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Abstract 

 

This thesis focuses on the gestural control and mapping of hand gestures in DiVA 

– a new interface for musical expression – with the aim of synthesizing audiovisual 

speech and song. The main purpose of the present work is to create a set of tools 

and guidelines for the analysis, evaluation and design of new gestural languages. 

A full analysis & visualization system was developed, allowing for the interpretation 

and concise representation of complex gestural data by means of a real-time 

principal component analysis. The relevance of this application is illustrated 

through a detailed study of the language used in the VisualVoice project, and new 

means of improving target selection in gesture-to-voice mapping are suggested. 

The second contribution of this thesis deals with the evaluation of hand poses and 

their associated transitions. We investigated Fitts’ law – well-known model of 

speed-accuracy tradeoff – in two pointing task experiments, involving respectively 

simple movements of a single finger, and complex gestures of the entire hand. 

Results show a good fitting with the model, suggesting that Fitts’ law can be 

successfully used to predict the difficulty of moving the hand from one pose to the 

other. The specific role of gesture bounds is also investigated, and shows a 

significant impact on movement time. These results suggest new ways to define 

gestural language and mappings relating glove controller variables to vocal 

synthesis inputs. 
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Abrégé 

 

Dans ce mémoire, nous nous intéressons au contrôle gestuel et mapping des 

mouvements de la main dans DiVA – une nouvelle interface pour l’expression 

musicale – à des fins de synthèse sonore et visuelle de parole et de voix chantée. 

L’objectif principal est la création d’un panel d’outils et la mise en place de 

recommandations pour l’analyse, l’évaluation et le design de nouveaux langages 

gestuels. 

Un système d’analyse et de visualisation complet a été développé. Il permet 

d’interpréter et de représenter des données gestuelles complexes de façon 

concise, via une analyse en composante principale effectuée en temps réel. La 

pertinence de ce logiciel est illustrée à travers une étude détaillée du langage 

utilisé au sein du projet VisualVoice, et de nouveaux moyens d’améliorer la 

sélection des cibles lors du mapping geste-parole sont suggérés. 

Un second axe de recherche concerne l’évaluation des poses de la main et de 

leurs transitions associées. En particulier, la validité de la loi de Fitts – un modèle 

reconnu du compromis vitesse-précision – a été étudiée lors de deux expériences 

de pointage impliquant dans un cas de ne bouger qu’un seul doigt, dans l’autre des 

mouvements complexes de la main entière. Les résultats sont cohérent avec le 

modèle, ce qui suggère que la loi de Fitts’ peut être adéquatement utilisée pour 

prédire la difficulté lors du déplacement de la main d’une position à l’autre. Le rôle 

particulier des effets de bord au sein des mouvements a également été exploré, et 

montre un effet significatif sur le temps d’acquisition. Ces résultats suggèrent de 

nouvelles méthodes pour la définition du langage gestuel et du mapping liant les 

données issues du gant aux paramètres de synthèse vocale. 
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Chapter 1: Introduction 

 

 

 

 

Design and evaluation of new interfaces for musical expression (NIME) is a flourishing field of study. 

The infinite possibilities brought by the evolution of computer music came along with the desire to obtain 

similar levels of control subtlety as those available in acoustic instruments [6]. Research in this field also 

provides a new entry point for fruitful investigations of the human motor and cognitive processes.  

With the aim of producing real-time speaking/singing voice from hand gestures, the Digital 

Ventriloquized Actor (DiVA) offers a rich framework for inquiring a wide range of subjects from fine 

control of expressivity in voice production, to vocal tract models or skill acquisition. Specifically, 

investigation of the gestural control and mapping with sound synthesis gives insights about the 

generation and perception of body movements, as well as relations that tie gesture, speech and 

expressivity. 

 

1.1. Visual Voice project: general overview 

Context 
The present research is part of the VisualVoice project, carried out at the UBC Media and Graphics 

Interdisciplinary Center
1
. It is based upon Glove-TalkII and GRASSP projects, developed since the early 

1990s by Sidney Fels and Bob Pritchard [9, 30]. VisualVoice gathers students and researchers ranging 

across several departments (Computer Science, Electrical & Computer Engineering, Music and 

Linguistic) and explores interdisciplinary collaborations engaged through expression and multimodality. 

 

 

Project 

As the only actual wearable gesture-to-speech system, DiVA has been part of the late-breaking work on 

new musical interface design (NIME) since its very beginning. The system ultimately aims at 

“synthesizing audiovisual speech and song, by means of an intermediate conversion of hand gestures 

to articulator parameters of a three-dimensional vocal tract model” [35]. In addition, a visual face 

synthesis is computed, which is mapped to the produced voice. DiVA is primary intended to be used for 

music and theatre stage performances, as well as in the everyday community. From the artistic point of 

view, the ambition is to expand on the ability to create new means of vocal expression. DiVA enables 

singers and composers to explore different connections, nuances, and subtleties in creating a novel 

media space that integrates both the human and artificial voice/face expression. 

 

DiVA gives the opportunity to study the human behavior in performing various types of evaluation of 

highly skilled performers. For several actors playing the same selected audio-visual piece, one can 

compare the produced voice and gestures under strict experimental constraints [34]. Also, recording 

and analyzing performer’s learning process and evolution in skill acquisition provide valuable 

contribution to understanding expert performance and human-computer interaction (HCI) design. 

 

                                                             
1
 Please refer to the appendixes for a detailed view of the structure of the project 

“Speech is rather a set of movements made audible 

than a set of sounds produced by movements.”  

— Raymond H. Stetson 
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1.2. Motivations and direction for the current research 

Actual research in the DiVA project focus on three main aspects: 

 3D articulatory voice synthesis.  

The current system integrates a Holmes formant-based speech synthesizer based on work by Fels 

and Hinton [9, 32]. Through this approach, voice articulation is mainly represented as trajectories of 

few parameters. Although being convenient for a hardware implementation, this technique lacks of 

naturalness and expressivity. Therefore efforts are made toward a more up-to-date and realistic 

model, providing better voice quality and controllability. The final speech synthesis method will 

involve a real-time 3D biomechanical simulation modeling human vocal tract and upper airway 

anatomy [11]. 

 

 Face synthesis 

The reception of subtly expressive musical passages benefits greatly when the audience is able to 

see the singer’s face [12]. Research is in progress to enhance the DiVA system with a synthetic 

face that supports such additional expressivity. Here the facial movements are coordinated with 

sound production directly, making good use of actual muscle-based, parametric, and kinematic 

control models [26]. 

 

 Gestural control and mapping 

Both input gestures and gesture-to-voice mapping play a strategic role in the subtle control of voice 

expression. The question of how to design a gestural language for voice production is not trivial, 

and has to deal with several issues such as hand motivity and multifinger synergies, symbolic 

representation of the gestural language or hand-based coarticulation
1
. At the same time, the 

mapping must provide an interface that easily fits to users’ peculiarities, while enabling creativity 

and virtuosity. 

 

1.3. Personal contribution on the gestural mapping 

This thesis focuses on the third aspect of the DiVA project: gestural control and mapping. In the chain of 

information treatment from gesture to sound, both stages play a strategic role. First, gestures convey 

performer’s vocal intent through a vocabulary composed of specific hand poses. Mapping then 

translates the hand positions and sends the necessary control parameters to the voice synthesis. 

Obtaining an expressive and natural voice flow thus greatly depends on the choice of hand poses. 

Furthermore, speech is not a simple concatenation of discrete phonemes, but a continuum involving 

coarticulation. Therefore, the dynamics underlying gesture (ie. transitions from one pose to another) 

have to be taken into consideration in the creation of a gestural language and in the mapping strategy.  

The main purpose of this Master project is to create a set of tools and guidelines for the 

analysis, evaluation and design of new gestural languages. 

As a primary analysis tool, visualization is important in enabling a straight interpretation of the data 

captured when moving the hand. Moreover, one can ask for a visual feedback to have a better mental 

representation of gestures during the instrument learning phase [3]. In this thesis, a full visualization 

system was developed, allowing for the concise representation of complex gestural data by means of a 

real-time Principal Component Analysis (PCA). 

                                                             
1
 Coarticulation refers to the fact that a phonological segment is not realized identically in every context, and shows 

considerable influence from neighboring segments (overlapping articulation). For a detailed revue, see [16]. 
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The evaluation of gestural poses and their associated transitions is a complex question, involving 

related fields such as experimental psychology, physiology and human-computer interaction. In this 

context, it may be useful to benefit from the many existing studies on the design and evaluation of input 

devices for general interaction [37]. One major goal in these studies is the improvement of accuracy 

and/or time response in pointing tasks, following the relationship known as Fitts’ law [22]. Using Fitts’ 

law, one can quantify the difficulty to reach a defined target. Our intention is to apply this very 

convenient property to characterize the transitions between complex poses of the hand.  

Fitts’ law is inherently a 1D model, and these two last decades have seen intensive HCI research in 

modeling 2D and 3D pointing [1, 15, 21]. Extending Fitts' law to complex gestures - involving a higher 

dimensionality and high level target representation - is a challenge that has still to be overcome. The 

second contribution of this thesis is an investigation of multivariate pointing in light of the recent 

progress in the modeling of univariate pointing. By conducting Fitts’ experiments with the glove used for 

DiVA as input controller, we explore the effects of borders, distance choice and previous learning on 

speed and accuracy. The results suggest new ways to define gestural language and mappings relating 

glove controller variables to synthesis inputs. 
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Chapter 2: Background 

 

Gestural control of voice synthesis deals with many different and heterogeneous fields of research, such 

as design of new musical interfaces and controllers, speech and singing synthesis, human kinetics, etc. 

The purpose of this chapter is consequently not to propose a complete “State of the Art”, but to clarify 

the context, and concepts used from then on. We start with an overview of actual considerations on 

digital musical instrument in section 2.1. In section 2.2 we give a brief outline on the relations that tie 

gesture and speech, as well as a short state of the art of gesture-to-voice synthesis. A few notions of 

hand anatomy are presented in section 2.3. Finally, a detailed characteristic description of the DiVA 2.x 

system is given in section 2.4. 

 

2.1. Speech and hand movements 

 

Relations between gesture and voice production have been investigated in details these two last 

decades, in the light of strong evidences for a common neurological basis, gesture being “at the cutting 

edge of early language development”  [28]. For instance, we have not yet discovered a culture in which 

speakers do not move their hands as they talk! [13]. This tied link and united performance play an 

important role in expressivity, as illustrated by chironomia, the art of using hand gestures for successful 

rhetoric and oratory [4]. In its ultimate purport, gesture can act as a complete substitute for speech in 

the purpose of communication, whenever oral communication is not yet possible. The best example is 

the sign language
1
, which enables to fluidly express a speaker's thoughts using visually transmitted sign 

patterns. Like oral languages, elementary units – “phonemes” for voice, “cheremes” in the case of 

signed language – are organized into meaningful semantic units. Signs can either be iconic, delivering 

high-level semantic information based on symbols, or arbitrary, for intents of low-level spelling (see 

Figure 2.1). 

In the context of VisualVoice, revisiting the production of speech by means of hand gestures offers a 

new perspective for exploring voice expressivity, in the directions of daily communication and musical 

purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
1
 For a full review on sign language, please refer to [33].

 

Fig. 2.1: Illustration of the dactylologic alphabet in 

the American Sign Language (ASL) 
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2.2. From gesture to voice 

 

2.1.1. Digital musical instrument 

 

Wanderley defines a digital musical instrument (DMI) as “an instrument that contains a separate 

gestural interface from a sound generation unit, [both are] independent and related by mapping 

strategies” [36]. This common way to represent a DMI is illustrated in figure 2.2, where three distinct 

units capture and shape the signal from gestures to produced sound.  

  

 

 

 

 

 

 

 

 

 

Performer’s gestures
1
 are first acquired by the controller, either directly (sensors monitor player’s 

actions) or not (actions are derived from the analysis of sound). Once gesture variables are available, 

they are related to the synthesis input variables using a particular mapping strategy, and sound is 

synthesized by the third unit. At different stages in this architecture, there can also be visual, auditory or 

tactile-kinesthetic feedbacks.  

 

While in traditional acoustic instruments the gestural interface is also a part of the sound production unit, 

the dissociation of gestural control and sound generation in DMI enables to map any gestures or 

movements to any class of sounds [26]. This characteristic - offered by the important outgrowth of 

computer capacities - makes it possible to extrapolate the musical functionalities without any limit, but in 

the same time poses the question of how to design and perform this new kind of instrument. 

 

 

2.1.2. Gesture-to-voice synthesis 

 

Research on speech synthesis has enabled to attain acceptable intelligibility and naturalness, which 

paves the way toward finer control of prosodic nuances. In particular, efforts are made to be able to deal 

with subtle expressive variations rather than archetypal emotions (anger, fear, despair, etc.) [2, 20]. In 

this context, expressive speech synthesis and analysis, as well as gestures representation and 

instrument design are central points to be investigated.  

 

Few works have been proposed on the gestural control of (singing) voice synthesis. In Voicer and 

Calliphony, a joystick and graphic tablet are used as controllers to produce the voice in realtime by 

means of glottal flow models [19, 20]. Performing with a pen gives a natural control on intonation, as it 

benefits from the skills in writing acquired since childhood. In this direction, theory of device 

embodiment gives guidelines for the design of highly expressive systems [9]. Within such framework, 

N.d’Alessandro used the Luthery Model for approaching the conception of a tablet-based instrument 

(RAMCESS), mixing prerecorded voice material and an interactive model of the glottal source [2]. 

Finally, in DiVA voice is produced using a glove as controller and “embodied” gestural representations 

of the vocal tract. A notable particularity of this project is the use of an articulatory model as speech 

synthesis method.  

                                                             
1
 For a detailed study on the notion of gesture in the context of human-computer interaction and in the musica 

domain, please refer to [6]. 

Feedback 

Fig. 2.2: Representation of a Digital Musical Instrument  

INPUT 
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Mapping Sound 

Production
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2.3. Anatomy of the hand 

 

This is not our intention to explain in details every bone, muscle and tendon that compose the hand. 

However, a short summary of the main articulations is interesting, since their control is at the foundation 

of hand movements further acquired by the digital instrument.   

 

The articulation of the human hand is constituted of three sets of different joints:  

 Interphalangeal articulations are the hinge joints between the finger bones. We can distinguish the 

proximal interphalangeal joints (PIP) situated between the first (also called proximal) and second 

(intermediate) phalanges, and the distal interphalangeal joints (DIP) between the second and third 

(distal) phalanges. The only movements permitted are flexion and extension. 

 Metacarpophalangeal joints (MCP) bind the phalanges and the metacarpals. The movements which 

occur in these joints are flexion, extension, adduction, abduction, and circumduction. Movements of 

abduction and adduction are very limited, and cannot be performed when the fingers are flexed. 

 Radiocarpal (wrist) joint refers to the anatomical region surrounding parts of the forearm bones, 

parts of the five metacarpal bones and the series of joints between these bones. The movements 

permitted in the wrist are various and complex. They comprise marginal movements (abduction, 

movement towards the thumb or the little finger) and movements in the plane of the hand including 

flexion (tilting towards the palm) and extension (tilting towards the back of the hand). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Gestural mapping in DiVA 2.x 

 

2.4.1. Choice of the gestures 

 

DIVA 2.x is a DMI that performs continuous hand gesture-to-voice mapping, using a number of 

hardware items to track a performer’s hand movement and gestures. Differing from sign language, in 

this system speech is produced phonemically: each gesture corresponds to a single phoneme. There 

are 11 cardinal vowel sounds and 15 cardinal consonants mapped this way. The current hand poses 

were determined on the basis of a mental representation of the human vocal tract and articulators [9]. 

Consonants are produced by touching fingers to the thumb, much like how occlusive sound are 

naturally produced in the vocal tract when mobile organs (tongue, lip, lower mandible) are press against 

fixed articulators (hard palate, incisors) to stop the airflow.  Vowels are produced by moving the hand in 

Legend 

 

A: Thumb 

B: Index finger 

C: Middle finger 

D: Ring finger (annulus) 

E: Little finger (pinky) 

 

1: Distal phalanges 

2: Intermediate phalanges 

3: Proximal phalanges 

4: Metacarpals 

5: Carpals 

Legend 

 

distal interphalangeal 

joints (DIP) 

 

proximal interphalangeal 

joints (PIP) 

metacarpophalangeal 

joints (MCP) 

radiocarpal joint 

Fig. 2.3: Dorsal view of the human hand, (a) bones anatomy, (b) simple representation of the articulations 

(a) (b) 
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the horizontal space, in a layout that is similar to the first and second formants of the vowel space (F1, 

F2).   

 

 

2.4.2. Hardware devices 

 

Performer’s gestures are tracked by three hardware components:  

 A wireless CyberGlove
™

, worn on the right hand, measures 18 angles of the hand articulations as 

shown in Figure 2.4. We will focus on this main controller along this thesis, as it has the central role 

of acquiring the complex gestures mapped to the phonemes.  

 A Polhemus Patriot tracker
™

, worn on the right arm, measures 6 degrees of freedom of the 

performer’s hand (X, Y, and Z position; yaw, pitch, and roll). It is principally used for moving into the 

vowel space (X, Y position) and pitch (Z position).  

 A TouchGlove, essentially a modified keyboard, is worn on the performer’s left hand. It has eight 

contact sensors that are activated by the performer pinching the appropriate pad with his/her left 

thumb. These are mapped to plosives, which proved to be too difficult to perform using continuous 

gestures due to their rapid release rates.   

 Finally, the performer uses an insole foot petal to control the master volume of the sound produced 

by the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3. Software components 

 

The system is intended to be used by a multitude of performers, each with their own unique hand shape 

and performance style. As such, an adaptive interface has been developed in DiVA 2.x, that allows 

each performer to create a set of proper “accents” (ie. configuration parameters). Three neural networks 

are used to implement this interface, playing the role of the mapping layer in a DMI representration. As 

described in [12], one Normalized Radial Basis Function (RBF) network is specialized to map the X and 

Y coordinates of the right hand to vowel formants while another maps right hand finger movements to 

consonant formants. The third network blends these two formant outputs together based on how much 

of a vowel or consonant shape the performer’s hand is in. The centers of each RBF in each network are 

1 Thumb Rotation 

2 Thumb MCP 

3 Thumb PIP 

4 Thumb Abduction 

5 Index MCP 

6 Index PIP 

7 Middle MCP 

8 Middle PIP 

9 Middle-Index Abduction 

10 Ring MCP 

11 Ring PIP 

12 Ring-Middle Abduction 

13 Pinkie MCP 

14 Pinkie PIP 

15 Pinkie-Ring Abduction 

16 Pinkie Rotation 

Fig. 2.4: Picture of the CyberGlove
™

 with the sensors superimposed (a) and described in table (b) 

Except DIP joints, the angle values of almost each articulation are acquired, enabling for a precise 

and complete “snapshot” of hand gestures. 

(a) (b) 
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set to the respond to a hand posture associated with a cardinal sound, and trained on multiple samples. 

Therefore the network responds to its primary regression intent, in approximating the complex hand 

poses space with a number of multivariate Gaussian functions (represented in Figure 2.5). Normalized 

response NR of each RBF is defined as: 

 

 
2

2

i

ii

i

IM
R



 
   




j

j

j
R

R
NR  (1) 

Where M and σ are the mean and standard deviation over all training samples, for each sensor parameter i, and I is 

the current real-time value for that same sensor. 

 

We illustrate the selection process with a simple example in using only two sensors X and Y. In terms of 

selectivity, if the standard deviations for both the X and Y dimensions are very small, the width of the 

Gaussian function in both dimensions will be very narrow, and the performer will have to produce a 

gesture close to the phoneme’s center for having favorable value returned by the corresponding hidden 

unit in the RBF network.  If the X standard deviation is low, but the Y standard deviation is high, the 

performer will have to hit a very specific location in the X direction, but with a much greater range of 

favourable Y values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.4. Limitations 

In the RBF network, the outputs of each hidden unit are normalized, so that they sum to 1, and their 

response comes to represent the probability that the performer is trying to produce the corresponding 

phoneme, with the closest units returning much higher values than the units that are farther away. As a 

result, the system interpolates for intermediate positions, performing a linear mapping between the 

closest RBF outputs. The drawback here is that such a linear interpolation leads to audible artifacts on 

the synthesized sound, since it approximates the physical mechanisms behind phonemes transitions, 

which are not linear by nature.  

Inputs of the neural network are the raw data issued by the different controllers, CyberGlove included. 

One particularity in the hand motivity is the fingers’ synergies, ie. their mechanical coupling. Feeding the 

RBFN with isolated sensor values does not take into account these coupled degrees of freedom, 

although they are important for a complete interpretation of the gesture data. This issue will be 

discussed in chapter 3.  

Fig. 2.5: Example of Radial Basis Function responses in two dimensions. Width and position of the 

normalized radial-basis functions are set with the standard deviations and means of the training samples.  
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Chapter 3: Visualization and analysis by means of 

real-time PCA 

 

 

3.1. Introduction 

Providing tools that enable a straight interpretation of the data captured when moving the hand is one of 

the primary aims of this master project. The use of a very precise sensor with high dimensionality as 

input controller (eg. the CyberGlove) is essential to acquire the subtle hand movements - which are 

further mapped to the voice parameters - and convey performer’s intention for an expressive voice. 

However, the resulting complexity imposes a serious drawback in the way the data can be visualized 

and interpreted. Consequently there is a need for reducing the data dimensionality, in order to be able 

to properly visualize and interpret the hand movements. 

The dependencies between the various sensors are another issue to be considered. Due to 

physiological but also technical considerations, there is a substantial amount of information redundancy 

in the glove data. This redundancy is to be considered as a correlation that holds some of the relations 

tying the fingers’ kinetic. To distinguish the part of data that hold “important information”
 
(this notion is 

examined in section 3.3.7) is a primordial step in the design of a mapping strategy.  

 

These issues can be addressed by a real-time data reduction, in projecting the immediate sensor 

values into a new space to extract signals that best describe the main characteristics of the original 

motion capture data set. We emphasise on the “real-time” condition for the analysis, reduction and 

visualization of the resulting signals. Giving the researcher and performer an instantaneous visual 

feedback is a highly desirable property, since it allows for an intuitive understanding of the dynamic of 

the hand movements. The real-time property for gesture mapping is also extremely important to avoid 

any latency, since gestural mapping is a part of the digital instrument. 

 

Principal Component Analysis (PCA) is used in this project, as it provides an objective and common 

method to reduce the dimensionality and to evaluate the variances and correlation within a given data 

set.  

In section 3.2 we present in detail the method used to compute PCA in this project, as well as terms and 

notions referred to in the sequel. In section 3.3 we recall the main assumptions and limitations 

underlying PCA. How it is applied in a set of tools enabling the analysis of gestures in DiVA is described 

in section 3.4. Section 3.5 clarifies the central role of training set. An in-depth analysis of current DiVA 

gestural language is given in section 3.6. Finally, the notions of sensor variance and distances choice 

are discussed in sections 3.7 and 3.8. 
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3.2. Background in PCA 

PCA is a statistical technique commonly used as a tool in exploratory data analysis. It is alternatively 

named the discrete Karhunen-Loève transform, the Hotelling transform or the proper orthogonal 

decomposition (POD) depending of the field of application. A detailed description of the mathematics 

behind PCA can be found in [8, 31]. The idea is to combine information that demonstrates high 

covariance within the data set, in finding the orthogonal axes that maximize the inertia of the data cloud, 

as illustrated in Figure 3.1. PCA is a two-step algorithm that includes the decomposition process and the 

reconstruction process
1
.  

 

 

 

 

 

 

 

 

 

The covariance matrix of input signals is first decomposed in terms of its eigenvectors and eigenvalues. 

Once the eigensystem is obtained, the original data set is projected into the new basis maximizing the 

covariance, and reconstructed according to its principal components (PC). These components are 

ordered so that those with the highest eigenvalues are presented first. PCA is a non-destructive process 

preserving the global information; data reduction is performed with the extraction of a lower dimension 

data set, obtained by selecting the components that seem to best explain the behaviour of the original 

one. 

3.3. Properties and limitations  

When applying PCA, one must keep in mind its intrinsic properties and underlying assumptions: 

 PCA is non-parametric (no prior knowledge is incorporated in the process), bijective (one-to-one 

correspondence between the initial and reconstructed sets) and independent of any hypothesis 

about data probability distribution. 

 PCA is theoretically the optimal linear scheme, in terms of least mean square error, for the 

projection of data to a new coordinate system such that the greatest variance along the input data 

set corresponds to the first principal component, the second greatest variance to the second 

principal component, and so on. 

 PCA only finds the independent axes of the data under Gaussian assumption. It comes from the 

primary motivation of the method, which is to decorrelate the data set, ie. remove second-order 

dependencies. 

  PCA only finds the independent axes of the data under an assumption on linearity. The initial data 

set is assumed to be a linear combination of a certain basis.  

                                                             
1
 A detailed description of PCA computation is given in the appendixes. 

Fig. 3.1: Example of a PCA process on a bivariate Gaussian distribution. First the orthogonal axis that 

minimize the sum square error within the data set are found (a), then the data set is projected into this new 

base (principal components) (b).  

(a) (b) 
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3.4. Applying PCA to the analysis of gestures in DiVA 

 

3.4.1. Overview 

Within the DiVA frameworks, we developed a full system for the real-time analysis of hand gestures. 

Important decisions taken for the development and programming issues are discussed in section 4.4.2.  

A sum up of code structure and data flow is given in section 4.4.3. The application, which implements 

the principal components analysis and visualization with a user-friendly and didactic interface, is 

described in details in section 4.4.4.  

 

How glove data is processed follows the layout given by the two-step PCA algorithm: 

 Record and processing – decomposition step 

A record session is necessary to provide the training data set that serves as a basis for the analysis. 

Every input sample generated during a sequence of hand movements is saved in memory for this 

purpose. Isolated gestural targets are also recorded during this session, which allows for a later analysis 

and representation of these complex hand poses. The essential role of the training set and precise 

record protocols are discussed in section 5.1.  

After pre-processing of the recorded data, the eigensystem is computed from the training set in order to 

obtain the associated projection vectors. 

 Projection and visualization - reconstruction step 

This phase corresponds to the core of the real-time analysis. It simply consists in projecting the current 

input data into the new space defined by the training set, without any modification of the eigensystem. 

We then provide a complete visualization for the intuitive representation of principal components. 

Gesture trajectories are interpreted trough the movements of faddish spheres in a cube, representing 

the projected hand data into the PCA space. 

 

3.4.2. Practical choices 

The application is intended for use in both the present study and future research within the DiVA project. 

Thus, development choices are made following constraints such as modularity, reusability and inter-

operability. In particular, it must enable an easy migration from one plate-form to another, supporting 

any upcoming strategic decision on the running system.  

Programming language is C++, since it is the language chosen for the DiVA software. As “middle-level” 

and object oriented language, it allows for both good efficiency and modularity. Due to its popularity, a 

large number of libraries are available, which is particularly convenient. 

We only used free, open-source and cross-platform environments and libraries in the development of 

this application: 

 NetBeans is used as Integrated Development Environment. 

 Eigen is used as template library for linear algebra. It is versatile, fast and robust. 

 openFrameworks library is used for the user interface and 3D display. It is especially designed to 

assist the creative process by providing a simple and intuitive framework for experimentation. 

 

We also used the OSC (Open Sound Control) protocol for the communication between the input 

controller, the application and other DiVA software. OSC's advantages include interoperability, 

accuracy, flexibility, and enhanced organization and documentation. 
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3.4.3. Code structure and data flow 

We take full advantage of C++ as an object-oriented language using classes, inheritance, overloading, 

etc. Any modification applied to data is monitored carefully; the information can be checked at any 

moment in the process sequence. Data are recorded in text files, allowing for a deftly use and analysis. 

Detailed view of the class organization, information path and processing, and file format are given in the 

appendixes.    

 

3.4.4. Software presentation 

Recording 

A full part of the software is dedicated to the record of hand movements and gesture targets. The user is 

asked to realize a specific sequence of gestures, which are automatically recorded. Each target is 

registered a certain number of times, which leads to the creation of one cloud of glove data per target, 

enabling for a further analysis of variance and mean calculation. 

The record procedure is the following:  

1. A picture representing a given hand pose is displayed. 

2. The user moves the hand to “reach” the target, and press the backspace button for target selection 

(at this point, reaching decision can only be left to the user’s appreciation). The current glove 

samples are recorded and added to the target data cloud. 

3. A new task begins with a new target, using the previous one as initial position.  

The choice of transitions to be executed is important, in the sense that it completely defines the gesture 

space taken into consideration as training data set. We use a particular pathfinding algorithm to 

randomly generate an optimal sequence of gesture poses, so that each transition is only parsed a given 

number of times (Euler path). This point is discussed in detail in section 3.5. 

 

 

 

 

 

 

 

 

 

Visualizing 

The main aim of this application is to enable a straight interpretation of the hand movements. In this 

context, efforts have been made to clarify as much as possible the real-time representation of gestures. 

Our elaborated visualization tool includes the following features: 

Fig. 3.5 Display of hand pose during the recording session 
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 Hand movements are represented by means of faddish spheres moving inside a transparent cube 

(figure 3.5). Gesture trajectories are made easy to visualize with a parameterizable “tail” 

reminiscence. The cube can be rotated and scaled ad libitum. Visualization can be paused at any 

moment to capture and analyze the hand movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 Projecting the movements in 3D enables to represent three successive principal components (PC) 

simultaneously. All dimensions are equally scaled for display relatively to the maximum dynamic in 

training base among every component. The axes can be browsed easily, shifting from PCs to PCs, 

which is convenient for their interpretation (figure 3.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: Gestures are visualized trough the apparent motion of spheres (in black) inside a 

cube. Recorded targets are also projected into the PCA space and displayed (in green). 

Here axes are the three first principal components. 

 

Fig. 3.7: The same movement can be seen along different CPs, in order to obtain a full 

representation of the projected data. (a) CP1,2,3  (b) CP2,3,4 (c) CP3,4,5 (d) CP4,5,6. 

 

(a) (b) 

(c) (d) 
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 Means of each recorded hand poses are represented into the cube. These latter can be browsed 

and recognized with a simple mark up and the display of their corresponding picture. The entire 

data cloud of each target can also be visualized to have a complete view on the recorded data and 

its dispersion (figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 Finally, a collision management system is developed. It enables to delve the concept of distance in 

the gestural space (discussed in section 3.5.X), and is also used for the Fitts’ law experiment 

involving the whole hand (see chapter 4). 

 

 

 

 

 

 

 

 

 

 

3.5. Central role of the training set 

New glove samples are considered as supplementary points during the visualization, ie. do not cut into 

the eigensystem. The decision of keeping the training base unchanged after the record session is based 

upon the following arguments: 

Fig. 3.8: Observation of the targets and their data cloud in the projected space. Top right picture 

shows the hand pose represented by the highlighted cloud (in orange). Transparent spheres are 

the recorded positions; solid ones correspond to clouds’ means. 

 

Fig. 3.9: A visual feedback shows when targets are reached (in red) 
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 By recording under strict constraints the movements that constitute the training set, one can 

precisely define the gesture space in which input data is projected. This allows for the investigation 

of new gesture languages, corresponding then to specific subspaces in the space of all possible 

hand movements. Any movement that does not belong to the defined gesture set is projected 

outside the cube. By doing so, the limits of the language become evident, which offers a convenient 

entry point for the exploration of new hand poses. 

 It is essential that the movements done outside the record session do not impact the projection 

itself, which would be the case if new data was taken into consideration in the eigensystem. Indeed, 

any visualization or experimentation doesn’t make sense if the space and experimental conditions 

constantly change without control. By clearly dissociating the training phase (deconstruction step) 

and the visualization phase (reconstruction step), the analysis keeps its objective aspect. In this 

case, only the personal appreciation that triggers the target selection brings an unavoidable 

subjective layer.  

However, creating the base data set is not trivial. Since every sample acquired during the record 

session cut into the base data set, any hand movement performed at this moment has to be carefully 

directed and controlled. The following considerations give guidelines for setting up a judicious record 

protocol: 

 The projection space is influenced by the number of time specific positions in the initial space are 

recorded. For example acquiring 10 times position A and 1 times position B in a record session will 

not make the same results than the opposite situation. Therefore the initial set of movements has to 

be equally balanced among the different hand poses.  

 Data is continuously acquired in, but also between the defined hand positions. Therefore the 

transitions between these gestures should be taken into consideration in the construction of the new 

gesture space. The ideal case is thus to perform every possible transition the same number of time, 

in order to obtain a uniform space. 

As introduced previously, our record protocol consists in presenting a determined sequence of targets to 

be performed by the user. The optimal sequence is equivalent to a path that parses each transition a 

given number of times, not more, not less. This problem corresponds to the famous Seven Bridges of 

Königsberg problem solved in 1736 by the mathematician Euler [5]. More specifically, in graph theory 

our precise case corresponds to a strongly connected, directed graph. Latter properties verify the 

necessary conditions for the existence of an Eulerian path between the hand poses [38]. We can thus 

construct a random Eulerian path out of this graph by adapting commonly used Fleury's algorithm (cf. 

appendixes). 

 

Fig. 3.10: illustration of a strongly connected and directed graph. An Euler path would go from edge to edge 

(eg. hand poses) visiting each oriented vertex (eg. gesture transition) exactly once. 

 

3 

5 2 

1 

4 
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3.6. Analysis of gestures 

Based on the present framework, we distinguish three plans that will be investigated in the analysis and 

interpretation of gestures:  

1. Analysis of movements. Real-time projection and visualization of hand movements gives interesting 

insights on finger synergies and allows for a functional description of gestures. 

2. Analysis of gestural language. Record and projection of hand poses enable to better understand the 

space occupation of these targets within the gestural language, but also the space occupation of the 

entire language itself in the universe of all possible hand movements. Analysis of the distribution of 

targets’ cloud (ie. dispersion of record points) gives indications on acquisition of gestures and motor 

accuracy. 

3. Analysis of collisions and target pointing. Describing the transition between targets, and modeling 

their difficulty is an important step for the design of new gestural languages. This complex issue is 

investigated in chapter 4.  

 

Problem of comparison and record of a pseudo-random training set 

As the PCA projection relies entirely on the initial data set, comparisons are not possible between 

gestural languages when using different training sets. Although analysis of space occupation inside a 

given language is still possible, it is necessary to have a common base for different languages, ie. to 

project several hand poses with the same eigensystem. 

From this perspective, an ideal basis would be the one that completely represents the universe of all 

possible hand movements, enabling to visualize the absolute distribution of any projected gestural 

language in the entire hand motor space. 

We make an attempt in this direction in recording a large set of pseudo-random hand movements, being 

fully conscious of the inherent lack of objectivity of such procedure. In particular, we emphasize on 

trying to visit every possible border in term of hand movements, in order to extend the limits of the 

gestural space to its maximum (this notion is developed in chapter 4).  

Experimental conditions 

The following investigations are based on data provided by pilot studies. They were carried out on 3 

research fellows, between 22 and 27 years of age, having either normal vision or wearing corrected 

lenses, and right-hand dominant. 

We focus on the analysis of pseudo-random training sets and on the gestural language already in use in 

DiVA. We recall that the aim of the current work is not to inquire for new hand signs, but to provide tools 

for future designs of gestures. 

Analysis of the pseudo-random training set 

We recorded 10K samples of pseudo-random movements as training set, corresponding roughly to 10 

minutes of glove data recording. The instructions given to the pilot subjects were to try to visit every 

possible hand gesture, with an emphasis on maximal flexion/extension. They were also suggested to 

concentrate on each finger separately, and then on the entire hand. Record was stopped after subjects 

produced the 10K samples. PCA was finally computed on this data set.  

The first 6 components provide enough information to explain 90% of the variance within the data set, 

as demonstrated in Figure 3.9a. Looking closer to eigenvectors for this specific PCA enable to explain 

more precisely the contribution of the different sensors to resulting principal components. Figure 3.9c 

gives an illustration of the eigenvectors matrix through a color scale, enabling for a fast interpretation of 

the coefficients (related values table is given in annexes). PC1 appears to be related to the joints second 
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from fingers tip (sensors 6, 8, 11, 14), PC2 to the joints where the fingers meet the palm (sensors 5, 7, 

10, 13), PC4 to the thumb movements (sensors 1, 2, 3). Last PCs (PC12PC16) are almost only 

contributed by punctual sensors dedicated to abduction movements (respectively sensors 9, 15, 2, 13, 

4). It indicates that these sensors acquire fairly uncorrelated movements, which in the same time do not 

explain an important variance. Real-time visualization of hand motions corroborates this analysis of 

sensors’ contributions to principal components. 

 

 

 

 

 

 

 

 

 

 

 

 

Assuming that our data set offers a significant representation of the entire range of hand movements, 

these results suggest that when moving the hand without specific constraints, most of the variance is 

explained by the fingers phalangeal and carpal articulations (PC1,2). This has to be taken into 

consideration in the design of specific hand positions, especially considering the issue of focus when 

performing specific gestures, as detailed in next section. 

Analysis of the language used in DiVA 2.x 

The record protocol here is the one previously described in section 3.4.4. Every possible transition 

between gesture poses is visited, which means that each target is recorded (Nb target-1) times. DiVA 

language being constituted of 15 hand poses (described in chapter 2), for each pilot subject we 

recorded 15*14=210 points in the target data set. Record of every glove samples received during the 

session gives the resulting training data set. Its average number of sample is 49592 over 3 pilot 

subjects. 

Once again, 90% of the variance is explained by the first 6 PCs (Figure 3.10a). Inertia is more 

distributed here than with the pseudo-random training set, in particular the gap between PC2 and PC3 is 

less important, as shown in Figure 3.10b. A possible reason is that DiVA language uses a small part of 

the dynamic of phalangeal and carpal articulations, the gestures being concentrated around the same 

hand positions in the aim of representing the vocal apparatus. More specifically, in the DiVA language 

oppositions of the thumb with the index and middle fingers, and movements of the ring have an 

important role in the articulation of synthesized voice [9]. This fact meets the large contribution of 

sensors 6, 8 and 11 (index, middle and ring second joint) respectively in PC1, PC2 and PC3 as shown in 

Figure 3.10c. 

Fig. 3.11: Inertia accumulation (a) and fraction (b) for pilot subject 1’s pseudo-random database (10K 

samples). (c) Illustration of eigenvectors (absolute values). High coefficients contribute greatly to the resulting 

principal components. 

 

(a) 

(b) 

(c) 
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Space distribution of gesture poses in the DiVA language is made visible by visualizing the target 

positions after projection
1
, as depicted in Figure 3.11. It brings to light the non-uniform repartition of 

hand poses in the space build upon the transitions from one gesture to another. In particular, we 

observe the presence of small clusters, corresponding to close gestures in terms of Euclidean distance. 

It is consistent with how the DiVA language is designed, ie. as subtle variations around few key 

positions, which here can be seen as the groups into the cube. Recorded target positions are 

superimposed on their means in Figure 3.11b. Visualization of targets’ cloud underlines an important 

overlapping of the recorded hand poses inside each cluster, although in this case visual spheres radius 

has been arbitrary chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
1
 Please refer to the appendices for a detailed view of each association with hand poses in the projected space. 

Fig. 3.12:Inertia accumulation (a), inertia fraction (b) and illustration of eigenvectors (absolute values) 

(c) provided by pilot subject 2’s training database for DiVA2 language (55K samples).  

 

(a) 

(b) 

(c) 

Fig. 3.13: Visualization of DiVA 2.x language (three principal components) for pilot subject 2. Solid green 

spheres show target means (a) and transparent spheres represent targets’ recorded positions (one color 

per target in the insert) (b). Visualization of hand poses distribution underlines an unequal space 

occupation, with the presence of several groups (arrows and pictures). 

 

(a) (b) 
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Projecting the same set of targets onto a pseudo-random training set also recorded by the subject 

enables us to represent DiVA 2.x language in an approximation of the entire hand motor space (Figure 

3.14). It makes clear that this language doesn’t use the full range of possible hand movements, but 

instead is confined to a small area of the gesture space. 

 

 

 

 

 

 

 

 

 

Through a detailed analysis of the language used in DiVA 2.x, we have identified some of its main 

characteristics: importance of index, middle and ring fingers, and variation around hand key poses. We 

have also observed possible drawbacks in its design, namely a reduced and unequal space occupation. 

The initial intent in the VisualVoice project was to map these close gestures to sounds that are also 

perceptively close, enabling for a subtle gestural control of the voice. However, such proximity makes it 

very difficult for the system to properly dissociate two different hand poses. Furthermore, it increases 

the risk of collision on the gestural trajectories, leading to undesirable audible artifacts. 

We suggest two possible, non-exclusive solutions for solving this issue: 

 To change the gestural language, emphasizing on a more uniform repartition. 

 To change the distance used in the space where targets are represented. This point is detailed 

in section 3.8. 

 

3.7. Notion of variance in the context of gesture-to-voice mapping  

Within a given hand pose, every articulation and every finger doesn’t have the same importance. Indeed 

when performing a gesture, one focuses on specific parts of the hand for several reasons: 

 Attention (cognitive process) 

It is well known that attentional focus affects motor performance [39]. In order to deal effectively with the 

control of specific hand muscles, one has to concentrate on them while withdrawing the others. This 

“limitation” is inherent to human allocation of processes resources. 

 Language design 

There is an explicit focus on small parts of possible movements and positions when designing new 

gestures for a voice synthesis purpose. For example, the vocal tract analogy in DiVA language often 

leads to concentrate on subtle movements of fingers in contact with the thumb, taking less care to other 

parts of the possible gestures. 

Fig. 3.14: Visualization of DiVA 2.x language (three principal components) projected on the basis built upon the 

pseudo-random training set, for pilot subject 2. The cube represents here the limits of possible hand movements. 

DiVA 2.x hand poses are concentrated in a small part of the available space. 
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Therefore, it is particularly relevant to consider focusing on specific regions of the hand in the gesture-

to-voice mapping, as it enable to “zoom” on important parts of the gesture while filtering non-important 

information. Until now, this has not been taken into account in DiVA where the same importance is 

given to every sensor, whichever the hand poses. As a result, although each gesture only involves a 

few fingers, the performer has to remember and reproduce the positions of all five fingers for each 

gesture, which implies a number of disadvantages. Firstly, it places a greater burden on the performer’s 

memory, slowing down the gestural learning process and increasing the frequency of errors.  

Additionally, requiring the performer to move all of the fingers into right position for each pose greatly 

reduces fluidity and decreases sound quality.  Over various instances of a single gesture, the fingers not 

involved in that gesture may be coming from a number of different positions, depending on what the 

previous gesture was.  In consequence, it becomes extremely difficult for the performer to produce 

exactly the intended sound, and the intelligibility of the speech produced decreases a considerable 

amount. 

 

Is there a way to automatically extract signals that best describe the main characteristics of each 

gesture? As a data analysis and reduction tool, can this issue be solved with PCA?  

As described in section 3.3, PCA makes the assumption that the main information in the data set is 

explained by high variances. In order to understand if the variance can be a good indicator of the 

importance of a sensor in the gesture, we now distinguish different parts of a hand pose: 

- Fingers which are important in the gesture. These one are supposed to be realized accurately, 

since they are the focus of attention. Their relative sensors are thus supposed to have a small 

variance. 

- The other fingers, less important in the gesture. As one does not concentrate on them, relative 

sensors are supposed to be variable and have a high variance. However, non-important fingers can 

also be static, even if we do not concentrate on it. 

 

As a consequence, it seems inappropriate to use directly the variance of each sensor as a descriptor of 

its importance within a given hand pose. For addressing the issue of dynamic focus on specific part of 

the gestures in future works, we suggest the incorporation of prior knowledge on the gestural language 

in the mapping strategy. 

Nonetheless, target selection can still be improved in taking into account the global variance along the 

entire training data set, as explained in the next section. 

 

3.8. Notion of distance and target selection 

This section analyzes the importance of distance choice for target selection. 

In PCA, the entire projection phase is just a linear combination of the data set with a matrix of 

eigenvectors. If the new basis is not a subset of the eigenvectors (ie. no compression and data loss) 

then the distances are preserved with the original space, as illustrated in Figure 3.15. It is clearly visible 

that keeping the same scale, both data distribution and target shape remain identical. Therefore, target 

selection (ie. subspace closed by target contour) is obviously the same in the – physical – space of 

sensors and after projection in the space of principal components. 
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We propose to benefit from the fact that PCA decomposes and sorts the dimensions by decreasing 

inertia, to adapt target form to the variance present in the data set. The assumption here is that the 

principal components with larger variance correspond to interesting dynamics and lower ones 

correspond to noise. Accordingly, we decide to weight the PCA space with its eigenvalues. If the first 

PCs explain a considerable part of variance, such weighting is almost equivalent to reduce and 

compress the data set, but has the advantage to not require any choice in the number of PCs to cut. 

Weighting with eigenvalues leads to compress the last dimensions (Figure 3.16a), which for target 

selection is equivalent to only distort target’s contour, effectively adapting to the variance within the data 

set (Figure 3.16b).   

 

 

 

 

 

 

 

 

Empirical pre-studies have shown a great improvement in the ease to reach and point at targets, when 

weighting with eigenvalues. Such distance choice will be investigated in details in chapter 4. 

 

3.9. PCA analysis: conclusion 

In this chapter, we described the most important elements of the analysis and visualization system in 

terms of its user interface, data processing and data manipulation. Our application is primary intended 

to facilitate the design of new gestural languages, enabling for an easy interpretation of the 

characteristics of hand poses within a given set of gestures. We have illustrated this purpose with a 

non-exhaustive analysis of the language used in DiVA 2.x, highlighting possible drawbacks in the choice 

of hand poses. Finally, we discussed two important aspects of glove data interpretation and 

manipulation – the notions of variance and distance choice – and suggested new means of improving 

target selection in gesture-to-voice mapping.  

Fig. 3.16: Example of target selection: (a) in PCA space using l2 norm weighted with eigenvalues (b) equivalent target 

using l2 norm with unitary weights. Keeping the same scale, weighting is equivalent to compress the data set or distort 

the shape of target according to the weight coefficients (eg. eigenvalues). 

(a) (b) 

Fig. 3.15: Example of target selection with a bivariate Gaussian distribution: (a) in the sensor space (b) 

after projection in PCA space using l2 norm with unitary weights. If no compression is applied on data, 

distances are not affected by the linear decomposition/reconstruction. 

 

(a) (b) 
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Chapter 4:  Applying Fitts’ law to complex hand 

gestures 

 

4.1. Overview and interest within the DiVA framework 

The design of a new musical instrument is commonly treated with an idiosyncratic approach, on a case-

by-case basis [2]. In the specific context of DiVA, defining the input gestural language - which conveys 

performer’s vocal intent - is an intrinsic part of the instrument creation. The current gestural vocabulary 

has been made up following the same empirical principle. Although such workflow emphasizes on 

intuition, it lacks of objective methodologies for the evaluation of gestures. 

In 2001, Wanderley and Al. [37] proposed a first attempt toward the application of HCI methodologies to 

the musical domain. However, these researches focused on the evaluation and design of input devices 

for musical expression (ie. controllers only). With the same approach, we intend to benefit from the 

substantial HCI literature in evaluating input gestural language with a generalized procedure, allowing 

for the objective characterization of any new gesture as input control. 

We make the general assumption that hand poses can be seen as targets that the performer tries to 

reach when producing the synthesized voice. This assumption shows its limits as soon as we consider 

the voice to be emitted as a continuum. Indeed, by nature coarticulation leads to not reach the targets, 

in a strategy of saving motor energy or increasing dexterity. Nonetheless, we assume that a path is 

interpolated between target “windows” of various sizes, for both vocal and gestural articu lation [18]. 

Such approximation enables the use of existing models of human behavior for target acquisitions and 

pointing tasks, such as Fitts’ law. This model coming from the HCI research offers a strong background 

for investigating the elements that shape the ease/difficulty of moving between complex poses of the 

hand, as well as the role of expert skill acquisition and mental representation in the performance of 

these musical gestures. 

 

After a short presentation of Fitts’ law in section 4.2, we clarify our motivations and assumptions in 

section 4.3. In section 4.4 we describe the context of the experiments carried out in these studies, which 

are explained in details in sections 4.5 for tasks involving one finger only, and in section 4.6 for tasks 

involving the whole hand. Finally, directions for future studies are given in section 4.7. 

 

4.2. Background in Fitt’s law 

Fitts’ law is one of the most reliable quantitative models of the human motor behavior. It was first 

introduced on the basis of ideas from information theory (Fitts, 1954). It predicts that the movement time 

T to acquire a target actually depends on its width W and its distance D according to the relation (4.1): 

           
 

 
                         

 

Where a (sec) and b (sec/bit) are constants reflecting the efficiency of the pointing system. Commonly, 

Fitts’ law is also written as T = a + b x ID, where ID stands for the index of difficulty.  
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Fitts’ law is inherently a 1D model: in its origins the target width was considered along the movement 

direction, leaving the target height practically at infinity. These two last decades have seen intensive 

HCI research in modeling 2D pointing [1, 17, 21]. More recently, a very thorough study conducted by 

Grossman and Balakrishnan [15] investigated pointing at trivariate targets in a 3D environment. 

Researches in this field are mainly about understanding of the factors that underlie the pointing task 

(movement amplitude, approach angle, target height, width and depth), or other factors such as the 

device resistance and the influence of muscle groups [40]. To our knowledge, no previous work focused 

on Fitts’ law validity under a learning constraint.  

It is noticeable that due to the usual applications of the model (user interfaces and/or input device 

design) common HCI studies narrow on the acquisition of graphical targets. Another approach concerns 

research in the fields of motor behavior and kinesiology, supporting Fitts’ law over a wide range of 

movements and muscles groups [29]. However, to date we are not aware of any work that considers 

targets as specific hand poses. 

Finally, it is interesting to point out that despite Fitts’ law is a robust and widely used model, the 

underlying mechanisms of the speed-accuracy trade-off remain a mystery [24]. 

 

4.3. Direction of the current study 

This work is first motivated by the need to extend Fitts’ law to complex 3D targets, defined here as 

specific hand postures. In particular, we want to investigate three main assumptions on the effects of 

borders, distance choice and training on target acquisition performances. Ultimately, the objective is to 

build a solid foundation for the design of new gestural languages.  

Nature and effects of borders 

By nature, flexions and extensions of fingers are limited in their range by the motor possibilities peculiar 

to each individual. When trying to apply Fitts’ law to the hand movements directly, one must examine 

the physical characteristics of specific positions within the motor dynamic. In terms of effort and 

accuracy, what shapes the gestural space along the entire movement range? Is this space uniform, or 

are there disparities and particular constraints? More precisely, what are the nature and properties of 

“borders” in the hand poses? Once again, we propose to take inspiration from HCI works to help in 

investigating these issues. 

Fitts’ model implicitly applies for targets within the dynamic range of the input controller (including 

human possible movements), where one can potentially exceed the target area in the course of 

movement execution. However, targets on the extremities of movement dynamic are also commonly 

taken into consideration with the assumption of infinite width. Indeed, movement is then stuck to the 

border, which leads to remove the target’s width constraint. This convenient property is widely applied in 

graphical user interfaces (GUI) where the most used buttons are placed at the edges and corners of the 

computer display, thus being particularly easy to acquire since the pointer remains at the screen edge 

regardless of how much further the mouse is moved. 

Intuitively, in the case of hand movements, borders can be seen as the maximal flexion, extension, 

adduction, abduction, and circumduction of the fingers. In addition, we suggest that any contact 

between fingers should also be considered as dynamically creating a border. In this case, fingers’ 

movements are blocked, which indeed corresponds to an “edge” situation.  

Our intention is to investigate precisely the nature of the borders in the case of hand gestures, and their 

effects on movement time for pointing tasks. 
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Distance choice 

We have seen in chapter 3 that the choice of a distance which best describes the gestural space has a 

great importance in the representation and mapping of hand poses. In fact, finding new appropriate 

distances is a central question in actual research on Fitts’ law, especially when inquiring for new model 

candidates in multivariate pointing [1, 15]. However, there is a major difference in the way the distances 

can be investigated, between “regular” studies on bi- or tri-variate targets and the present gestural 

space exploration using a glove as input controller. In the first common case, pointing tasks involve 

targets that are well-defined, in both 2D and 3D space, and set as independent variables. These 

conditions enable to explore distance choices post-hoc, which is very convenient for the investigation 

and comparison of different models. On the other hand, our study deals with complex gestural targets, 

proper to each individual (dependant variables) and using high dimensional data. The characteristics of 

these targets thus really depend on the distance choice, and consequently it has a direct impact on the 

selection criteria during the pointing tasks. In this context, it is required to set the distance choice on for 

all before the experiment. 

Our interest in defining and evaluating appropriate distances is double: 

 To find a model comparable to the original Fitts’ law that would best model the time to acquire a 

target in the complex gestural space. 

 To obtain the best results for target acquisition, in terms of movement time and difficulty. 

 

 

Assumptions on mental representation 

Our main hypothesis is that the formulation and learning of a symbolic gestural language (high level 

target representation) changes the distances employed in the speed-accuracy trade-off. As part of a 

probable constant of the motor system in interaction with perceptive system, we suppose that Fitts’ law 

remains valid for modeling the time to reach a “symbolic” and high dimensional target, but only 

considering a shift from a physical to a “mental" representation of the target. In this framework, both 

target distances and target widths are to be seen as “mental representations” which would shape the 

task difficulty. 

This assumption meets Moore and Fels’ research about human/device interaction, with concepts like 

intimacy or embodiement [10, 25]. Moore stated: “the control intimacy determines […] the 

psychophysiological capabilities of a practiced performer”. Intimacy is to be seen as a deep level of 

integration and communication with a device (eg. a musician with his/her instrument), and is critical in 

the perspective of subtle expression of ideas and emotions. Many factors influence the degree of 

intimacy and the rate at which intimacy grows, such as learning, training and high level representation of 

control and mapping [10]. In the same way as a skilled guitarist adapts to play a musical piece within 

timing constraints whichever are finger positions, we argue that training for increasing dexterity in the 

execution of target gestures, with emphasis on high level target representation, should increase 

intimacy and lead to a minimization of mental distances. Intuitively, this assumption appears especially 

meaningful in the performance of complex movements, where a simple mental representation of the 

gesture pose enables to reach it with more ease. 

Such conjecture is yet hard to assess, due to the difficulty to evaluate and access “mental” distances, 

intimacy and gesture representation. The aim of the present study is not to bring forthright and definitive 

answers on these issues, but guidelines for further investigations. Especially, we will focus here on the 

validity of Fitts’ law on simple gestures when the accent is put on target embodiment through the 

learning of symbolic gestures, and express possible directions to study these concepts on more 

complex gestures. 
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4.4. Experimentation 

 

4.4.1. Manipulations 

We decide to tackle these issues from two extreme perspectives in terms of gesture complexity. The 

study therefore implies two main phases involving respectively one finger (1F) and the whole hand (H). 

The interest of studies involving two fingers (2F) is discussed later.  

Each phase consists in a specific Fitts’ law experiment with pointing tasks, depending on the 

assumption to be assessed. Figure (4.1) summarizes the possible manipulations.  

         Experimentation 

Hypothesis 

One Finger (1F) Two Fingers (2F) Entire Hand (H) 

Borders     (a)  X  
Distance     (b) - X  
Representation   (c)  X … 

Fig 4.1: Outline of the experimental manipulations 

 

By running Fitts’ experiments on one finger (1F) we intend first to verify that Fitts’ law well applies using 

the CyberGlove as input device. This is made easier by the experimental conditions, which match here 

the basic Fitts’ model with only one degree-of-freedom (dof). To our knowledge, the use of the entire 

hand (H) for defining the targets in a Fitts’ experiment has never been investigated before. Both phases 

(1F and H) allow for studying the nature and effects of borders (a), which leads us to carry out two 

distinct experiments (1F/a, H/a).  

Considering the distance choice doesn’t make sense with only 1 dof (1F). In future research we intend 

to investigate this issue with the whole hand in (H/b). Finally, we also intend to delve our assumption on 

mental representations in the simplest case only (1F/c). Verifying this last hypothesis on more complex 

movements is an awkward issue, which cannot be dealt properly before validating the applicability of 

Fitts’ law to the entire hand. Due to time and space constraints, (1F/c) and (H/b) experiments will not be 

approached in this thesis.    

4.4.2. Participants 

Subjects are healthy adults, between 22 and 35 years of age, having either normal vision or wearing 

corrected lenses, and right-hand dominant. Left-hand dominant subjects cannot be included into this 

experiment, due to a material lack of glove controller for the left hand.  

At the time this thesis is written, experiments are still on progress. Therefore only one female and two 

male volunteers participated to the experiment. 

4.4.3. Apparatus 

Testing is conducted on MacBook computer with a 13’’ LED monitor set to 1280*800 resolution, running 

Mac OS X (Intel Core 2 Duo 2.4Ghz processor, 4GB RAM). All participants use the same CyberGlove 

input controller. Software is authored in C++ using Eigen and Openframeworks libraries. It presents 

trials to participants while logging their hand activities in text files. The software runs full-screen, with a 

white background color. All other applications and nonessential services are disabled. 
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4.5. Investigating Fitts’ law with one finger: experiment (1F/a) 

We make the arbitrary decision to choose the index as the single finger used for the (1F) experiments, 

focusing more specifically on the second articulation from finger’s tip (proximal interphalangeal joint 

PIP). This choice is motivated first by the configuration of sensors in the CyberGlove, with the presence 

of a sensor for this specific joint. Secondly, empirical investigations tend to indicate that this articulation: 

 Offers the largest range in terms of movement dynamic, with a good accuracy. 

 Enable for well-defined borders (maxima in terms of flexion/extension), since it has low flexibility. In 

comparison, intercarpal articulations are flexible and depend on the movement of the other fingers, 

which lead to unstable and shifting borders. 

 

 

4.5.1. Goals 

The intention here is to verify whether Fitts’ law can be applied to the modeling of speed-accuracy 

trade-off with one single finger (1F), and in which conditions. In particular, the effects of bounds 

(extremes of the finger flexion/extension) on movement time are investigated. The empirical constants 

of the model are determined for our specific input device (CyberGlove). It is a first step in investigating 

Fitts’ law with the entire hand movements.  

 

4.5.2. Procedure and design 

First, participants are asked to move the finger on its full range in order to perform the calibration, as 

shown in figure 4.4. It basically consists in the measure of the maximum range                  

After this calibration step, participants perform a conventional sequence of Fitt’s reciprocal pointing 

tasks. Since the range of possible finger movements is unique for each participant, we normalize both 

the target size and the target distance with . The independent variables are the target size (W: 0.05, 

0.1, 0.2), distance between targets (D: 0.3, 0.55, 0.75), nature of the target (Border:  ,   ) and the 

movement direction (Dir: up, down). A fully crossed design results in a total of 36 combinations of W, D, 

Border and Dir. 

According to the 1-D Fitts model (Eq. 4.1) these conditions comprise 9 distinct IDs ranging from 1.585 to 

4.087 bits: {1.585, 2.00, 2.222, 2.662, 2.700, 2.807, 3.170, 3.585, 4.087} 

 

 

 

 

 

 

 

 

 

Fig 4.2: Design schematic representation 

 

Initial area 

Target Widths 

Target Distances 

Posmin Posmax 



b  



b



b
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Note on the calibration 

Using  for both target distances and width enable to have the same relative amplitudes between 

participants. However, it also implies a trade-off between finger dynamic and precision (W 

increases/decreases with ), which is not necessarily true. 

Note on the choice of independent variables 

In order to also investigate the influence of movement direction on the performances, we take the 

maximal and minimal positions as initial target. It allows us to run the target acquisition in the two 

opposite direction, in a reciprocal manner.  

Note on the reciprocity 

Each possible departure area has its center in even PosMin or PosMax. This implies that every reciprocal 

task ends with a target on the border, since the participant has to return from the specified target to one 

of the extremities. This way, there are as many trials with the   condition as trials with the    condition. 

 

The experiment includes two sessions: a practice session, to allow participants to get used to the tasks 

and conditions, and a data-collection session, wherein participants test the 36 different D-W-Border-Orig 

combinations in a random order. Within each condition, participants perform 8 trials for a total of 36 × 8 

= 288 target acquisitions.  

On the screen, the finger position is represented by a vertical cursor (yellow stroke) that moves into a 

rectangular shape according to the movements of the finger. After each pattern of 48 acquisitions (6 

times in total), the participant is encouraged to take a pause if needed. At this time, experimentation 

completion is also shown. 

 

 

 

 

 

 

 

The participant is asked to reach the target as fast and accurate as possible, in order to not 

introduce a particular bias toward speed or accuracy. The different steps of a target acquisition are 

explained in detail in Figure 4.4. 

 

Note on target selection: 

Participants move the cursor with movements of their right hand, and select the targets by pushing a 

button with their left hand. In opposition to “classic” Fitts’ tasks (eg. mouse or stylus “point & click”), the 

use of both hands to perform the selection may introduce a bias due to the required mental overload. 

However, we cannot come across any simplest method for the target selection. 

 

 Total sensor dynamic  

Sensor dynamic 

Maximum range of the participant 

Fig 4.3: Sensor calibration 
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4.5.3. Results 

The dependant variables are movement time (MT) _defined as the time between leaving the departure 

initial area and selecting the target in a trial set, and error rate _defined as the average number of errors 

per trial. Errors occurs when participants clicks when the cursor is outside the target. 

Outliers are defined based on MT:  any data point further than 1 standard deviation away from its 

condition’s mean is removed. Errors are also removed. A total of 6.5% of the data were removed as 

outliers.  

 

Analysis of data 

We present here some preliminary results, as only three persons participated to the experiment for the 

moment. Analysis of variance is thus not very relevant, but gives an idea of the main tendencies. 

The independent variables D (F2,17=9.3 p<.005) and W (F2,17=31.8 p<.0001) all have a significant effect 

on the movement time MT. Recall that for each pointing task, we tested movements in both directions 

(Dir: down/up, equivalent to flexion/extension). Analysis of variance shows that Dir does not have a 

significant effect on MT (F1,35=0.21 p=.647). 

Of particular interest is the effect of the border condition B on MT, which shows to be significant 

(F1,35=64.8 p<.0001). We therefore split the MT data according to the two B conditions, and fit it to Fitts’ 

model (Eq. 4.1) using a least-squares method. Results are shown in Figure 4.5. The R
2
 values for the 

regression are important (>.85): it indicates a good fitting with the model. 

 

 

Fig. 4.4: Example of a target acquisition. (1) The initial position is displayed in grey. (2) Moving the cursor in the 

initial area changes its color to orange and triggers a random countdown.(3) At the end of the countdown, the color 

swaps in green, the target to reach is displayed in black and sound is played indicating that the initial area can be 

leaved. (4) As the participant moves the cursor out from the initial target, the movement time is incremented until 

the task end. (5) Task end occurs when the participant push the spacebar key to select the target. A visual/audio 

feedback informs the participant that the target was hit (target turns red) or missed (target turns red + buzzing 

sound). (6) Initial area and Fitts’ target swaps, enabling the participant to perform the reciprocal pointing task 

1 

 
2 

 
3 

 
4 

 
5 

 
6 
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These results tend to indicate that Fitts’ law validity does not depend on the border condition. In 

addition, targets in the border are reached significantly faster, and are less affected by target index of 

difficulty. Therefore, using the CyberGlove as input gesture controller does not obstruct Fitts behavioral 

model, and paves the way toward investigations of complex hand poses. 

 

4.6. Investigating Fitts’ law with the entire hand: experiment (H/a)  
 

 

4.6.1. Goals 

Our intent is to verify whether Fitts’ law can be applied to the modeling of speed-accuracy trade-off in 

the context of complex gestures involving the entire hand. Especially, the effects of gesture borders on 

performance and model fitting will be investigated.  

 

4.6.2. Design and analysis of hand poses 

Dealing with complex hand poses in a Fitts’ experiment is not trivial, and involves choosing 

appropriately the positions to be considered as targets. A major drawback here is that targets cannot be 

considered as independent variables anymore. The hand poses, peculiar to each participant, are 

recorded at the beginning of the experiment following the procedure described in chapter 3. Such record 

phase can be considered as a calibration step, each participant having his/her own hand shape and 

interpretation of the gestures.  

 

The choice of gestures used as targets is guided by the following considerations: 

 Hand poses must be as clear as possible, in order to minimize the cognitive load necessary to 

visualize the gestures before their performance, and to avoid differences of interpretation between 

non-specialist participants. Here the experimental design and especially how the gestures are 

presented to the participants play a central role for their correct interpretation. 

     Fig 4.5: Movement time in function of difficulty index for subject 1 

Y = 316.63 + 163.47 X  

Y = 243.95 + 85.45 X  
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 Targets must be distributed uniformly, and along the entire gestural space since we want to reduce 

the influence of possible (unknown) disparities in this same space. 

 Targets must be chosen so that a maximum variance is explained by the three first principal 

components to enable a rather complete representation in three dimensions. 

 Finally, in order to investigate the effects of borders, ultimately a given hand pose has even to 

entirely respect the border condition or not at all; positions at the crossing (ie. parts of the same 

gesture reach a bound, other parts don’t) must be avoided. We recall that our definition of borders is 

the maximal flexion, extension, adduction, abduction, and circumduction of the fingers, as well as 

any contact between them. 

We address these issues by choosing 6 specific hand poses, shown in Figure 4.6. Three first positions 

respond to the border condition; here participants are asked to flex/extend the hand as much as 

possible. Three last positions respond to the non-border condition; they require being as supple and 

relaxed as possible in order to not reach any border. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A short analysis of the data set (Figure 4.7a) indicates that more than 95% of the variance is explained 

by the three first axes, enabling the software to display a complete representation of the targets in the 

cube. This fact is due to the range of movements chosen, principally moving the fingers closer/further 

from the palm (positions 3, 4, 5, 6). These motions involve flexions/extensions of PIP and MCP joints 

that are almost only explained respectively by PC1 (sensors 6, 8, 11, 14) and PC2 (sensors 5, 7, 10, 13), 

as illustrated in Figure 4.7b. In a lesser extent, PC3 explains the movements of the thumb (sensors 1, 2, 

4) chosen to reach two extreme borders between the hand poses 1 and 2.  

It is interesting to notice that the dispersion of the record points is not constant and shows a great 

influence of the border condition. It is illustrated in Figure 4.6 and 4.7c were trajectories and targets on 

borders are concentrated on small area, whereas intermediate positions show a greater dispersion. This 

point will be discussed in section 3.3.4. 

Fig. 4.6: Visualization of the gestural language designed for the experiment in PC1,2,3 for subject 2 (in grey the 

recorded points, in green means of each cloud). Data is projected on the basis built upon movements acquired 

during the initial record phase, and weighted with eigenvalues; each target is recorded 15 times. Visualization 

shows a uniform repartition of hand poses in the space, and also highlights disparities in the dispersion of 

record points between the targets. 
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4.6.3. Procedure and design 

This study involves two phases: first record of hand poses, then the Fitts’ experiment itself.  

Before starting the first session, the experimenter distributes instructions
1
 explaining the different hand 

poses. Participants are asked to reproduce them in order to verify their good interpretation, and 

additional precisions are given if necessary. The record is then realized through an authored 

application, following the protocol described in section 3.4.4. Each of the 6 targets is acquired 15 times, 

which leads to record each possible transition 3 times, for a total of 90 selections by the participant. 

Means of recorded targets are then displayed into the cube. This representation is shortly explained to 

the participant, who is asked to reach each target until she/he feels comfortable. The space is weighted 

with eigenvalues to take into account variance within the data set, which greatly improves the ease to 

reach targets. Every distance (target radius, distance between targets) thus depends on the recorded 

data set. 

Thereafter the Fitts’ law experiment begins, with a sequence of pointing tasks using the recorded 

targets. In order to balance the target acquisitions equally, each possible transition is visited, giving the 

following number of distance (D) values: 0.5 x Ntarget x (Ntarget-1) = 15. Distance values depend on the 

recorded targets, and cannot be set as independent variables. The latter are the target radius (R: 18, 

25, 30 “angle” units) and nature of the target (Border:    ). There are a total of 15x3x2=90 combinations 

of D, R and Border that are tested by participants in random order. Within each condition, participants 

perform 4 trials, for a total of 360 target acquisitions. 

Different steps of a target acquisition are summarized in Figure 4.8. Participants are asked to be as fast 

and accurate as possible in reaching the targets. After each pattern of 72 acquisitions (5 times in total), 

the participant is encouraged to take a pause if needed. At this time, experiment completion is also 

shown. 

 

 

                                                             
1
 Instructions shown to participants are given in appendixes. 

Fig. 4.7: Inertia accumulation and fraction (a) and illustration of eigenvectors (absolute values) (b) for subject 2’s 

database (≈11K samples). (c) Representation of the gesture trajectories in PC1 and PC2 during the record 

session. It is clearly visible that each possible transition between targets (black dashed circles) was visited. 

 

(a) (b) (c) 
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4.6.4. Results 

The dependant variables are movement time (MT), error rate and final position (at the moment of 

selection). Outliers are defined on the same basis as experiment 1F/a. Consequently, a total of 8.2% of 

the data were removed as outliers.  

Analysis of data 

Effects of the border condition B on MT are still significant (F1,89=139.5 p<.0001). As for the previous 

experiment (1F/a) we split the data according to the two B conditions. The model used to fit the data is a 

simple adaptation of Fitts’ law (Eq. 4.1), where we replace the target width with the hyperspheres’ radius 

R (Eq. 4.2): 

           
 

 
                        

 The linear regression is realized using a least-squares method. Results are shown in Figure 4.9, and 

show that using directly the original Fitts’ law leads to an important spread of the data. Thus we obtain 

small R
2
 values for the regression (< 0.7), which indicates that better models should be found for 

applying Fitts’ law to highly dimensional data. Considering the overall behavior, we found the same 

tendencies as in (1F/a): Fitts’ law validity doesn’t seem to be compromised when using the entire hand, 

neither to depend on the border condition. Targets in the border are reached significantly faster, and are 

less affected by target index of difficulty. 

These results are consistent with the idea that the gestural space of the hand is not uniform, but shows 

disparities within its motor dynamic. Our intuitive assumption on the particular ease of movements 

toward borders is supported by the fact that participants reach them faster and more precisely than 

Fig. 4.8: Example of target acquisition. (1) Pictures of initial (A) and destination (B) target are displayed, as 

well as their respective spheres (A: green, B: orange). (2) Moving in A turns it red and play a specific sound. It 

also triggers a random countdown, at the end of which A is displayed in grey, while B flashes on and off (3). 

Participant moves toward B (4) and reaches it (5). Pressing the spacebar triggers next task, keeping B as 

initial target with a new destination target (6). If the target is missed, a buzzing sound is emitted. 

 

(1) (2) (3) 

(4) (5) (6) 
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intermediate positions. We believe that this is due to both mechanical constraints, ie. finger movements 

cannot exceed their dynamic, and “mental” constraints, ie. intermediate and continuous positions are 

harder to visualize and learn than extreme positions and discrete contacts between fingers. 

 

Once again, such conclusions have to be considered cautiously before carrying out more experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7. Toward extensive studies 

In order to better understand the mechanisms underlying motor control of hand movements, deeper 

studies have to be conducted on finger synergies, distances choices, impact of embodiment and skills 

acquisition. 

One judicious way to better understand finger synergies and coupled degrees of freedom is to consider 

the simplest case of gestural targets defined by two fingers only. This paradigm is at the junction 

between the experiments presented in this thesis, involving one finger and the whole hand. With two 

fingers, the complexity in terms of mental representation emerges, which enables to inquire the effects 

of learning and training (leading to target embodiment) on movement time and accuracy. This latter 

question will be investigated a near future, under strict experimental constraints on one finger only
1
. 

Finally, distance choice has to be looked at in detail with the purpose of building new models that better 

describe the speed-accuracy tradeoff in complex hand gestures. 

 

 

                                                             
1
 Considerations on the design of these experiments are presented in the appendixes. 

Fig 4.9: Movement time in function of difficulty index for subject 1.  

Y = 114.45 + 102.54 X  

Y = 145.28 + 227.15 X  
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Chapter 5: Conclusion 

 

 

In this thesis, we focused on the gestural control and mapping of hand gestures in DiVA – a new 

interface for musical expression – with the aim of synthesizing audiovisual speech and song. 

 A full analysis & visualization system was developed, allowing for the interpretation and concise 

representation of complex gestural data by means of a real-time principal component analysis. The 

relevance of this set of tools was illustrated through a detailed study of the language used in DiVA 2.x. It 

highlighted possible drawbacks in the choice of hand poses: a reduced and unequal gestural space 

occupation with an important overlapping between targets. New means of improving target selection in 

gesture-to-voice mapping were suggested, namely to change the distances employed while 

emphasizing on uniform distribution of the hand poses. Finally, as a guideline to facilitate the design of 

new gestural languages, we propose to use our system in an iterative creation process, with a design 

scheme similar to the prototyping spiral for a human-computer interface (HCI) device [2]. 

 

The second contribution of this thesis is the evaluation of hand poses and their associated transitions. 

Benefiting from research in HCI on the modeling of target pointing, we investigated Fitts’ law – well-

known model of speed-accuracy tradeoff – in two experiments involving target acquisition tasks with the 

precise controller used in DiVA for acquiring hand gestures (CyberGlove).  

In the first study, participants were asked to move only one articulation (index PIP). Results showed a 

good fitting with the model, suggesting that Fitt’s law can be successfully investigated using the 

CyberGlove as input controller. We then explored target pointing tasks involving movements of the 

entire hand, participant being asked to reach complex hand poses. Using the application developed in 

the first part of this thesis, hand poses were recorded and visualized as targets after a real-time data 

reduction. Results of this second study tend to indicate that movement time can still be predicted with 

the target distance and size, despite an important spread of the data. Subsequent research could 

inquire better models for applying Fitts’ law to complex hand gestures.  

The specific role of borders – defined as movement bounds and contacts between fingers – was also 

investigated. In both studies, results tend to indicate that Fitts’ law validity is not compromised by the 

border condition, which has however a significant impact on movement time. Border targets are reached 

significantly faster than intermediate positions, and are less affected by the task difficulty. This effect of 

borders should be taken into consideration when designing new gestures for driving the speech 

synthesis in DiVA, as it has a direct impact on the ease for producing the mapped phonemes. We 

believe that border positions foster gestures embodiment as they are particularly salient in the sense of 

their ease to be memorized and performed. In this context, future studies within the DiVA framework 

should inquire the effects of learning and training on gesture performance, with the ambition to push 

further the design and potential expressivity of new gestural languages. 
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