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Abstract 
The transport of an ingested food “bolus” through the 
oropharynx is primarily a mechanical process, in which 
bolus flow characteristics are determined by relationships 
among the physical properties of the bolus, the propulsive 
forces applied by the oropharyngeal musculature, and the 
biomechanical measures utilized to protect the airway. It 
naturally follows that the application of tools from 
mechanics and modeling may offer the ability to enhance 
our understanding of normal physiological processes as 
well as optimize the use of diagnostic and therapeutic 
tools. 
 This paper focuses on two aspects of our work in 
oropharyngeal swallowing mechanics (1) developing 
numerical tools for improved modeling of oropharyngeal 
fluid dynamics and (2) development and application of an 
experimental system, consisting of a fluid bolus contained 
in the central groove of a simulated tongue, to validate the 
model.  Preliminary data and future directions are 
discussed.  

Keywords: oropharyngeal fluid mechanics, finite element 
method. 

1. Introduction 

The flow of a bolus through the oropharynx during a 
normal swallow is a complex mechanical process, and the 
successful passage of the bolus into the esophagus depends 
upon a myriad of factors, including the propulsive activity 
of the lingual and oropharyngeal musculature, the 
rheological properties of the bolus, and the airway 
protection measures. Consequently, many therapeutic 
strategies for swallowing disorders are mechanical in 
nature, such as: (1) texture modification, in which bolus 
material properties are altered to optimize bolus flow 
through the oropharyngeal cavity, or (2) postural changes, 
such as a chin tuck in which the chin is tucked into the 
chest during the swallow to open the vallecular space to 

contain more fluid. It naturally follows that the application 
of tools from mechanics may offer the ability to enhance 
our understanding of normal physiological processes as 
well as optimize the use of diagnostic and therapeutic 
tools. 
 Computer modeling is one such tool from 
mechanics which has been utilized in many physiological 
systems, but has not been extensively applied to 
oropharyngeal swallowing. Computer models of 
swallowing have the potential to predict bolus flow 
characteristics in response to given alterations in input 
parameters, such as bolus physical properties (such as in 
texture modification) or oropharyngeal geometry (such as 
in postural modifications). 
 The long-term goal of the work described here is 
to develop, validate, and apply numerical modeling tools to 
study normal and abnormal oropharyngeal bolus flow as 
well as to provide insight into diagnostic and therapeutic 
procedures. This paper provides an overview of the current 
state of the project, which is ongoing. We will describe 
two related aspects: (1) development of the numerical tools 
to simulate the complex process of oropharyngeal bolus 
flow, and (2) development an experimental apparatus for 
validation of the computer model that is relevant to 
swallowing and may also provide insights into 
oropharyngeal fluid mechanics. 
 Section 2 will provide a brief overview of the 
physiology of swallowing. This is followed in Section 3 by 
a brief review of relevant numerical methods for 
simulation of fluid-mechanics problems involving moving 
boundary and/or free-surfaces.  In Section 4, we present 
the numerical method developed in this work, as well as its 
validation with a simple “sloshing tank” example.  Section 
5 describes the design, construction of an experimental 
apparatus to validate the computer model as well as some 
preliminary data. Finally, Section 6 describes ongoing and 
future work. 
  

2. Physiological Background 

In the United States alone, 15-30 % of the 44 million 
individuals currently over the age of 60 are estimated to 
have dysphagia (a general term for swallowing disorders), 
along with an estimated 50 % of nursing home patients. 
Swallowing disorders can have a profound effect on an 
individual’s quality of life and can pose significant health 
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risks, such as aspiration pneumonia, in which ingested 
material enters the trachea and lungs rather than the 
esophagus and gastrointestinal tract, leading to infection. 
Aspiration pneumonia is a serious and often life-
threatening health concern for the institutionalized and 
hospitalized geriatric population.  

In the typical configuration before a bolus is 
ejected from the oral cavity, termed the bolus containment 
phase, the tongue is cupped, with the tip against the front 
teeth and the back elevated against the soft palate. When a 
swallow is initiated, the tongue makes sequential (anterior-
to-posterior) contact with the roof of the mouth, forming a 
stripping wave to propel the bolus. Nearly coincidently, the 
back of the tongue separates from the palate, allowing 
passage of the bolus into the pharynx. During a normal 
swallow, these actions are coordinated with several 
mechanisms which provide protection to the airway, 
including posterior, anterior motion of the hyolaryngeal 
complex, approximation of the vocal folds, and closure of 
the laryngeal vestibule.  

Indeed, the passageway traversed by the bolus is 
coincident with the airway until the two separate at the 
level of the larynx. Thus, for the swallow to be safely 
executed, the airway must be quickly and transiently 
reconfigured to allow bolus flow into the esophagus, while 
simultaneously protecting the airway against invasion – 
whether it occurs before, during, or after a swallow.  

As noted earlier, swallowing disorders, including 
aspiration, become more prevalent with increased age. As 
an individual ages, one of the normal changes that occurs 
in the oropharyngeal swallow is the development of a 
delay between the time that a bolus enters the pharynx and 
the onset of airway protection measures. Such a delay may 
lead to a portion of the bolus assuming a position in close 
proximity to an unprotected airway, leading to the 
potential for aspiration. This entry of the bolus into the 
pharynx prior to the onset of airway protection is 
sometimes referred to as “premature spillage.”  

Although there are many different behaviors 
associated with dysphagia, our initial focus is on bolus 
containment – that is, the prevention of premature spillage 
in response to lingual motions. The numerical and 
experimental procedures are focused on this phenomena – 
however, once developed and validated, they will have 
broad applicability to swallowing physiology and 
pathophysiology. 

 

3. Numerical Modeling Techniques 

3.1 Physical considerations 

While there may be great benefit in the application of 
computer modeling to oropharyngeal bolus flow dynamics, 
there are also many challenges. On one hand, there are 
many mechanical issues involved which complicate such 
an analysis. The flow of a liquid bolus through the 

oropharyngeal chamber may be described as the highly 
transient flow of an air-fluid mixture through a complex 
three-dimensional geometry with time-dependent 
boundaries. Furthermore, for all but the simplest liquids, 
the bolus is composed of a rheologically complex material, 
potentially exhibiting nonlinear, viscoelastic material 
properties that are temperature-, time-, and shear-rate 
dependent. Finally, as it progresses through the 
oropharyngeal chamber, the bolus undergoes large 
displacements as well as large deformations. 

Another computational issue that bears discussion 
is the question of the proper boundary condition at the 
interface between the tongue and the bolus. The classic 
boundary condition for simulation of viscous fluid flow is 
the “no-slip” condition. A different condition is often used 
in the case of lubricated flow, termed perfect slip, in which 
the wall shear stress is zero. For normal human 
swallowing, the presence of saliva lining the oral cavity 
likely renders the actual boundary condition somewhere 
between these two extremes. Note that the presence or 
absence of wall shear can profoundly influence the 
distribution of internal stresses within a material. 

In addition to the purely numerical issues 
described in the previous paragraphs, oropharyngeal bolus 
flow mechanics are also characterized by a high degree of 
variability. One source of this variability derives from the 
kinematics of the tongue. During the oral stage of 
swallowing (including bolus ejection from the oral cavity), 
the tongue is a primary source of propulsion for the bolus. 
In a study by Tasko et al. [8], small pellets were attached 
to the surface of the tongue and tracked during 2 and 10 
mL liquid swallows using the x-ray microbeam facility at 
the University of Wisconsin. The authors concluded that 
due to the high variability that was observed, they could 
not define a “low dimension quantitative description of the 
tongue kinematics during liquid swallowing”[8]. These 
data suggest that there may not be a unique pattern of 
lingual kinematics which is required for a successful 
swallow. This is not surprising, given that the tongue is 
under volitional control, and has a high number of degrees 
of freedom. In addition to this variability inherent in the 
physiological system, multiple studies point out the high 
degree of variability in what is input to the system – i.e., 
variability in rheological properties of a bolus (e.g., see 
[9]). Thus, to be of any predictive value, the results of any 
numerical model must address these potential sources of 
variability. 

 

3.2 Numerical considerations 

There are two frames of reference commonly utilized in 
computational mechanics, Eulerian and Lagrangian [1].  
Fluid mechanics simulations are typically carried out in an 
Eulerian frame of reference, in which the flow of material 
through a fixed region of space is studied.  In contrast, 
solid mechanics simulations are typically carried out in a 



Lagrangian frame of reference, in which a fixed quantity of 
material is followed as it deforms under the action of 
applied loads. There are cases, however, in which it is 
advantageous to utilize a Lagrangian representation for a 
fluid mechanics problem – such as the transport of a fixed 
quantity of fluid through a system, as in oropharyngeal 
bolus transport. Such cases often involve moving 
boundaries and/or free surfaces. In the Lagrangian case, 
the boundaries stay well defined as the grid deforms since 
boundaries of the domain coincide with the element 
boundaries. This makes the application of boundary 
conditions or the tracking of a free surface straightforward. 
However, when the deformations become too severe, the 
underlying grid becomes distorted, leading to numerical 
inaccuracies, and eventually, termination of the simulation 
(if, for example, elements “turn inside out”). There are 
several methods that have been developed to address free 
surface flows, as briefly described below. 

3.2.1 Eulerian methods 

Eulerian methods have been developed to simulate free-
surface flows on a fixed mesh, such as the Volume of Fluid 
Method. In these methods, a scalar function F,  is defined 
for each cell in the grid.  For each cell F ranges between 0 
(no fluid in the cell) and 1 (cell completely full of fluid).  
An evolution equation for F is solved along with mass and 
momentum conservation equations as part of the numerical 
solution.  In these methods, because the free surface does 
not necessarily correspond to element boundaries (F 

between 0 and 1 implies that a cell is partially full), it can 
be smeared, causing inaccuracies in its detection.   

3.2.2   Moving Mesh Methods 

A hybrid computational strategy has been developed to 
account for the large grid distortions associated with 
Lagrangian simulation, termed Arbitrary Lagrangian-
Eulerian [2]. In this case, a Lagrangian simulation is run 
for either a fixed number of steps, or until the elements 
become too distorted. At this point the model is smoothed 
and the dependent variables are interpolated from the old, 
distorted grid to the new grid, at which time the 
Lagrangian simulation resumes. Usually, the mesh is not 
completely reformulated – rather the existing nodes are 
moved without changing the overall topology of the mesh. 
For example, in the pseudo-solid method, the domain is 
treated as an elastic solid, and the equations of elasticity 
are used to smooth the mesh. The interpolation algorithms, 
which are typically the most inaccurate aspect of these 
methods, are often referred to as “advection algorithms” in 
the literature, because the grid is seen to move through the 
fluid.  Although these methods are powerful when 
moderate grid deformations are involved, they cannot 
handle the extremely large distortions typically inherent in 
Lagrangian fluid mechanics simulations, and the grid must 
be completely reformulated. 

If the mesh is to completely reformulated, a 
commonly used automatic mesh generation method is the 
advancing front method, based on Delaunay triangulation. 
In this method, based on knowledge of ordered sets of 
boundary segments for the domain, a series of triangular 
elements are developed and gradually refined until a final 
mesh is converged upon. Since the position of internal 
nodes is not specified, nodal points will have moved after 
the re-mesh; in general there may be a different number of 
nodes before and after the remap. This necessitates an 
interpolation step to compute values of the dependent 
variables at the new grid locations. 
 

3.2.3 Particle Methods 

An alternative to methods that require a mesh is the class 
of methods termed “particle methods.” In these methods, 
the continuum domain is represented by a set of points, 
where each point is imparted with a certain mass; 
dependent variables, such as velocity and density, are 
carried by the particles.  One very powerful advantage 
associated with these methods is the lack of a need to 
maintain a predetermined connectivity between points; 
such connectivity is implied for a finite element mesh. This 
allows for a natural handling of the extremely large 
distortions that accompany fluid flows. However, an 
accurate representation of the boundary of the domain is 
sacrificed, which leads to challenges in both tracking the 
free surface of a flow and in the application of boundary 
conditions. Furthermore, although particle methods have 
been applied to viscoelastic flows, these are not yet 
commonplace. 
 

4. Methods 

4.1 General Overview 

Based on the concepts described in the previous sections, 
we chose to build our numerical model using a Lagrangian 
method with adaptive re-meshing when the grid becomes 
distorted. We will first describe the development and 
validation of the basic Lagrangian method, followed by 
implementation and validation of the re-meshing 
algorithm. General information on the finite element 
method can be found in reference [3]. 
 

4.2 Numerical Model: Lagrangian Method 

An updated Lagrangian formulation was utilized. In 
contrast to a total Lagrangian formulation, in which the 
reference configuration is unchanged over the course of the 
simulation, an updated Lagrangian formulation uses the 
previous time step as the reference configuration for each 
time step.  

In this frame, the equations of mass and 
momentum conservation are given by, 
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where J is the determinant of the deformation gradient 

tensor, v is the velocity vector, σσσσ is the Cauchy stress 

tensor, f is the body force vector, and ∇∇∇∇ is the gradient 
operator.  In the current simulations, gravity is included as 
a body force.  Note that Equation (2) is not the common 
form of mass conservation used in fluid mechanics 
simulations – this point will be returned to later. 

Boundary conditions are given by, 

σσσσn=ττττ    on  Γτ   (3) 

x(X,t)=D(X,t)  on  Γx,  (4) 

where ττττ is an applied surface traction, applied over the 

portion of the boundary given by Γτ, and D is a 

displacement boundary condition, applied over Γx.  

Taking the scalar product of Eq. (1) with a virtual 

displacement, xδ , integrating over the volume, 

incorporating (3), and invoking the divergence theorem 
yields the weak form, 
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Next, a constitutive model needs to be specified for 

σσσσ. In the current simulations, we utilize the standard 
Newtonian liquid constitutive model, given by 

εIσ µ2+−= p ,   (6) 

where p is the pressure, I is the identity tensor, µ is the 

dynamic viscosity, and ε is the strain rate tensor. Note that 
the appearance of a pressure term in the constitutive model 
is a result of the kinematic constraint of incompressibility. 
This incompressibility constraint typically presents a 
challenge in computational mechanics, particularly for 
finite elasticity and fluid mechanics simulations. Note that 
a non-Newtonian or viscoelastic constitutive model could 
be incorporated in place of Equation (6). 

For fluid mechanics simulations invoking 
incompressibility, there are two general approaches for 
computing pressure.  One method is to combine the 
momentum equations with mass conservation to derive a 
Poisson equation for pressure.  An alternate method, 
referred to as artificial compressibility, utilizes an equation 
of state to relate pressure to volume dilatation.  The use of 
artificial compressibility affects the unsteady portion of the 
Navier-Stokes equation, leaving the steady-state solutions 
independent of the sound speed (as long as a solution is 
obtained).  This fact is often used to modify the sound 

speed for optimization of numerical convergence.  
However, when time-accurate solutions are required, care 
must be taken in choosing the sound speed.   These 
methods are also referred to as penalty methods. 

In the current work, we implemented a penalty-
type approach in which pressure was related to volume 
dilatation according to 
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where K is the bulk modulus and V/Vo is the relative 
volume.  

The domain was discretized into quadrilateral 
finite elements and standard bilinear shape functions were 
used for interpolation. All integrals were performed using 
four-point Gaussian quadrature with the exception of the 
pressure term, on which one-point quadrature was used to 
maintain numerical stability.  

Temporal integration was accomplished using an 
explicit, central-difference method, 
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Displacement and acceleration are denoted by u and a; 
F represents the vector of internal and body forces and 
M is the mass matrix.  We used the lumped form of M, 
in which the mass of each element is equally distributed 
among its nodes, yielding a diagonal mass matrix and 
independent nodal equations. 

For initial validation of the model, we ran a 
simple two-dimensional test case – horizontal motion of a 
container of fluid. The model and boundary conditions are 
illustrated in Figure 1 (left) and a plot of the deformed 
surface during the simulation in Figure 1 (right). Note the 
large surface deformation that is able to be handled with 
the current formulation. To validate our formulation, the 
same model was run using the commercial finite element 
package, LS-Dyna (Livermore Software Technology 
Company; Livermore, CA) and the results were compared.  
Plotted in Figure 2 is the vertical displacement at the left 
wall for both cases, showing excellent agreement. 

 

4.3 Numerical Model: Adaptive Meshing 

Once the base method was validated as shown above, we 
implemented a strategy to update the finite element mesh 
when it became distorted. In general, there are three steps 



involved in this process: (1) re-mesh the domain, (2) 
interpolate the solution from old grid to the new grid, and 
(3) detect the segments that are on the boundary of the new 
grid. Once these steps are completed, the simulation 
resumes. A flowchart illustrating the overall flow of the 
code is shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.1 Re-mesh Step 

While there are several excellent, open-source triangular 
mesh generators [4, 5], the automatic generation of purely 
quadrilateral meshes is not straightforward. In the current 
work, the pre-processor from the Abaqus finite element 
software package (Dassault Systèms, Providence, RI) was 
used to generate quadrilateral meshes. To accomplish this 
in an automated way, a python script (which is the 
scripting language utilized in Abaqus) was generated from 
the main simulation code.  This script contained the 
boundary contour of the distorted mesh as well as the 
commands utilized in Abaqus to generate a quadrilateral 
mesh. Once the python script had been generated, a system 
call was issued from within the simulation code to execute 
the script within Abaqus.  In this way, no user input was 
required to perform the re-mesh step. 

4.3.2 Interpolation Step 

In this section, we will be considering two finite element 
meshes – the original mesh before the re-mesh has 
occurred (termed the original mesh) and the mesh after the 
re-mesh has occurred (referred to as new mesh). Note that 
these two meshes are associated with the same physical 
geometry and thus share the same boundary.  This is 
illustrated in Figure 4. 
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Figure 1:  (left) Geometry for test problem (h=0.5 m, H=1.2 m, 

w=1 m). A 5 sec. load ramp was specified for the container 

horizontal velocity according to u=U(t/5), where t is time and U 

is the magnitude of the velocity. (right) Deformed shape during 

simulation.  

Figure 2:  Vertical displacement at left wall for test case 

using current method and LS-Dyna, showing excellent 

agreement. 

Figure 4:  Example finite element meshes before (upper left) 

and after (upper right) a re-mesh step.  The lower image has the 

meshes superimposed on one another. 

Figure 3:  Flow chart showing overall simulation algorithm. 
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In our simulation, the solution variables consist of 
the fluid velocities in the x and y direction.  These 
variables are defined at the nodes of the finite element 
mesh. Note from Figure 4 that the nodes in the new mesh 
are generally not in the same location as the nodes of the 
original mesh. Thus, it is necessary to estimate the fluid 
velocity at each node of the new mesh, based on 
interpolating values from the original mesh. 

To perform the interpolation for a given node in 
the new mesh (gray node in Figure 5), we first identify the 
element from the original mesh that contains this node (the 
element outlined in Figure 5).   

 
 
 
 
 
 

 
Once the appropriate element in the original mesh 

has been identified, it is further divided into two triangles, 
and the triangle containing the node to be interpolated is 
identified.  The three nodes of this triangle are then used to 
interpolate the nodal value in the new mesh using 
barycentric coordinates according to the formula [6]: 
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where A represents the area of the triangle, and f is the 
function to be interpolated at the point denoted by the red 
square. AA, AB, and AD are areas the smaller triangles 
defined in Figure 7, below.  

 
 
 
 
 
 
 
 
 
 
 
 

4.3.3 Edge Detection Step 

Finally, once the new grid has been constructed and 
solution variables interpolated, it is necessary to identify 
which nodes in the new mesh are on the boundary of the 

domain, and which are in the interior of the domain.  This 
is necessary as the new nodes may have been inserted on 
the boundary, and knowledge of boundary nodes is 
necessary for proper enforcement of boundary conditions.   
 To detect whether a given node was a boundary or 
interior node, a simple algorithm was developed based on 
counting the number of elements attached to a given node. 
Note that this algorithm works only if the mesh is 
completely composed of quadrilateral elements and all 
elements are connected to each other at nodes. 

As shown in Figure 7 (below), it was observed 
that any node attached to 1 element or 2 elements must be 
an edge node. 

 
  

 
 
 
 
 
 
 
 
 
 
 
For nodes attached to three or more elements, it 

was observed that the following general principle governs 
whether a given node is a boundary or interior node.  Let N 

be the number of nodes that the node in question is directly 
connected to through an element edge, and let E be the 
number of elements attached to the node.  Then if E=2N 

the node is an interior node and if E=(2N+1) then it is a 
boundary node.  This concept is illustrated below in Figure 
8. 

 
 

 
 

4.3.4 Validation 

Once the preceding algorithms had been developed, 
implemented, and tested, they were incorporated into the 
main simulation code. To test the robustness of this 
method, we ran three simulations using the sloshing tank 
model described in the previous section.  Cases were run 
with one re-mesh, three re-meshes, and the baseline case of 

Figure 6. Definition of areas used for interpolation of 

nodal values. 
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Figure 7. Example of element counting algorithm for 

nodes connected to 1 or 2 elements. 

Figure 8. Example of element counting algorithm for nodes 

connected to 3 or more elements. 
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Figure 5.  Schematic describing interpolation procedure.  The 

original and new meshes are shown with dashed and solid lines. 

E=2N E=2N+1 



no re-meshes.  Figure 9 below shows that the vertical fluid 
displacement at the left wall, which is indistinguishable for 
the three cases.  This implies that the re-meshing and 
interpolation algorithms have not significantly degraded 
the solution. 
 

 

 

5. Experimental Studies 

Once the model described in the previous section was 
validated against the simple test case, we sought to develop 
an experimental apparatus that could provide direct 
validation of the model predictions in a system that more 
closely resembled the oropharynx.  In this section, we will 
discuss the design of the apparatus, as well as some 
preliminary tests conducted. 

5.1 Experimental model 

The experimental model consists of a fluid bolus contained 
in the central groove of a simulated tongue (Figure 10, 
below). The tongue model was housed in a transparent 
plastic casing, allowed visual access to fluid motions 
during the experiments. Dimensions of the model were 
estimated based on scaling data from the biplane 
videofluoroscopic study of Kahrilas et al.[7]. 

The tongue model was perturbed with upward and 
downward motions of various amplitudes, simulating pre-
swallow lingual gestures, and the presence or absence of 
spillage recorded.  

 

5.2 Fluids utilized 

In addition to testing water, Thicken-Up powder 
thickener was added to vary liquid consistency.  Nectar, 
honey, and pudding mixtures were prepared according to 
the manufacturer directions and tested.  

Rheological properties for each liquid were 
determined using a Brookfield concentric-cylinder 
viscometer (Brookfield Engineering, Middleboro, MA). 
Temperature was maintained at 20˚ C using a temperature-
controlled water bath and the Brookfield small sample 
adapter with temperature-control jacket. Fluids were tested 
for 5 minutes at a shear rate of 35 s–1, with viscosity 
measurements acquired every 10 seconds. Each fluid was 
tested twice, and two different mixtures of each 
consistency were tested (for a total of 4 tests per 
consistency).  Representative viscosity vs. time data for 
nectar and honey consistencies are shown below. Note that 
the initial viscosity decreases by almost a factor of two by 
the end of the test. This behavior was observed for all 
samples.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Experimental Method 

 A prescribed volume of liquid (75 or 100 mL) was first 
loaded into the apparatus. With the back of the model 
constrained, the front edge was lifted a prescribed height 
(2, 4, 6, 8, or 10 cm), held for an instant, and then released. 
When bottom of the model hit the bench, the liquid moved 
forward, potentially spilling out the front of the model. The 
presence or absence of spillage was noted. Two trials of 
each height and consistency were performed on different 
days (investigators were blinded to the results while 
performing the tests). All trials were recorded on video for 
later analysis. Representative trials showing the absence 
and presence of spill are shown in Figure 7. 

As shown below in Table 1, for small amplitude 
perturbations, all liquids were contained with no spillage.  
For moderate perturbations, un-thickened water spilled, 
while all thickened liquids were contained in the model.  

Figure 9. Validation runs for full simulation including 

re-meshing algorithms. 
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Figure 10. Experimental apparatus to study oropharyngeal 

fluid mechanics. 

 



For the largest perturbations studied, only the pudding-
thick material did not spill.  
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2 N N N N N N 

4 N N N N N N 

6 N N N N N N 

8 Y N N Y N N 

10 Y Y N Y Y N 

Table 1. Results of experimental trials shown presence or 

absence of spillage for different bolus volumes, consistencies, 

and drop heights. 

 

6. Conclusions and Future Directions 

We have presented a Lagrangian method with adaptive re-
meshing to simulate the large-deformation free-surface 
flow fluid mechanics behaviour. The model has been 
validated against a simple “sloshing tank” problem.  In 
addition, an experimental apparatus has been developed to 
validate the model which is physiologically relevant to 
swallowing mechanics. 
 Current work is focused on combining these two 
aspects of the project by developing a computer model of 
the experimental apparatus and solving the fluid 
mechanics.  Once this has been accomplished, we will be 
able to assess the accuracy of the numerical model and 
apply it to study the fluid mechanics of oropharyngeal 
bolus transport. 
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Figure 12. Representative trials, showing the absence and 

presence of spill. 
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