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Abstract 
 

Obstructive Sleep Apnea (OSA) is a common disorder 
among North Americans and a major topic in health care 
nowadays. Though the exact cause of this disease is 
unclear, it is understood as partial or complete 
obstruction of airway due to collapsing of soft palate 
while sleeping. Our work is aimed at creating a reference 
model for soft palate; medical specialists can use a 
dynamic version of this model to study the origin and 
possible treatments for OSA or other swallowing 
disorders. This article deals with the design and 
implementation of a complete workflow/scheme for 
segmentation and modeling of soft palate using MR 
(Magnetic Resonance) images. The segmentation process 
relies on a semi-automatic technique called 3D Livewire. 
This method performs user-guided segmentation in order 
to balance automation and human intervention. It 
requires the use to draw contours in any two orthogonal 
directions of 3D medical data and can automatically 
create seeds in the third direction. The contours or cross-
section curves thus extracted are in turn used to 
reconstruct the surface of the soft palate, which produces 
a smooth 3D model. The proposed workflow has shown 
encouraging results. The basic soft palate model created 
can be improved further to study its behavior and can be 
used to reproduce sleep apnea phenomenon in future. 
 
1. Introduction 
 

Obstructive Sleep Apnea is caused by collapsing of 
soft tissue surrounding the airway while sleeping. In most 
cases, the sight of obstruction is the soft palate. OSA has 
serious impact in patient’s life resulting into excessive 
daytime sleepiness and hypertension [1]. Soft palate also 
plays an important role in swallowing by retracting and 
elevating simultaneously. We believe, segmentation and 
modeling of this part of human body will eventually help 
medical specialists to study the origin and design possible 
treatment or surgical plans for disorders like OSA and 
Dysphagia (difficulty in swallowing). A 2D finite element 
model of the soft palate has already been developed by 
Berry et al. [2] for better understanding of velar control. 
Chouly et al. [3] have also developed another finite 
element model of soft palate in order to reproduce 
hypopnea phenomenon (partial obstruction of airway) 

numerically. Sagittal radiography has been used in their 
work to construct the model in agreement with anatomy. 
These existing models are two dimensional and can not 
provide proper visualization. A 3D model naturally will 
have an edge over this kind of models. 

Due to immense growth in the field of medical image 
acquisition techniques, 3D medical data (e.g. MR, CT) 
has become of common use in clinics and laboratories. 
These 3D images are usually available in the form of 2D 
slices. In order to visualize the 3D data properly, 
automated or semi-automated image analysis is essential. 
The necessary step prior to visualization (or registration) 
is ‘Segmentation’ - the problem of labeling voxels in 
order to identify a particular anatomical structure [4]. 
Segmentation is also necessary for localizing and 
quantifying 3D biological structures. Complexity and 
variability of the anatomical structures often make 
segmentation a difficult problem and may require detailed 
knowledge in anatomy. Existing segmentation techniques 
include manual, semi-automatic and automatic 
approaches. Manual techniques require excessive time, 
user interaction and extensive anatomical knowledge; on 
the other hand fully automatic ones are prone to error if 
their parameters are not properly tuned [4]. This indicates 
that combination of operator knowledge and computer 
efficiency would be the best way; this is the basic idea 
behind semi-automatic segmentation techniques. 
Segmentation methods, which support user interaction, 
include parametric, explicit [5-8] or level-set based [9-11] 
energy minimizing models. However, these models are 
either prone to converge to local minima or user 
interaction is complicated. For example, in active contour 
models developed by Yushkevich et al. [12], user 
initialization is needed for evolving a 3D active contour. 
Though the interaction is graphical, user knowledge of 
this algorithm is required for setting up different 
parameters. Approaches like ‘Graph Cuts’ [13] also offer 
some user intervention. It executes globally optimal 
segmentation using manually specified foreground and 
background seeds as hard constraints and boundary 
information as soft constraints. But, graph cuts produce 
unpredictable segmentation result for weak edges and can 
vary with the choice of seeds.  

2D Livewire [14] is another semi-automatic 
segmentation technique, which is an image-feature driven 
method. It finds the minimal path between user specified 
seeds, thereby reducing the effort and time to manually 



describe the entire boundary. Image information used in 
livewire includes image gradient, Laplacian zero-
crossing, intensity values etc. [15, 16]. However, curse of 
dimensionality strikes hard, when considering user 
interaction for 3D deformable surface or models. Most of 
the user-steered segmentation techniques cited earlier are 
limited in 2D [17] and not very effective for extracting 
3D image information. A naïve approach to extend 2D 
segmentation methods to 3D would be to repeat 2D 
segmentation on each and every slice over the entire 
volume of MR images. But, obviously that would be 
inefficient and tedious. Recently, Hamarneh et al. [17] 
has developed a fast interactive extension of 2D livewire 
to 3D. Later in [4], Poon et al. showed how this particular 
method can be modified to handle objects with arbitrarily 
complex topology that exhibit non-spherical geometry, 
concavity or protrusions. This method described in [4] 
requires the user to perform 2D livewire based 
segmentation in a number of selected slices (preferably 
sparse and distributed well over the entire volume) and 
contours are generated automatically in unseen slices. The 
method is discussed in further detail in section 2.1. It is 
not difficult to realize, that soft tissues like soft palate do 
not have a regular geometry and are prone to variation in 
shape and size. Hence, 3D livewire [4], capable of 
handling complex structures is our natural choice for 
segmentation of soft palate. In this article, we present a 
novel scheme to segment and model soft palate using MR 
images. After proper preprocessing, images are subjected 
to 3D livewire based segmentation to extract soft palate 
geometry. The cross-sectional contours are then used to 
build a non-parallel curve network to reconstruct the 
surface.  

This paper is organized as follows: section 2 discusses 
3D livewire and the surface reconstruction methods, 
which form the foundation of this work. In section 3, we 
describe the proposed methodology to create soft palate 
model in detail, followed by results and discussion in 
section 4. Finally, section 5 concludes and suggests the 
future aspects of this work. 
 
2. Background 

 
2.1. 3D Livewire Segmentation 

 
3D livewire is an extension of classical 2D livewire 

method [14]. Researchers have made several attempts to 
extend this simple but robust method in 3D. The approach 
discussed in [19] to extend livewire to 3D have resulted 
into complex methodologies which require either 
complicated interaction steps or extensive knowledge in 
anatomy to segment complex objects. The framework 
described in [4], is able to handle complex geometry and 
require the user to perform segmentation on few sparse 

slices. The user begins the process by segmenting 
sparsely separated slices on any two orthogonal directions 
(e.g. sagittal-coronal, sagittal-axial). This part is based on 
2D livewire technique [14]; 2D livewire cost 
function in a particular slice , for a user-
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),( qpCd is proportional to Euclidean distance between 
p and . Each cost term is weighted by constant scalar 

terms - , which can be tuned to vary segmentation 
result. A cost map using this cost function is created by 
determining the minimal path cost from user-specified 

and all other pixels in the given slice using Dijkstra’s 
algorithm [21]. This is a graph search algorithm and is 
used once for each seed point. User selects next seedpoint 
based on the visible path and the algorithm is repeated. 
This is evident, that the method can easily bypass the 
problem of getting stuck into local minima. 
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3D livewire can automatically generate seedpoints in the 
third direction using these interactively segmented 
contours in other two orthogonal directions. These 
automatically generated points are simply the intersection 
points of the 2D livewire contours and the unseen 
orthogonal slices. The intersection points need to be 



properly ordered before they are used to generate live-
wire contours. While traversing along any 2D livewire 
contour, we cross from one side of the slice to another. 
This is referred as ‘entering’ and ‘exiting’ slices in [17] 
by Hamarneh et al. These points are the endpoints of an 
intersecting line segment. The point ordering algorithm 
[4] involves the creation of an L-system ‘turtle’ map – a 
connected graph created by the intersecting line-segments 
based on turtle graphics [4]. Starting from any arbitrary 
seedpoint, the turtle moves forward, turns left at 
intersections and reverses direction as it encounters 
another seedpoint. The turtle visits the seedpoints 
sequentially which determines the order. This 3D livewire 
technique is capable of handling any arbitrary complex 
topology often encountered in medical image analysis. It 
is not possible to delve into all the details of 3D livewire 
technique within the limited scope of this paper. 
Interested readers can refer to the works of Hamarneh et 
al. [4, 17]. 
 
2.2. Surface Reconstruction 
 

Segmentation of anatomical components allows 
creation of three dimensional surface models for 
visualization of patient anatomy. This 3D view definitely 
has a clear advantage over the 2D cross-sections. Surface 
models can be created using existing algorithms like 
marching cubes  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
 

Figure 1: (a) Original image     (b) Preprocessed image 
 

[22]. In this method, isosurfaces are created by placing 
cubes connecting voxel centers. It can handle only a 
limited number of surface topologies though. This kind of 
approach might be useful, when we already have a clear 
idea of the geometry of the structure, but not to model 
soft tissues. Another interesting approach is to construct a 
complete surface from planar curves that represent cross-
sections of the surface. Many solutions exist for 
connecting curves on parallel cross sections like [18]. We 
are interested in building a surface for orthogonal 
contours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: 3D livewire segmentation process of soft palate 



A simple but robust surface reconstruction algorithm 
that uses such curve network has been suggested by Liu 
et al. [18]. The main idea here is to partition the space 
into a number of cells by all cross-sectional planes. Then 
a closed surface network is created with each of the 
partitioned cell using a projection based approach [23]. 
Steps include, computing the medial axis of the cell, 
which is a convex 2D region, partitioning the cell into 
smaller compartments by projecting the curve networks 
onto the medial axis, and finally extracting the surface as 
the boundaries in between. The initial reconstructed 
surface is often wiggly. Existing techniques like surface 
diffusion flow [24] have been considered for mesh 
improvement. This algorithm is simple and robust; it can 
produce smooth surface from curve networks with any 
arbitrary topology. However, surface construction is 
largely dependent on the configuration of the cross-
section planes and relative location of the curved 
network. The reconstructed surface can also result in to 
disconnected components if the projections of the curve 
do not overlap on the medial axis between the planes. 
  
3. Proposed Workflow 

 
A workflow has been designed and implemented to 

perform semi-automatic segmentation and modeling soft 
palate. We aim at creating a reference model for soft 
palate, which can then be used to create patient specific 
models. It begins with preprocessing the raw MR images. 
Then livewire based segmentation, regularization and 
surface reconstruction from contours have been 
performed respectively. Finally, a 3D surface model of 
soft palate is created. Each of the steps is detailed in 
following subsections. 

 
3.1. Preprocessing 
 

The very fist step of preprocessing is to crop out the 
region of interest i.e. soft palate. Working with large 
images is always computationally expensive and should 
be avoided whenever possible. We first manually crop out 
a smaller region containing the soft palate from MR data. 
MR images often suffer from intensity inhomogeneity. 
This can be defined as non-anatomic intensity variation in 
the same tissue over the image domain due to imaging 
instrumentation [25]. It gives a shading effect to the 
images. To get rid of any inhomogeneity in intensity, the 
MR images are passed through non-parametric non-
uniform intensity normalization (N3) filter, originally 
proposed by Sled et al. [26]. N3 method searches for 
intensity inhomogeneity field to maximize the frequency 
content of intensity distribution. The method simplifies 
the multiplicative problem in the log-domain as a 
deconvolution problem. Say, , are two independent 

variables having distribution  and  respectively. It 
can be shown that the distribution of is the 
convolution of  and  [25]. For better segmentation, 
images have been subjected to cubic interpolation. 
Original and preprocessed images are shown in figure 1.  
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3.2. Segmentation and Regularization 
 

Two aspects of the available MR images make 
segmentation of soft palate a critical task. Firstly, the 
imaging process; MR is chosen to extract clinically 
relevant anatomical information about soft palate. But, 
the anatomical structure of interest often does not have 
any distinct boundary and is hard to separate from its 
surroundings. Its weak edges though can be distinguished 
by human eye, can not be detected by most of the 
sophisticated segmentation algorithms. Secondly, soft 
palate constructing the posterior one-third part of the roof 
of our mouth and is made of soft-tissue, muscle and 
glands; it has a complex elongated shape, which is very 
difficult to segment using any completely automatic 
segmentation technique. A segmentation approach like 
3D livewire described in section 2.1, has been found to be 
most effective as it is interactive and capable of handling 
any arbitrary geometry. 3D livewire allows the user to 
select any two orthogonal views to perform semi 
automatic segmentation. For final segmentation sagittal 
and axial views have been used as shown in the graphical 
user interface of 3D livewire in figure 2. Altogether 12 
sparsely spaced slices have been segmented, 6 in each 
direction. All the semiautomatic and automatically 
generated contours are then used for surface construction. 

However, due to low resolution of the available MR 
images, the segmented contours are noisy. To resolve this 
issue, we have performed a number of regularization 
steps. Regularization steps are as follows: 

• Creating binary images  
• Morphological operations  
• Smoothing  

By ‘smooth contour’ we mean, that the contours are 
continuous and differentiable. It is not necessary to 
consider contours generated for all the slices. On the 
other hand, this will give rise to more noise in the data. 
So, we take all the manual contours (for sagittal and axial 
views) and randomly selected 8 contours in the third 
direction i.e. coronal direction. Contour points are then 
used to form a binary image, with the segmented region 
as foreground (white pixel). Thereafter, simple 
morphological operations like closing and opening have 
been performed respectively, to remove irregularities. 
Closing and opening both tend to smooth contours of an 
object. Closing operation generally fuses narrow breaks, 
eliminates small holes or gaps. On the other hand, 



Opening operation smoothes the contour by breaking 
narrow isthmuses and eliminating thin protrusions. A 
morphological filtering consisting of closing followed by 
opening eliminates local irregularities to a large extent. 
This is shown in figures 3(a) and (c) for a single slice in 
sagittal direction.  

Snakes [5] are two-dimensional deformable models 
represented as parameterized functions. Snake algorithm 
starts from an initialization specified by user (close to the 
object of interest); this is a first guess at the desired 
contour. The algorithm then iteratively minimizes the 
energy of the spline using user imposed constraints and 
image information to find object boundary. User can use 
current edge as initialization, which is easy to compute. 
Then by iterative energy minimization, a smoother 
contour is produced. The result for a single slice is shown 
in figure 3(d). 

 
3.3. Surface Reconstruction  
 

Smooth contour points are thus obtained after 
regularization. These contours can be used to construct a 
contour network in order to reconstruct the surface. The 
contours extracted from livewire are arranged in three 
orthogonal planes, which form a non-parallel cross-
section curve network. The algorithm in [18] is capable of 
handling contours arranged in more than three non-
parallel planes as well. All the smoothed contours or a 
subset of them can be used to build the contour network, 
as shown in figure 4. As long as, the relative locations of 
 

   
                  (a)                                               (b) 

     
                  (c)                                               (d) 

Figure 3: (a) Binary image from livewire contour 
(sagittal view) (b) After closing (c) After opening (d) 

Smoothed contour using snake 

 
Figure 4: Non-parallel contour curve network created 
for surface reconstruction; contours arranged in three 

orthogonal planes 
 

contours are not changed, end result should not vary 
much. The contours are required to be connected and 
aligned properly, such that the projections of the curves 
overlap on the medial axis of the planes. If the curve 
network fails to achieve such geometry, the reconstructed 
surface can be disconnected and can even contain holes or 
gaps. Initial mesh generated using this algorithm can be 
smoothed by tuning different parameters employing 
popular existing techniques, as mentioned in section 2.2. 
 
4. Results and Discussion 
 

Our suggested workflow has been used on a set of 
MR images. MR modality has been chosen as it is safer 
and can provide greater contrast between soft tissues 
compared to CT. The MR scans we have used were taken 
using a protrusion appliance.  Among different MR scans, 
PD images show the highest resolution with the most 
defined contrast gradient. So, PD scans for sagittal, 
coronal and axial directions have selected. These three  

 

 
Figure 5: Reconstructed surface mesh using the 

algorithm of Liu et al. [18] 
 



 
Figure 6: Evaluation of soft palate model 

positioned in MRI images (sagittal view); left: MR 
image used for segmentation, right: test image 

 

 

 

 
Figure 7: 3D Soft palate model from sagittal (1st row), 

coronal (2nd row) and axial (3rd row) directions, left 
column: surface reconstruction with raw segmented 

data; Right column: surface reconstruction after 
regularization 

 
 
 

scans are registered together employing voxel-intensity 
based (mutual information) technique with the help of  a 
commercial software called ‘Amira 5.2.0’. The merged 
image size is =×× zyx 360272281 ×× . The cropped 
image is of size 88109281 ×× . Cubic interpolation has 
been performed along y and z direction and dimension is 
increased by 1.33 times. We have evaluated the resulting 
soft palate model on a completely different dataset of the 
same subject collected under different scanning protocols. 
This has been done by registering the model in the 3D 
MR image manually. This is shown in figure 4. 

Most of the preprocessing, segmentation and 
regularization have been coded in MATLAB. 7.2.0. N3 
correction filter is freely available in ITK platform. So 
intensity inhomogeneity correction has been done using 
ITK [27]. For 3D livewire segmentation, two orthogonal 
directions have to be chosen first to perform user-guided 
segmentation. Soft palate can be easily identified from 
sagittal view, but its boundary is not very defined in 
coronal or axial directions in the given data. After a few 
trials, it was found that better segmentation results can be 
achieved while using sagittal and axial directions for 
user-guided segmentation compared to other 
combinations. Final segmentation has been done using 
sagittal and axial views, segmenting 6 slices in each 
direction. 7-9 distinct clicks (seeds) were required for 
each contour. The slices for segmentation are carefully 
chosen, so that they are distributed over the entire volume 
of the object being segmented. This is a very important 
aspect of segmentation while using 3D livewire; because 
unpredictable results can be obtained otherwise. It takes 
around 15-20 minutes to draw the livewire boundaries in 
12 slices. Intersection points in the coronal direction are 
generated instantly. Drawn contours are deleted and 
redrawn if there has been any mistake or if unacceptable 
intersection points are generated in third direction. 

Due to noisy or low resolution images, even robust 
segmentation techniques like 3D livewire can not be fully 
effective. In such cases, regularization is absolutely 
necessary. The regularization steps described above have 
been employed to remove undesired noise along the 
contours generated as a result of livewire segmentation. 
For volume rendering, a new algorithm which builds 3D 
surface from contours has been explored. This algorithm 
also has inherent smoothing abilities, which lead to even 
better result. Surface reconstruction has been done using a 
freely available graphical user interface based on the 
algorithm of Liu et al. [18]. Much difference between the 
reconstructed surfaces with and without regularization 
can be observed. Figure 6 shows the comparative results 
between surfaces reconstructed with and without 
regularization. From the models shown in figure 5 and 6 
from sagittal, coronal and axial views, it is evident that, 
the workflow proposed in this article is capable of 
producing smooth 3D soft palate model, even if the 



original segmentation is quite noisy. This workflow is 
likely to be useful for other soft tissue (tongue, for 
example) segmentation and modeling. 
 
5. Conclusion and Future Work  
 

We have proposed a complete workflow or scheme to 
build a smooth three dimensional model of soft palate 
from MR images. The methodologies include 
preprocessing, semi-automatic livewire based 
segmentation, post-segmentation regularization and 
surface reconstruction from non-parallel curve network. 
The regularization and surface reconstruction makes the 
process robust against noisy or erroneous segmentation. 
However, this process would be more efficient in terms of 
speed and accuracy, if regularization can be performed 
during segmentation. This possibility can be explored in 
future work. Also, segmentation method itself can be 
improved as well. This can be achieved by performing 
segmentation in sub-pixel resolution to get smooth 
contours. A possible solution for this could be fitting a 
3D quadratic function to the points in the neighborhood 
of current mouse location point. The accurate minima can 
then be found by interpolation. 

Soft palate is a very important component in human 
oral, pharyngeal and laryngeal complex. It has major role 
in physiological activities like swallowing, snoring and is 
responsible for diseases like OSA or Dysphagia. This 
work has been done keeping in mind the objective of 
building a reference model of soft palate, which will 
eventually be incorporated in a dynamic human upper 
airway model. For that, an anatomically validated soft 
palate static model is required in the first place. 
Anatomical structures vary to a large extent due to subject 
variation; in order to build a standard model, more data is 
required. We have validated this model using a different 
set of MR scans of the same subject taken at a different 
point of time. But, we need to evaluate the segmented 
volume on more test data of different subjects, and finally 
on real patient data, which at this point is unavailable. 

Post-processing of the segmented data can indeed 
produce reasonably smooth 3D volume. Although, 
another approach could have been to start with a 
reasonable model, and then morph the segmented data 
according to the real image to get better result. Future 
studies can also be directed towards that direction. The 
basic model built in our first attempt will be improved 
further, so that it can finally be used to simulate OSA 
phenomenon, and therefore be helpful in carrying out 
surgical plans and procedures.  
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