void setActive (boolean enable);

The task of applying input data or recording output data is performed in the apply() method, which is called periodi-

cally during the time window delimited by getStartTime() and getStopTime().

https://www.artisynth.org/doc/javadocs/artisynth/core/probes/Probe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/probes/InputProbe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/probes/OutputProbe.html


ArtiSynth Reference Manual 10

The methods isActive() and setActive() control whether or not the probe is active. Inactive probes will not have

their apply() method called by the system. Probe activity is exported as the property active, and allows probes to be

enabled or disabled at run time.

For input probes, the apply() method is called between the the preadvance() and advance() methods of the model it

is associated with (Section 2.2.3). For output probes, apply() is called after the model’s advance() method, whenever

the time advanced to equals an update time for the probe. Update times for an output probe are given by the start and

stop times, plus any time that is an integer multiple of its effective update interval. The effective update interval is given

by either the value returned by getUpdateInterval(), if it is not undefined (i.e., equal to -1), or the effective step size

for the probe’s associated model (Section 2.1).

Note that the start time, stop time, and update interval can also be observed and controlled via the properties startTime,

stopTime, and updateInterval.

The most common types of probes used in ArtiSynth are NumericInputProbe and NumericOutputProbe, which are used

to connect model properties to streams of numeric data which can be edited and observed on the system’s timeline.

Numeric probe data can also be saved to (or loaded from) external files.

2.2.2 Controllers and monitors

Controllers and monitors are other agents that can be used to control or observe a simulation. Controllers are called

immediately before a model’s advance() method (and after the preadvance() method and the application of any input

probes) and are intended to compute control signals, while monitors are called immediately after the advance() method

and are intended to record and process output data.

The primary method for both is

void apply (double t0, double t1)

which performs the work of the agent. The times t0 and t1 are the same times passed to the model’s advance()

method.

As with probes, controllers and monitors can be active or inactive, as determined the method isActive(). Controllers

or monitors which are based on the default implementation classes ControllerBase or MonitorBase export also provide

a setActive() method to control this setting, and export it as the property active. This allows controller and monitor

activity to be controlled at run time.

2.2.3 Models associated with agents

As indicated above, model agents are typically associated with a specific model within the ArtiSynth structure, and are

then applied either before or after the advance() method of that model. Agents which are not explicitly associated with

a model are implicitly associated with the root model Section 2.3.

Methods to obtain and set the associated model include:

// returns the model (if any) associated with this agent

Model getModel();

// sets the model to be associated with this agent

void setModel (Model model);

// searchs for the model to be associated with this agent

void setModelFromComponent (ModelComponent comp);

setModel() sets the model directly, while setModelFromComponent() takes a subcomponet of a model and searches

up the hierarchy to find the model itself. For example, when connecting a component property to a numeric probe, the

system automatically determines the probe’s model by calling setModelFromComponent() on the component hosting

the property.

https://www.artisynth.org/doc/javadocs/artisynth/core/probes/NumericInputProbe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/probes/NumericOutputProbe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ControllerBase.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MonitorBase.html


ArtiSynth Reference Manual 11

2.2.4 Model agent state

Like models, agents can also have state, and therefore implement the same methods hasState(), createState(),

getState(), and setState() described for models in Section 2.1.

The base classes for probes, controllers, and monitors define stateless version of these methods (i.e., hasState()

returns false, and getState() and setState() do nothing), so that agents which actually do contain state must

override these methods.

In the context of agents, state can be thought of as the internal information that is required so that the agent’s actions

and effect on its associated model are always identical for a specific time and state. A common example of state in the

context of a controller or monitor might be the time history used to filter a signal.

Note that the requirement “effect on its associated model” means that state is also needed for input probes to handle

situations when the simulation is moved to a time and state defined by a WayPoint. That’s because probes are applied to

a model only over a specific time window, and so when the simulation is reset to a time outside that window, it is usually

necessary to reset the model attributes controlled by the probe to their original values at that time. As a simple example,

assume that the apply() method of an input probe sets a value x in a model to 10 over the time window [2,4], and that

before that time, x has a value of 0. Now if time is advanced to t = 3, x will be set to 10, and if time is then reset to t = 1

(before the probe’s window), x will need to be restored to 0. This must be done by restoring the probe’s state, since the

apply() method will not be called at t = 1.

At present, NumericInputProbe defines getState() and setState() to save and restore any model property values that

it controls. No state is defined for NumericOutputProbe.

If a controller has state, then it is important to implement getState() and setState() to ensure proper behavior

with respect to both adaptive stepping Section 2.5 and WayPoints. If a probe or monitor has state, implementation

of getState() and setState() is necessary to ensure its proper behavior with respect to WayPoints, but not

adaptive stepping, since probe and monitor state is not changed during adaptive stepping).

2.3 The Root Model

All the models simulated by ArtiSynth at any given time are collected together within a root model (RootModel), which

is the top-level model component in the hierarchy. Every system that is simulated by ArtiSynth is associated with a

specific instance of a RootModel, and is typically created in code by subclassing RootModel and then creating and

assembling the necessary components in the subclass’s constructor. Alternately, a RootModel can be loaded from a file,

in which case a generic RootModel is created and then populated with structures determined from the file.

A RootModel contains a list of all the system’s models, probes, controllers, and monitors. Methods to add or remove

these include:

addModel (Model model);

removeModel (Model model);

removeAllModels ();

addInputProbe (InputProbe probe);

removeInputProbe (InputProbe probe);

removeAllInputProbes ();

addController (Controller controller );

removeController (Controller controller);

removeAllControllers ();

addMonitor (Monitor monitor);

removeMonitor (Monitor monitor);

removeAllMonitors ();

addOutputProbe (OutputProbe probe);

removeOutputProbe (OutputProbe probe);

removeAllOutputProbes ();

https://www.artisynth.org/doc/javadocs/artisynth/core/probes/NumericInputProbe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/probes/NumericOutputProbe.html
https://www.artisynth.org/doc/javadocs/artisynth/core/workspace/RootModel.html


ArtiSynth Reference Manual 12

2.4 Advancing Models in Time

The root model is the top-level object seen by the ArtiSynth scheduler when running a simulation. As a simulation

proceeds, the scheduler determines the next time to advance to and then calls the root model’s advance() method:

double t0; // current time

while (simulating ) {

t1 = getNextAdvanceTime (t0);

rootModel.advance (t0, t1);

}

In turn, the advance() method then individually advances all the models contained in the root model, as described

below. The next advance time t1, computed by getNextAdvanceTime(), is determined mainly by the root model’s

maximum step size (returned by RootModel.getMaxStepSize()), along with other events such as WayPoint locations

and the render update rate.

The root model’s maximum step size is therefore the primary simulation step size. It can be set using the method

RootModel.setMaxStepSize(), and is exposed as the RootModel property maxStepSize. It is also coupled to the

"step" display in the ArtiSynth GUI, and can also be obtained or set using Main.getMaxStep() or Main.setMaxStep().

When a RootModel is created, if its maximum step size is not set explicitly (either in the constructor or in a file spec-

ification), then it is set to a default value which is either 0.01, or the value specified by the -maxStep command line

argument.

A RootModel advances each of its models in sequence, using a procedure called advanceModel(). Because a model

may have a maximum step size (as returned by getMaxStepSize()) that is less than that of the root model, or some

of its output probes may have events that preceed t1, each model is advanced using a series of sub-advances, with

advanceModel() taking the form of a loop:

advanceModel (model , t0, t1) {

ta = t0;

while (ta < t1) {

tb = getNextAdvanceTime (model , ta, t1);

model.preadvance (ta, tb);

applyInputProbes (model , tb);

applyControllers (model , ta, tb);

model.advance (ta, tb);

applyMonitors (model , ta, tb);

applyOutputProbes (model , tb);

ta = tb;

}

}

Each time through the loop, getNextAdvanceTime() determines the next appropriate sub-advance time tb, and then

calls the model’s advance() method, surrounded by the application of any probes, controllers or monitors that are

associated with it. The preadvance() method is called first, followed by input probes and controllers. Then advance()

is called, monitors are applied, and output probes are applied if their next update time is equal to tb.

The apply time for input probes is not the time ta at the beginning of the time step, but rather the time tb cor-

responding to its end. This might seem counterintuitive, but makes sense when one considers that input probes

are generally used to provide targets for the advance process, and we typically want targets specified for the end

of the time step. If the target is a force, then this is also consistent with implicit integration methods (used most

commonly by ArtiSynth) which solve for the system forces at the end of the time step.

The RootModel advance() method in turn calls advanceModel() for all models, surrounded by the application of

any probes, controllers and monitors which do not have specific models of their own and are therefore considered to be

“owned” by the root model. Because some of these output probes may have event times that preceed the desired advance

time of t1, this process is also done in a loop:

advance (t0, t1) {

ta = t0;

while (ta < t1) {



ArtiSynth Reference Manual 13

tb = getNextAdvanceTime (root , ta, t1);

applyInputProbes (root , tb);

applyControllers (root , ta, tb);

for (each model m) {

advanceModel (m, ta, tb);

}

applyMonitors (root , ta, tb);

applyOutputProbes (root , tb);

ta = tb;

}

}

Note that at present, the preadvance() method for a root model does nothing and is not called.

2.5 Adaptive Stepping

It is possible for models to request adaptive time stepping, which may be necessary if the model determines that a

requested time step is too large for stable simulation. The model can indicate this by having either its preadvance()

or advance() methods return a StepAdjustment object, which contains a recommended scaling for the step size via its

scaling attribute. Then, if adaptive stepping is enabled in the root model, it will reduce the effective time step for the

model and redo the advance. If preadvance() or advance() return null, then it is assumed that the step size should

remain unchanged (which is equivalent to returning a StepAdjustment with a scaling of 1).

Adaptive time stepping can be enabled or disabled using the adaptiveStepping property of RootModel, or by using

the RootModel methods

boolean getAdaptiveStepping ();

void setAdaptiveStepping (boolean enable);

When adaptive stepping is enabled, the inner loop of the advanceModel() procedure described above is modified to the

following:

while (ta < t1) {

tb = getNextAdvanceTime (model , ta, s);

model.getState (state);

do {

s = GET_SCALING (model.preadvance (ta, tb));

if (s >= 1) {

applyInputProbes (model , tb);

applyControllers (model , ta, tb);

s = GET_SCALING (model.advance (ta, tb));

}

if (s < 1) {

tb = reduceAdvanceTime (model , ta, tb, s);

model.setState (state);

model.initialize (ta);

}

}

while (s < 1);

applyMonitors (model , ta, tb);

applyOutputProbes (model , tb);

ta = tb;

}

where GET_SCALING() returns 1 if preadvance() or advance() returns null, or the value of StepAdjustment.getScaling()

otherwise.

At the beginning of the loop, the model’s state is saved in case a retry is necessary. Then if preadvance or advance()

recommend scaling the step by s < 1, the advance time is reduced (by reducing the model’s effective step size), the state

is restored to what is was at the beginning of the step, and the step is retried. After a step succeeds, the root model will

incrementally try to increase the effective step size, up to its nominal value.

The exact interpretation of the scaling value s is as follows:

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/StepAdjustment.html


ArtiSynth Reference Manual 14

s = 0: Advance unsuccessful; no recommendation as to how much to reduce the next step.

0 < s < 1: Advance unsuccessful; recommend trying to reduce the step by s*(tb-ta).

s = 1: Advance successful, no recommendation as to how much to increase the step by.

s > 1: Advance successful; recommend trying to increase the step by s*(tb-ta).

When requesting a step size reduction, models may provide a string message indicating the reason via the message

attribute of StepAdjustment. The system will abort if the effective step size falls below the minimum value specified

by the RootModel property getMinStepSize. At present, recommended increases in step size are ignored and treating

simply as s = 1.

Models are of course free to implement adaptive stepping internally, in a way that is invisible to the root model.

However, the saving and restoring of state, along with the algorithms for step size adjustment, are sufficiently

intricate that it is generally convenient to use the adaptive stepping provided by RootModel.

3 Writing and Scanning Components

ArtiSynth model components have the ability to save and restore themselves from persistent storage. They do this by

implementing the write() and scan() methods of maspack.util.Scannable, and the postscan() method of ModelCompo-

nent:

// write this component to a PrintWriter :

void write (PrintWriter pw, NumberFormat fmt, Object ref) throws IOException

// scan the component from a ReaderTokenizer :

void scan (ReaderTokenizer rtok , Object ref) throws IOException

// perform the post -scan pass for this component:

void postscan (Deque <ScanToken> tokens , CompositeComponent ancestor);

// normally returns true but can be overridden to return false

// if for some reason a component should be written to secondary storage

boolean isWritable ();

The operation and implementation of these methods will now be described in detail. A summary of the key points is

given in Section 3.5.

3.1 Writing components

The write() method writes information about the component to a PrintWriter, using NumberFormat to format floating

point numbers where appropriate. The ref argument is used to provide additional context information for generating the

output, and is specifically used to generate path names for other components that are referenced by the component being

written (Section 3.1.1).

In general, each component writes out its attributes as a list of name/value pairs, each of the form

<name >=<value >

with the list itself enclosed between square brackets ’[ ]’ which serve as begin and end delimiters. The value associated

with each attribute name may itself be a quantity (such as a vector, matrix, or another component) delimited by square

brackets. For example, the output for a Particle component may look like this:

[ name=" primary"

position=[ 15.0 0.0 10.0 ]

mass =20.0

dynamic=false

]

https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#write-java.io.PrintWriter-maspack.util.NumberFormat-java.lang.Object-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#scan-maspack.util.ReaderTokenizer-java.lang.Object-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/PostScannable.html#postscan-java.util.Deque-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#write-java.io.PrintWriter-maspack.util.NumberFormat-java.lang.Object-
https://www.artisynth.org/doc/javadocs/maspack/util/NumberFormat.html
https://www.artisynth.org/doc/javadocs/artisynth/core/mechmodels/Particle.html


ArtiSynth Reference Manual 15

The output begins with an openning square bracket, followed by four attribute/value pairs and a closing square bracket.

The position attribute is a 3-vector also enclosed between square brackets.

Within the write() method, the above output could be produced with code like this:

import maspack.util .*;

void write (PrintWriter pw, NumberFormat fmt, Object ref) throws IOException {

pw.print ("[ ");

IndentingPrintWriter .addIndentation (2);

pw.println ("name=" + Write.getQuotedString (myName));

pw.println ("position =[" + myPosition.toString (fmt) + "]");

pw.println ("mass=" + fmt.format(myMass));

pw.println ("dynamic=" + myDynamicP;

IndentingPrintWriter .addIndentation (-2);

pw.println ("]");

}

Output indentation can be controlled by using an IndentingPrintWriter, and IndentingPrintWriter.addIndentation() will

increase (or decrease) output indentation if pw is an instance of IndentingPrintWriter.

In practice, components do not generally need to provide explicit code to write out all their attribute values. In particu-

lar, any information that is associated with a Property (see the Property section of the Maspack Reference Manual) can

be written out automatically using a code fragment of the form:

getAllPropertyInfo ().writeNonDefaultProps (this , pw, fmt);

In addition, any attribute information contained in a component’s superclass will usually be written by that superclass.

The default write() definition for a model component is usually looks something like this:

public void write (PrintWriter pw, NumberFormat fmt , Object ref)

throws IOException {

dowrite (pw, fmt, ref);

}

protected void dowrite (PrintWriter pw, NumberFormat fmt, Object ref)

throws IOException {

CompositeComponent ancestor = ComponentUtils .castRefToAncestor (ref);

IndentingPrintWriter .printOpening (pw, "[ ");

IndentingPrintWriter .addIndentation (pw, 2);

writeItems (pw, fmt , ancestor);

IndentingPrintWriter .addIndentation (pw, -2);

pw.println ("]");

}

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

getAllPropertyInfo ().writeNonDefaultProps (this , pw, fmt);

}

The write() and dowrite() methods take care of writting the square brackets and setting up the initial indentation.

Then a call to writeItems() prints out all necessary property values. The ancestor argument obtained from ref will

be discussed in Section 3.1.1.

If all a component’s attribute information is associated with property values, then it is usually not necessary to provide

any component-specific code for writing the component: the default implementations of write() and writeItems()

will handle it. If a component does have attribute information that is not associated with a property, then it is usually

sufficient to handle this by overriding writeItems(). For example, if a component has a non-property “centroid”

attribute, it can be written by an override of writeItems() constructed like this:

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

https://www.artisynth.org/doc/javadocs/maspack/util/IndentingPrintWriter.html
https://www.artisynth.org/doc/javadocs/maspack/util/IndentingPrintWriter.html#addIndentation-int-
https://www.artisynth.org/doc/javadocs/maspack/properties/Property.html


ArtiSynth Reference Manual 16

throws IOException {

super.writeItems (pw, fmt , ref);

pw.println ("centroid=[" + getCentroid ().toString (fmt) + "]");

}

3.1.1 Writing references

ArtiSynth components often contain references to other components that are not part of their ancestor hierarchy. For

example, a two-point spring will contain references to its two end-point particles, and a FemElement3d will contain

references to its nodes. The set of all references refered to by a component is returned by the combination of the

component’s getHardReferences() getSoftReferences() methods.

Because they generally reside outside a component’s immediate ancestor hierarchy, information about each refer-

ence’s location needs to be explicitly written and scanned as part of writing and scanning a component. The location

information is stored using the component’s path with respect to some known ancestor. This ancestor is passed to the

component’s write() method through the ref argument, and is cast explicitly to CompositeComponent and passed to

writeItems() as the ancestor argument. A component can then use ComponentUtils.getWritePathName() to obtain

the path name of each reference with respect to the ancestor, and write this to the output.

As an example, here is a possible implementation of writeItems() for a two-point spring:

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ancestor);

pw.println ("point0=" + ComponentUtils .getWritePathName (ancestor ,myPnt0));

pw.println ("point1=" + ComponentUtils .getWritePathName (ancestor ,myPnt1));

}

This will produce an output like this,

point0=" models/points/0"

point1=" models/points/1"

where models/points/n gives the path name of the n-th point with respect to the ancestor. Alternatively, if a compo-

nent has a variable number of references, they can be written out as a list between square brackets:

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ancestor);

pw.println ("points=[");

IndentingPrintWriter .addIndentation (pw, 2);

for (ModelComponent pnt : myPnts) {

pw.println (ComponentUtils .getWritePathName (ancestor ,pnt));

}

IndentingPrintWriter .addIndentation (pw, -2);

pw.println ("]");

}

The above code will produce output like this:

points=[

"models/points/0"

"models/points/1"

"models/points/2"

]

https://www.artisynth.org/doc/javadocs/artisynth/core/femmodels/FemElement3d.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getHardReferences-java.util.List-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ModelComponent.html#getSoftReferences-java.util.List-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentUtils.html#getWritePathName-artisynth.core.modelbase.CompositeComponent-artisynth.core.modelbase.ModelComponent-


ArtiSynth Reference Manual 17

The ancestor used for reading and writing references will always be a common ancestor of both the references and

the refering component. This may sometimes be the root model (i.e., the top of the hierarchy), but more typically

it will be the first common ancestor for which hierarchyContainsReferences() returns true (implying that all

references are contained within the ancestors’s descendants). This allows paths to be written more compactly. Most

Model components presently enforce the hierarchyContainsReferences() condition.

3.1.2 Writing child components

If a component is a CompositeComponent, then it also needs to write out its child components along with its attribute

information. This can be done by recursively calling the children’s write() methods.

If the child component configuration is fixed (i.e., the component does not implement MutableCompositeComponent)

and the children are created in the composite’s constructor, then attribute names can be used to delimit each child. For

example, suppose a component contains two children: a list of particles and a list of springs. This component could then

be written using a code construction such as:

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ref);

pw.print ("particles =");

myParticles .write (pw, fmt , ref);

pw.print ("springs=");

mySprings.write (pw, fmt , ref);

}

If the composite component has been implemented internally using an instance of ComponentListImpl (Section 1.4),

then the above can be written using the latter’s writeComponentsByName() method, which writes each child, using its

component name as an attribute name:

ComponentListImpl myComponents ;

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ref);

myComponents .writeComponentsByName (pw, fmt , ancestor);

}

One the other hand, composite components which are instances of MutableCompositeComponent may not have

predetermined component arrangements and so these components cannot be identified by an attribute name. Instead,

the components must simply be printed out in sequence. For example, the writeItems() method for a list of particles

could be programmed like this:

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ref);

for (int i=0; i<particles.size(); i++) {

particles.get(i).write (pw, fmt, ref);

}

}

This would produce output such as:

[ position=[ 10.0 0.0 20.0 ]

mass =20.0

]

[ position=[ 5.0 0.0 10.0 ]

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/CompositeComponent.html#hierarchyContainsReferences--
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/Model.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#writeComponentsByName-java.io.PrintWriter-maspack.util.NumberFormat-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html


ArtiSynth Reference Manual 18

mass =15.0

]

[ position=[ 15.0 0.0 10.0 ]

mass =20.0

]

[ position=[ 10.0 0.0 0.0 ]

mass =15.0

]

However, when scanning a MutableCompositeComponent, the scan() method (discussed below) needs to create and

scan new child components as it encounters them in the input. It is therefore necessary for scan() to know what class

of component to create. Typically, the composite component has a default component type; for example, the default

type for ComponentList<Particle> is Particle. However, in some cases the components may be subclasses of the

default type, or the default type may be an interface or abstract class and hence not instantiable. In such instances, the

output needs to be augmented with class type information, which is placed before the openning ’[’ of the component

output. The details of how to do this are beyond the scope of this document. However, if the composite component has

been implemented internally using an instance of ComponentListImpl, then one can use the latter’s writeComponents()

method to automatically write out all the components, along with the necessary class information:

ComponentListImpl myComponents ;

protected void writeItems (

PrintWriter pw, NumberFormat fmt, CompositeComponent ancestor)

throws IOException {

super.writeItems (pw, fmt , ref);

myComponents .writeComponents (pw, fmt , ancestor);

}

The result may look something like this:

[ position=[ 10.0 0.0 20.0 ]

mass =20.0

]

artisynth.core.mechmodels.SpecialParticle [

position=[ 5.0 0.0 10.0 ]

mass =15.0

]

[ position=[ 15.0 0.0 10.0 ]

mass =20.0

]

user.projects.CustomParticle [

position=[ 10.0 0.0 0.0 ]

mass =15.0

]

In this example, the second and fourth particles have class types that differ from the default and so class information for

each is prepended to the output.

3.2 Scanning components

The scan() method reads the component in from a token stream provided by a ReaderTokenizer. This translates the

input into a stream of tokens, including words, numbers, and special token characters (such as ’[’, ’]’, and ’=’),

which are then used to parse the input. Authors implementing scanning code should have some familiarity with

ReaderTokenizer. A description is beyond the scope of this document but good documentation is available in the

ReaderTokenizer class header.

The main code inside the default scan() method for a model component looks roughly like this:

public void scan (ReaderTokenizer rtok , Object ref)

throws IOException {

rtok.scanToken (’[’);

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/mechmodels/Particle.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#writeComponents-java.io.PrintWriter-maspack.util.NumberFormat-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#scan-maspack.util.ReaderTokenizer-java.lang.Object-
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html


ArtiSynth Reference Manual 19

while (rtok.nextToken() != ’]’) {

rtok.pushBack();

if (! scanItem (rtok , tokens)) {

throw new IOException ("Unexpected token: " + rtok);

}

}

}

The method looks for and scans the initial ’[’ character (and will throw an IOException if this is not found). It then

reads other tokens (using nextToken()) until the terminating ’]’ character is found. After each token is inspected, it is

pushed back into the token stream using pushBack() and scanItem() is called to try and read an individual attribute or

subcomponent from the input. If scanItem() cannot match the input to any attributes or child components it returns

false.

Note: ReaderTokenizer allows one token of look-ahead, so that any read token can be pushed back once. In

particular, in the following sequence, t1 and t2 should be the same:

t1 = rtok.nextToken();

rtok.pushBack();

t2 = rtok.nextToken();

The default implementation of scanItem() provides code for reading property values and looks something like this:

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

// if attribute name is a property name , scan that property:

if (ScanWriteUtils .scanProperty (rtok , this)) {

return true;

}

rtok.pushBack();

return false;

}

The method begins by getting the next token and then calling ScanWriteUtils.scanProperty() to see if the token is a

word matching the name of one of the component’s properties. If so, then scanProperty() scans and sets the property

value and returns true, and scanItem() itself returns true. Otherwise, scanItem() returns false indicating that it

was unable to find a match for the input. The tokens argument is used to store information whose processing must be

deferred until the post-scan step, as discussed in Section 3.2.1.

Typically, component implementations will not need to override scan() unless the scanning procedure calls for pre- or

post-processing, as in:

public void scan (ReaderTokenizer rtok , Object ref)

throws IOException {

... do pre-processing here ...

super.scan (rtok , ref);

... do post -processing here ...

}

Note that if a class makes use of the post-scan step (Section 3.2.1), then it may be necessary to do the post-processing in

an override of postscan() instead.

Component implementations often will need to override scanItem() to scan additional attribute information. For

example:

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html#nextToken--
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html#pushBack--
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanProperty-maspack.util.ReaderTokenizer-maspack.properties.HasProperties-java.util.Deque-


ArtiSynth Reference Manual 20

if (rtok.ttype == ReaderTokenizer .TT_WORD) {

if (rtok.sval.equals ("attributeXXX ") {

rtok.scanToken (’=’);

... scan information for attribute XXX ...

return true;

}

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

First, the method gets the next token. Then it checks if its type (ttype) corresponds to a WORD token and if the word’s

string value (sval) equals the attribute name attributeXXX. If so, then it scans the ’=’ character following attribute

name, scans whatever information is associated with the attribute, and returns true. Otherwise, if no expected attribute

name is matched, the current token is pushed back, and the superclass method is called to see if it can match the current

input.

Most implementations of ModelComponent provide the convenience method scanAttributeName(rtok, name)

which allows the code fragment

if (rtok.ttype == ReaderTokenizer .TT_WORD) {

if (rtok.sval.equals ("attributeXXX ") {

rtok.scanToken (’=’);

to be replaced with

if (scanAttributeName (rtok , "attributeXXX ")) {

Employing this in a larger example, we have

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

if (scanAttributeName (rtok , "name"))

myName = rtok.scanQuotedString ();

return true;

}

else if (scanAttributeName (rtok , "position")) {

myPosition.scan (rtok);

return true;

}

else if (scanAttributeName (rtok , "mass ")) {

myMass = rtok.scanNumber ();

return true;

}

else if (scanAttributeName (rtok , "dynamic")) {

myDynamicP = rtok.scanBoolean ();

return true;

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

Here, if any of the attribute names name, position, mass, or dynamic are matched, then the corresponding string,

vector, numeric, or boolean attribute values are scanned using scanQuotedString(), the vector’s own scan() method,

scanNumber(), or scanBoolean(). Each of these will throw an IOException if the input token sequence does not match

what is expected.

3.2.1 Scanning references and post-scanning

When scanning a component that contains references, the path for each reference is used to locate the referenced

component within the component hierarchy. However, this poses a problem: because components are created only as the

https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html#scanQuotedString-char-
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html#scanNumber--
https://www.artisynth.org/doc/javadocs/maspack/util/ReaderTokenizer.html#scanBoolean--


ArtiSynth Reference Manual 21

component hierarchy is recursively scanned, it is possible that some references may not yet exist at the time when the

component is scanned. For example, if the points referenced by a two-point spring belong to part of the hierarchy further

"to the right" of the spring components, then when the spring is scanned the points won’t yet exist and the scanning

method will be unable to find them.

The solution to this problem is to employ a two-step scanning process in which the initial scan is followed by a

secondary "post-scan" which can be used to resolve references. Each reference path found during the initial scan is

saved for later use in the post-scan step, by which time all components are guaranteed to have been created. Reference

information, along with any other information needed for the post-scan step, is saved in a queue of ScanTokens supplied

to the scan() method through the ref argument. Several different types of ScanTokens allow different types of

information to be stored: StringTokens are use to store attribute names and reference paths; ObjectTokens are use to

store object pointers; and special marker tokens, ScanToken.BEGIN and ScanToken.END, can be used as delimiters.

At a minimum, scanning each component causes BEGIN and END tokens to be added to the token queue, with additional

tokens added in between as necessary. Revisiting the basic scan() method code shown at the top of Section 3.2, we

show the additional code that is needed to handle this:

public void scan (ReaderTokenizer rtok , Object ref)

throws IOException {

Deque <ScanToken> tokens = (Deque <ScanToken >)ref;

tokens.offer (ScanToken.BEGIN);

rtok.scanToken (’[’);

while (rtok.nextToken() != ’]’) {

rtok.pushBack();

if (! scanItem (rtok , tokens)) {

throw new IOException ("Unexpected token: " + rtok);

}

}

tokens.offer (ScanToken.END);

}

The token queue itself, called tokens, is obtained from the ref argument via an explicit cast. BEGIN and END tokens are

added at the beginning and end of the scan. In between, the token queue is passed to scanItem(), which adds addtional

tokens when necessary.

Within scanItem(), tokens are added to provide whatever information is needed for the post-scan step. This informa-

tion is often provided in the form of two or more tokens comprising an attribute name/value pair, so that the post-scan

step is not sensitive to input ordering. In this sense, the information stored in the token queue will reflect the same

structure as the tokens in the original input.

Consider the first example in 3.1.1 where the reference information for a two-point spring was output as:

point0=" models/points/0"

point1=" models/points/1"

To process this inside scanItem(), we check for the attribute names point0 and point1 and if either is found, we store

both the attribute name and the reference path in the token queue using StringTokens. For point0, the corresponding

code looks like

if (scanAttributeName (rtok , "point0")) {

String refpath = rtok.scanWordOrQuotedString (’"’);

tokens.offer (new StringToken ("point0"));

tokens.offer (new StringToken (refpath));

return true;

}

Most implementations of ModelComponent provide the convenience method scanAndStoreReference (rtok, name,

tokens) which allows this to be compressed into

if (scanAndStoreReference (rtok , "point0", tokens)) {

return true;

}

One may also use ScanWriteUtils.scanAndStoreReference() for the same purpose. The scanItem() method for a

two-point spring can then be written as:

https://www.artisynth.org/doc/javadocs/artisynth/core/util/ScanToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/util/StringToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/util/ObjectToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanAndStoreReference-maspack.util.ReaderTokenizer-java.util.Deque-


ArtiSynth Reference Manual 22

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

if (scanAndStoreReference (rtok , "point0", tokens)) {

return true;

}

else if (scanAndStoreReference (rtok , "point1", tokens)) {

return true;

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

Alternatively, if we have an attribute followed by a list of references enclosed in square brackets, such as

points=[

"models/points/0"

"models/points/1"

"models/points/2"

]

then we want to store a sequence of tokens consisting of the attribute name, a BEGIN token, the reference paths, and an

END token:

"points"

BEGIN

"models/points/0"

"models/points/1"

"models/points/2"

END

That can be done by a code sequence that looks like

if (scanAttributeName (rotk , "points", tokens)) {

rtok.scanToken (’[’);

tokens.offer (new StringToken ("points"));

tokens.offer (ScanToken.BEGIN);

while (rtok.nextToken () != ’]’) {

if (rtok.tokenIsWordOrQuotedString ()) {

tokens.offer (rtok.sval);

}

else {

throw new IOException ("Error: reference path expected");

}

}

tokens.offer (ScanToken.END);

return true;

}

and which is available in most ModelComponent implementations via the convenience method scanAndStoreReferences():

if (scanAndStoreReferences (rtok , "point", tokens)) {

return true;

}

One may also use ScanWriteUtils.scanAndStoreReferences() for the same purpose.

3.2.2 Scanning child components

In addition to their attributes, composite components need to scan in their child components. This can be done by

recursively calling the children’s scan() methods.

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanAndStoreReferences-maspack.util.ReaderTokenizer-java.util.Deque-


ArtiSynth Reference Manual 23

If the child component configuration is fixed (i.e., the component does not implement MutableCompositeComponent),

and the children are created in the composite’s constructor and written out using attribute names as delimiters, then these

attributes names can be used to drive the scanning. The example composite from Section 3.1.2, comprising a list of

particles and a list of springs, could be scanned in using code such as:

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

if (scanAttributeName (rtok , "particles "))

tokens.offer (new ObjectToken (myParticles ));

myParticles .scan (rtok , tokens);

return true;

}

else if (scanAttributeName (rtok , "springs")) {

tokens.offer (new ObjectToken (mySprings));

mySprings.scan (rtok);

return true;

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

Here, an ObjectToken() identifying each scanned componet is stored on the token queue for later use in the post-scan

step. If the composite component has been implemented internally using an instance of ComponentListImpl (Section

1.4), then the above can be written more succinctly using the latter’s scanAndStoreComponentByName() method:

ComponentListImpl myComponents ;

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

if (myComponents .scanAndStoreComponentByName (rtok , tokens)) {

return true;

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

On the other hand, composite components which are instances of MutableCompositeComponent are written out in

sequence, without using attribute names but with possible prefixed information giving information about the compo-

nent’s class. When scanning in these children, scanItem() must determine the class for the child, create an instance

of the child, and then scan it in. The code required for these steps is beyond the scope of this document. However, if

the mutable composite has been implemented internally using an instance of ComponentListImpl, then one can use the

latter’s methods scanBegin(), scanAndStoreComponent(), and scanEnd() to handle the scanning.

First, scanBegin() is called in an override of scan():

ComponentListImpl myComponents ;

public void scan(ReaderTokenizer rtok , Object ref) throws IOException {

myComponents .scanBegin();

super.scan (rtok , ref);

}

scanAndStoreComponent() can then be called in scanItem() to handle scanning of individual components:

protected boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

if (super.scanItem (rtok , tokens)) {

return true;

}

rtok.nextToken ();

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#scanAndStoreComponentByName-maspack.util.ReaderTokenizer-java.util.Deque-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/MutableCompositeComponent.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#scanBegin--
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#scanAndStoreComponent-maspack.util.ReaderTokenizer-java.util.Deque-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#scanEnd--


ArtiSynth Reference Manual 24

return myComponents .scanAndStoreComponent (rtok , tokens);

}

The method checks to see if the input contains child component information, and if so, scans the information, creates

an instance of the component if necessary, stores a copy of the component in the token queue for use in post-scanning,

and returns true. Note that in this case one should call scanAndStoreComponent() after the super method to avoid

confusing attribute names with class information.

scanAndStoreComponent() will not create a new component if a fixed component (Section 1.4) of the appropriate

class already exists at the current list position. Instead, the existing component will be scanned “in place”.

Finally, scanEnd() is called in an override of postscan() method (discussed below):

public void postscan (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

super.postscan (tokens , ancestor);

myComponents .scanEnd();

}

3.2.3 Post-scanning implementation

Once the token queue has been built by the scan() methods, it is processed in the post-scan step. This is done by each

component using a postscan() method that takes as arguments the token queue and the ancestor with respect to which

reference paths should be evaluated. The default postscan() method for most components looks something like this:

public void postscan (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

ScanWriteUtils .postscanBeginToken (tokens , this);

while (tokens.peek() != ScanToken.END) {

if (! postscanItem (tokens , ancestor)) {

throw new IOException (

"Unexpected token " + tokens.poll());

}

}

tokens.poll(); // consume the END token

}

postscanBeginToken() gets the next token on the queue, checks that it is a BEGIN token, and throws an exception if this

is not the case. Then the method simply calls postScanItem(), which does the actual token handling work, until a

terminating END token is found.

As is the case with scan(), subclasses typically do not need to override postscan(). The exception to this is when

post-processing is required after the scan process:

public void postscan (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

super.postscan (tokens , ancestor);

... do post processing ...

}

However, any component which adds tokens in its scanItem() method will need to process those tokens in an override

of postscanItem(). Tokens can be removed from the queue using the queue’s poll() method, and can be examined

(without removing them) using the queue’s peek() method. More usefully, the utility class ScanWriteUtils provides a

number of methods for token processing, including:

boolean postscanAttributeName (tokens , name);

C postscanReference (tokens , clazz , ancestor);

C[] postscanReferences (tokens , refs , clazz , ancestor);

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#scanAndStoreComponent-maspack.util.ReaderTokenizer-java.util.Deque-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#postscanBeginToken-java.util.Deque-java.lang.Object-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html


ArtiSynth Reference Manual 25

ModelComponentBase also makes convenience wrappers for these directly available within the class. postscanAttribute-

Name() checks if the next token in the queue is a StringToken matching name, and if it is, consumes that token and

returns true. postscanReference() checks that the next token is a StringToken containing a path reference, finds the

component referenced by that path relative to ancestor, checks that it is an instance of clazz, and returns it. postscan-

References() obtains a set of component references described by a sequence of StringTokens located between BEGIN

and END tokens, and returns the referenced components in an array. These methods will throw an IOException if they

encounter unexpected tokens or if referenced components cannot be found.

Employing these methods to handle the point0, point1 reference example above, we obtain:

public boolean postscanItem (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

if (postscanAttributeName (tokens , "point0")) {

myPnt0 = postscanReference (tokens , Point.class , ancestor);

return true;

}

else if (postscanAttributeName (tokens , "point1")) {

myPnt1 = postscanReference (tokens , Point.class , ancestor);

return true;

}

return super.postscanItem (tokens , ancestor);

}

Similarly, the points reference example can be handled as:

public boolean postscanItem (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

if (postscanAttributeName (tokens , "points")) {

Point[] pnts = postscanReferences (tokens , Point.class , ancestor);

return true;

}

return super.postscanItem (tokens , ancestor);

}

Finally, for composite components, it is necessary to call postscan() for each of their children. For composites

implemented using ComponentListImpl, this can be done by calling the latter’s postscanComponent() method. For both

CompositeComponent and MutableCompositeComponent implementations, the corresponding code looks like this:

protected boolean postscanItem (

Deque <ScanToken> tokens , CompositeComponent ancestor)

throws IOException {

if (myComponents .postscanComponent (tokens , ancestor)) {

return true;

}

return super.postscanItem (tokens , ancestor);

}

postscanComponent() checks to see if the next token is an ObjectToken containing a ModelComponent, and if it is, it

removes that token, calls the component’s postscan() method, and returns true.

3.2.4 Post-scanning property values

As described in 3.2, base implementations of scanItem() automatically read in and set property values for the

component. However, in a few cases it may be necessary to defer setting the property value until the post-scan step,

either because it depends on component references, or requires the component structure to be fully realized. A current

example of this is the surfaceRendering property for FemModel.

Deferring the settting of property values until the post-scan step can be done by saving the scanned property values

in the token queue, and then actually setting the properties during the post-scan. Two convenience methods, Scan-

WriteUtils.scanAndStorePropertyValue() and ScanWriteUtils.postscanPropertyValue() allow this to be done fairly

easily:

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#postscanAttributeName-java.util.Deque-java.lang.String-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#postscanReference-artisynth.core.util.StringToken-java.lang.Class-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#postscanReferences-java.util.Deque-java.lang.Class-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html#postscanComponent-java.util.Deque-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/femmodels/FemModel.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanAndStorePropertyValue-maspack.util.ReaderTokenizer-maspack.properties.HasProperties-java.lang.String-java.util.Deque-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#postscanPropertyValue-java.util.Deque-artisynth.core.modelbase.CompositeComponent-


ArtiSynth Reference Manual 26

public boolean scanItem (ReaderTokenizer rtok , Deque <ScanToken> tokens)

throws IOException {

rtok.nextToken ();

if (ScanWriteUtils .scanAndStorePropertyValue (

rtok , this , "surfaceRendering ", tokens)) {

return true;

}

else {

... remaining scanItem() implementation ...

}

rtok.pushBack();

return super.scanItem (rtok , tokens);

}

public boolean postscanItem (

Deque <ScanToken> tokens , CompositeComponent ancestor) throws IOException {

if (ScanWriteUtils .postscanPropertyValues (tokens , this , deferredProps )) {

return true;

}

else {

... remaining postscanItem () implementation ...

}

return false;

}

Note that it is often not necessary to provide a component-specific implementation of

postscanItem() since the defaullt implementation for most components already contains a call to

ScanWriteUtils.postscanPropertyValues().

If a property value depends on references, it is also important to ensure that reference information is written out before

the property information, so that in the post-scan step, it will be set before the property values. In such cases, that means

that writeItems() should be structured as follows:

protected void writeItems (

PrintWriter pw, NumberFormat fmt , CompositeComponent ancestor)

throws IOException {

... write out reference information first ...

super.writeItems (pw, fmt , ancestor);

}

3.2.5 Invoking the complete scan process

The two-step scanning process means that for the top-level invocation of scan, the application needs to create a token

queue, call scan() with this queue as the ref argument, and then call postscan():

ArrayDeque<ScanToken> tokens = new ArrayDeque<ScanToken >();

comp.scan (rtok , tokens);

comp.postscan (tokens , ancestor);

For convenience, the above code fragment is encapsulated into the method ScanWriteUtils.scanfull().

If we are scanning an entire hierarchy from scratch, then comp will be the root component of the hierarchy and

ancestor will equal comp. Otherwise, if we are scanning a new sub-hierarchy, then comp will be the root of the

sub-hierarchy and ancestor may be some component higher in the existing hierarchy.

https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanfull-maspack.util.ReaderTokenizer-artisynth.core.modelbase.ModelComponent-artisynth.core.modelbase.CompositeComponent-


ArtiSynth Reference Manual 27

3.3 File and token structure

Because Artisynth components are responsible for writing and scanning themselves, there is no mandatory file structure

imposed per-se. However, there is a structure that should be adhered to whenever possible. Expressed loosely as a

production grammar, with ’*’ expressing repetition of zero or more times, this is:

component

’[’ componentItem * ’]’

componentItem

attributePair

componentSpec

attributePair

NAME ’=’ value

componentSpec

CLASSINFO component

component

value

componentSpec

list

literal

list

’[’ listItem* ’]’

listItem

value

attributePair

literal

BOOLEAN

INTEGER

FLOAT

STRING

WORD

Here, NAME and WORD are identifiers that consist of alphanumerics, ’$’, or ’_’, and do not begin with a digit. CLASSINFO

is the classname for a component, or an alias that can be mapped to a classname using ClassAliases.resolveClass().

Within an ArtiSynth file, ’#’ is a comment character, causing all remaining characters on the line to be discarded.

When tokens are saved for the post-scan step, they should arranged in a structure similiar to that used for the file itself:

componentTokens

BEGIN itemTokens* END

itemTokens

componentSpecTokens

attributePairTokens

attributePairTokens

NAME valueTokens

componentSpecTokens

COMPONENT componentTokens

componentTokens

valueTokens

componentSpecTokens

listTokens

literalTokens

listTokens

https://www.artisynth.org/doc/javadocs/maspack/util/ClassAliases.html#resolveClass-java.lang.String-


ArtiSynth Reference Manual 28

BEGIN <listItemTokens >* END

listItemTokens

valueTokens

attributePairTokens

literalTokens

STRING

OBJECT

Here, BEGIN and END are ScanToken.BEGIN and ScanToken.END, NAME is a StringToken with an attribute name as a

value, COMPONENT is a ObjectToken with a reference to the object as a value, and STRING and OBJECT are StringToken

and ObjectToken, respectively.

3.4 Debugging

Debugging write and scan methods is generally not too difficult because of the ascii nature of the data files. A good first

test is to write components out, read them back in, and then write them out a second time and make sure that the second

output equals the first. Scan methods will generally throw IOExceptions when unexpected input is encountered, and

these usually provide the offending line number.

Problems that occur in post-scan can be slightly harder to solve because the token queue is not normally written out in

any place where it can be inspected. To help with this, once can use ScanWriteUtils.setTokenPrinting() to enable the

token queue produced by ScanWriteUtils.scanfull() to be printed to the standard output. It is also possible to print a

token queue directly using ScanWriteUtils.printTokens().

3.5 Summary

The main points concerning component writing and scanning are as follows:

1. Writing and scanning are done using the component’s write(), scan(), postscan() methods. These methods usually

employ writeItems(), scanItem(), and postscanItem() to handle the writing and scanning of individual

attributes and child components.

2. Where possible, the structure described in Section 3.3 should be adhered to.

3. Scanning is a two-step process, involving a scan step and a post-scan step. This is to accomodate the fact

that some aspects of scanning (most importantly the evaluation of references) cannot be done until the entire

component hierarchy has been constructed. Information needed for the post-scan step (such as reference path

names) should be stored in the token queue passed to scan() and scanItems().

4. It is usually only necessary for a component implementation to override writeItems(), scanItem(), and

postscanItem(). Property values are usually written and scanned automatically by the base implementations of

writeItems() and scanItem(). If a component does not contain references or non-property attributes, it may

not be necessary for the implementation to override any methods at all.

5. Composite components need to call write(), scan(), and postscan() for their child components. Com-

posites implemented using ComponentListImpl can do this using methods supplied by that class, such as

writeComponents(), scanAndStoreComponent(), and postscanComponent().

6. A complete scan operation involves creating a token queue and then calling both scan() and postscan() for the

top-level component. This can be done using the convenience method ScanWriteUtils.scanfull().

7. The utility class ScanWriteUtils contains a large number of methods that facilitate writing and scanning.

https://www.artisynth.org/doc/javadocs/artisynth/core/util/StringToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/util/ObjectToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/util/StringToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/util/ObjectToken.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#setTokenPrinting-boolean-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanfull-maspack.util.ReaderTokenizer-artisynth.core.modelbase.ModelComponent-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#printTokens-java.util.Deque-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#write-java.io.PrintWriter-maspack.util.NumberFormat-java.lang.Object-
https://www.artisynth.org/doc/javadocs/maspack/util/Scannable.html#scan-maspack.util.ReaderTokenizer-java.lang.Object-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/PostScannable.html#postscan-java.util.Deque-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ComponentListImpl.html
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html#scanfull-maspack.util.ReaderTokenizer-artisynth.core.modelbase.ModelComponent-artisynth.core.modelbase.CompositeComponent-
https://www.artisynth.org/doc/javadocs/artisynth/core/modelbase/ScanWriteUtils.html

	Component Hierarchy
	Model Components
	Component References
	Composite Components
	CompositeComponentBase, ComponentList, and ComponentListImpl

	Models
	Models and State
	Model Agents
	Probes
	Controllers and monitors
	Models associated with agents
	Model agent state

	The Root Model
	Advancing Models in Time
	Adaptive Stepping

	Writing and Scanning Components
	Writing components
	Writing references
	Writing child components

	Scanning components
	Scanning references and post-scanning
	Scanning child components
	Post-scanning implementation
	Post-scanning property values
	Invoking the complete scan process

	File and token structure
	Debugging
	Summary


